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Abstract

We show in this paper that collision between two moving balls in 3D is decidable if one of the bodies
has a helical motion and the other body has an algebraic motion. Furthermore, an explicit polynomial
time complexity bound is derived for this problem. Such bounds depend on effective versions of Baker’s
theorem on linear form in logarithms in transcendental number theory.

1 Introduction

Many geometric problems are solved using the Real RAM model. As long as the solutions remain algebraic,
the use of a Real RAM model is feasible. But when transcendental operations such as sinx and expx are
involved, it is a major open problem in Exact Geometric Computation [10] whether the Real RAM model
can be simulated by a Turing machine. Recently, the first example of a transcendental geometric problem
that is provably solvable in the Turing machine model was shown in [2]: this is the problem of computing
shortest paths amidst disc obstacles.

In this paper, we study a collision detection problem that is also transcendental in nature. It is well-
known that algebraic motion planning is solvable since the early 1980s [6]. Here, obstacles are typically
static, and some feasible motion between two positions is to be computed. Superficially, such motions may
involve the trigonometric functions such as sinx and cosx; but they can be resolved by introducing algebraic
relations such as sin2 x + cos2 x = 1.

But truly transcendental motion planning problems can arise through the introduction of helical motions.
In modeling, computer graphics and robotics, the use of helical motions or geometry is relatively common
(e.g., [7, Section 3.1.3], [3, 5]). The simplest helical motion is that of a point p that is moving along a fixed
direction u at constant velocity while simultaneously rotating about a fixed axis that is along direction u.
Let us suppose that simultaneously, a body B is moving in some known motion. We want to decide if p and
B will collide. In this paper, we will give decision procedures for answering such questions. Our procedures
will be shown to be implementable on Turing machines, not just Real RAMs. As in [2], such results will
depend on zero bounds from transcendental number theory.

The possibility of computing such potential collision may seem to be of purely theoretical interest. Nev-
ertheless, there may be a practical need for very high accuracy computations of this sort. On July 4th
2005, in the dramatic display of precision engineering and calculations, NASA successfully sent a man-made
projectile into collision course with the comet Tempel 1, traveling with a relative speed of 23,000 mph. More
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generally, we want to predict if two celestial bodies will ever collide – this may involve computing very far
into the future, with guaranteed accuracy. Presumably such questions will arise in the future.

Instead of asking if two bodies will collide, we can also ask if two bodies will come within distance ε ≥ 0
of each other. This near-collision problem is a slight generalization of the collision question. For algebraic
bodies, their decidability is equivalent. As we shall see, our ability to answer such questions is fairly limited.

Contributions of this paper. Helical motions are one of the simplest forms of non-algebraic motion that
are used in applications. This paper shows that a collision problem involving such motion is computable.
This adds to our currently sparse collection of transcendental geometric problems known to be computable.
The boundary between what is and what is not computable “exactly” in the geometric sense is a fundamental
issue in the theory of real computation, and of complexity theory. This area also has practical implications
for robust geometric computations.

Overview of Paper. In Section 2, we introduce a simple version of the collision problem involving helical
motion. This problem is shown to be decidable. In Section 3, we derive a polynomial time complexity bound
assuming the input motions are defined by rational polynomials. In Section 4, we discuss open problems and
possible extensions.

2 A Simple Case

Let p be a point in a helical motion and let h(t) = (cos t, sin t, st) be the position of p at time t. Suppose
that B is a ball with radius r that moves along a curve and let c(t) = (c1(t), c2(t), c3(t)) be the position of
B’s center at time t.

p

B

Figure 1: Collision detection of a point p in helical motion and a moving ball B.

Assuming that p and B are not in collision at the initial time t = 0, we want to decide whether p and B
will ever collide at a time t > 0. Assume that ci(t)’s are algebraic functions, i.e., there exists a polynomial
P (x, y) ∈ C[x, y] such that P (ci(t), t) ≡ 0. We shall focus on an interval I = [T1, T2] on which c(t) is
continuous and differentiable (except at the boundaries), where T1 and T2 are algebraic numbers. The most
important class of functions in practice for ci(t)’s would be polynomials with rational coefficients, and we
will focus on this case in Section 3. Another interesting class is piecewise continuous rational functions, and
the assumption on [T1, T2] is natural in this situation. In this section, we assume that ci(t)’s are general
algebraic functions, and the radius r of B and the speed parameter s of h(t) are real algebraic numbers. We
show that the corresponding collision detection is decidable.

There is a collision if and only if the inequality

‖h(t) − c(t)‖ ≤ r (1)

has a real solution in t ∈ I. The inequality (1) is equivalent to

‖h(t) − c(t)‖2 = (cos t − c1(t))
2 + (sin t − c2(t))

2 + (st − c3(t))
2 ≤ r2.
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By continuity, this is equivalent to checking if there is a solution for the equation ‖h(t) − c(t)‖2 = r2 for
some t ∈ I. This equation is now equivalent to checking the solvability of equation of the form

a(t) cos t + b(t) sin t + d(t) = 0, (2)

where a(t) = −2c1(t), b(t) = −2c2(t), and d(t) = c1(t)
2 + c2(t)

2 + (st− c3(t))
2 + 1− r2. Note that a(t), b(t),

and d(t) are differentiable on (T1, T2) and continuous on [T1, T2].

Theorem 1. It is decidable whether there is a real solution of the equation of type (2).

Note that equation (2) includes transcendental functions. To prove the theorem, we transform the
equation into a form to which we can apply the zero bound. (See Section 3.2.) Let A0 = {t ∈ I | a(t)2+b(t)2 >
0}, the set of t for which a(t) and b(t) are not simultaneously zero. For t ∈ A0, let

α(t) =
a(t)

√

a(t)2 + b(t)2
, β(t) =

−b(t)
√

a(t)2 + b(t)2
, δ(t) =

−d(t)
√

a(t)2 + b(t)2
.

Then, for each t ∈ A0, there is θ(t) such that cos θ(t) = α(t) and sin θ(t) = β(t), and equation (2) is reduced
to

cos(t + θ(t)) = δ(t). (3)

Let us fix a branch of arc cosine, say arccos : [−1, 1] → [0, π]. Then θ(t) = arccosα(t) when β(t) ≥ 0, and
θ(t) = − arccosα(t) when β(t) ≤ 0. Rewrite (3) as

cos(t ± arccosα(t)) = δ(t), (4)

subject to the sign of β(t). Now let A = { t ∈ I | −1 ≤ δ(t) ≤ 1, a(t)2 + b(t)2 > 0 }. By definition, we
have A ⊆ A0. Since −1 ≤ δ(t) ≤ 1 on A, we can take arccos on both sides of (4) and obtain the following
equations:

t + arccosα(t) − arccos δ(t) = 0 mod 2π, (5)

t + arccosα(t) + arccos δ(t) = 0 mod 2π, (6)

t − arccosα(t) − arccos δ(t) = 0 mod 2π, (7)

t − arccosα(t) + arccos δ(t) = 0 mod 2π, (8)

where equations (5) and (6) are subject to the condition β(t) ≥ 0, and equations (7) and (8) are subject to
the condition β(t) ≤ 0. The following lemma justifies the reduction of equation (2) to equations (5)–(8).

Lemma 2. For t ∈ A, equation (2) holds if and only if one of the equations (5)–(8) holds.

Proof. Suppose that t0 is in A and satisfies (2). There is a unique θ0 ∈ [0, 2π) such that cos θ0 = α(t0),
sin θ0 = β(t0). This θ0 clearly satisfies cos(t0 + θ0) = δ(t0). Since t0 ∈ A, we have −1 ≤ δ(t0) ≤ 1, and thus

arccos δ(t0) = arccos cos(t0 + θ0) = ±(t0 + θ0) (mod 2π), (9)

depending on which quadrant t0 + θ0 is contained in. Now, depending on the sign of β(t0), we have either
θ0 = arccosα(t0) or θ0 = 2π − arccosα(t0). By eliminating θ0 in (9) with this, we conclude that t0 satisfies
one of (5)–(8).

Conversely, if t0 satisfies equations (5) or (6), then clearly we have cos(t0 + arccosα(t0)) = δ(t0). Note
that if β(t0) ≥ 0, then sin arccosα(t0) = sin t0. By expanding cosine, we obtain (2) for t0. For equations (7)
or (8), we have cos(t0 +arccosα(t0)) = δ(t0). Because β(t0) ≤ 0 in this case, then sin arccosα(t0) = − sin t0.
So we obtain (2) for t0 by expanding cosine.

Lemma 2 takes care of the case where t is in A. If t ∈ I − A, the only case that our argument does not
capture is when a(t) = b(t) = 0. The following lemma is clearly true.
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Lemma 3. If t ∈ I − A, equation (2) holds if and only if a(t) = b(t) = d(t) = 0.

Now we show how to decide the existence of a zero of equation (2). Given algebraic functions a(t),
b(t) and d(t), we first check if a(t), b(t) and d(t) have a simultaneous zero in [T1, T2], and this is clearly
a decidable problem. If they have a solution, we can stop and conclude that there is a collision. In this
degenerate case, a(t) = −2c1(t) = 0, and b(t) = −2c2(t) = 0. So the ball’s center is at the axis of the helix.
And d(t) = (st− c3(t))

2 +1− r2 = 0 means that p is touching the ball’s surface. This can happen only when
r ≥ 1.

Now suppose that there is no simultaneous zero of a(t), b(t) and d(t) in [T1, T2]. By Lemma 3, we only
need to check whether there is a zero in A, and the rest of this section is devoted to this question. We first
show that A is a union of a finite number of closed intervals with algebraic endpoints.

Lemma 4. If there is no simultaneous zero of a(t), b(t) and d(t) in [T1, T2], then A is a union of a finite
number of closed intervals with algebraic endpoints.

Proof. Since there is no simultaneous zero of a(t), b(t) and d(t), if a(t)2+b(t)2 = 0, then d(t) 6= 0. Because d(t)
does not vanish, by continuity of a(t), b(t) and d(t), the condition −1 ≤ δ(t) ≤ 1 implies that a(t)2+b(t)2 > 0;
otherwise, δ(t) = −d(t)/

√

a(t)2 + b(t)2 would not be bounded in the neighborhood of zeros of a(t)2 + b(t)2.
Hence, we can remove the condition a(t)2 + b(t)2 > 0 in the definition of A, and the set A is determined
by only the inequality d(t)2 ≤ a(t)2 + b(t)2. The function f(t) = d(t)2 − a(t)2 − b(t)2 is continuous on
I = [T1, T2], which is a compact set. The set A = { t ∈ I | d(t)2−a(t)2−b(t)2 ≤ 0 } = f−1((−∞, 0])∩ [T1, T2]
is an intersection of a closed set and a compact set in R and therefore is a compact set. So A is a union of a
finite number of closed intervals. The endpoints of the intervals in A are the zeros of f , T1 or T2, which are
algebraic.

Now we focus on each connected interval of A and decide whether equations (5)–(8) have a zero using
a zero bound for linear forms in arc cosines. Consider one connected interval [t1, t2] ⊂ A and equation (5).
Note, again, that t1 and t2 are zeros of δ(t) ± 1, T1 or T2. For t ∈ [t1, t2],

t1 − 2π ≤ t + arccosα(t) − arccos δ(t) ≤ t2 + 2π.

Therefore, we need to check only a finite number of equations

t + arccosα(t) − arccos δ(t) − 2nπ = 0,

for integers n. For a fixed integer k, define F : [t1, t2] → R by

F (t) = t + arccosα(t) − arccos δ(t) − 2kπ,

and we are to check the existence of a zero of F in [t1, t2]. Note that F is continuous on [t1, t2], but may
not be differentiable on [t1, t2] since arccos is not differentiable at ±1. Since δ(t) 6= ±1 on (t1, t2), we find
the t values in (t1, t2) where α(t) = ±1, all of which are clearly algebraic, and the number of which is finite.
Denote all such t values in (t1, t2) by τ1, τ2, . . . , τl. We also find all zeros of

F ′(t) = 1 − α′(t)
√

1 − α(t)2
+

δ′(t)
√

1 − δ(t)2
= 0

in (t1, t2), and denote them σ1, σ2, . . . , σm. They are also algebraic and finite in number. Note that β(t) = 0
implies b(t) = 0, and hence α(t) = ±1.

Now F and β have the following properties:

(1) F and β are continuous on [t1, t2].

(2) F is strictly monotone on each subinterval generated by τ1, . . . , τl, σ1, . . . , σm, and the function β does
not change sign on the subintervals.
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So the decision problem on the existence of a zero of F in [t1, t2] can be resolved by determining the signs
of F at the extremal points t1, t2, τ1, . . . , τl, σ1, . . . , σm and by checking (1) either one of them is a zero or
endpoints of the subintervals have opposite signs, and (2) the sign of β at the zero or the signs of endpoints
of the subinterval that contains a zero of F .

The sign determination of β on the algebraic points is clearly decidable, since β is algebraic. The sign
determination for F can be done exactly as well, since we can determine the zero problem for the following
expression with an algebraic t∗ [2, 8]:

F (t∗) = t∗ + arccosα(t∗) − arccos δ(t∗) − 2k arccos(−1). (10)

Clearly, similar procedures work for the other equations (6)–(8).

3 Complexity

In this section, we calculate an explicit bit complexity for our problem. Although the decidability result
in Section 2 is valid for any algebraic input trajectory c(t), we assume in this section that c(t) is given by
polynomials with rational coefficients.

Assumption: The functions c1(t), c2(t), c3(t), which define the trajectory of the moving ball B’s center,
are in Q[t]. Also, the constant s and the ball’s radius r are rational numbers.

See [1, 9] for more details on the notions introduced in this section.

3.1 Input Size

Let f(t) = antn + an−1t
n−1 + · · · + a0 ∈ C[t] with an 6= 0. The Mahler measure of f , M(f) is defined by

M(f) := |an| ·
n
∏

i=1

max {1, |γi|},

where γ1, . . . , γn ∈ C are the zeros of f . It follows from the definition that the Mahler measure is a
multiplicative map from C[t] to {x ∈ R |x > 0}, i.e.,

M(f1f2) = M(f1)M(f2), ∀f1, f2 ∈ C[t]. (11)

The absolute logarithmic height of f , ht(f), is defined by

ht(f) :=
1

deg(f)
log M(f).

Let γ be an algebraic number, and let f ∈ Z[t] be its minimal polynomial. The degree deg(γ), the Mahler
measure M(γ), and the absolute logarithmic height ht(γ) are defined respectively by:

deg(γ) := deg(f), M(γ) := M(f), ht(γ) := ht(f).

Here are some properties of the absolute logarithmic height:

Lemma 5. Let γ, γ1, . . . , γn be (nonzero) algebraic numbers. Then we have

(1) ht(γ1γ2) ≤ ht(γ1) + ht(γ2).

(2) ht(γ1 + · · · + γn) ≤ ht(γ1) + · · · + ht(γn) + log n.

(3) ht(γr) = |r| · ht(γ), ∀r ∈ Q.
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Proof. See [9].

We use the degrees of the input polynomials as a measure of the input size:

Input Condition 1: deg(c1), deg(c2), deg(c3) ≤ N .

For the second measure of input size, consider the following: Let

f(t) =
pn

qn

tn +
pn−1

qn−1
tn−1 + · · · + p0

q0
∈ Q[t],

where pn, q0, . . . , qn 6= 0, and (pi, qi) = 1 for i = 0, 1, . . . , n. We define the bit bound of f , B(f), by

B(f) := max
0≤i≤n

{log2 |pi|, log2 |qi|}.

Input Condition 2: B(c1), B(c2), B(c3) ≤ B and B(s), B(r) ≤ B.

The final bit complexity will be expressed in terms of these two input parameters N and B. Here are
some properties of the bit bound:

Lemma 6. For any f(t), g(t) ∈ Q[t], we have

(1) B(f ± g) ≤ B(f) + B(g) + 1.

(2) B(fg) ≤ (N + 1) log2(N + 1) · (B(f) + B(g)), where N = min {deg(f), deg(g)}.

(3) B(f ′) ≤ B(f) log2(deg(f)).

(4) M(f) ≤
√

1 + deg(f) · 2B(f).

Proof. See [9] for the proof of (4). Let n = deg(f), m = deg(g), Bf = B(f), Bg = B(g). Write

f(t) =
pn

qn

tn +
pn−1

qn−1
tn−1 + · · · + p0

q0
, g(t) =

p̃m

q̃m

tn +
p̃n−1

q̃n−1
tn−1 + · · · + p̃0

q̃0
,

where |pi|, |qi| ≤ 2Bf , |p̃i|, |q̃i| ≤ 2Bg . Note that a coefficient of f(t) ± g(t) is of the form:

p

q
± p̃

q̃
=

pq̃ ± p̃q

qq̃
.

So (1) follows, since |pq̃ ± p̃q|, |qq̃| ≤ 2 · 2Bf+Bg = 2Bf +Bg+1.
Let N = min{n, m}. Note that a coefficient of f(t)g(t) is of the form:

L
∑

k=0

pik

qik

· p̃jk

q̃jk

=

pi0qi1 · · · qiL
· p̃i0 q̃i1 · · · q̃iL

+ qi0pi1qi2 · · · qiL
· q̃i0 p̃i1 q̃i2 · · · q̃iL

+ · · · + qi0 · · · qiL−1piL
· q̃i0 · · · q̃iL−1 p̃iL

∏L

k=0 qik
q̃jk

,

for some L < N . The bit size of the above number is less than log2

{

(N + 1)2(N+1)Bf 2(N+1)Bg
}

, from which
(2) follows.

Finally, note that the coefficients of f ′(t) are:

i · pi

qi

, 0 ≤ i ≤ n.

So (3) follows, since |i · pi|, |qi| ≤ n · 2Bf .
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3.2 Results From Transcendental Number Theory

The following Baker type result is an effective tool for the zero problem of transcendental expressions like
(10):

Proposition 7 (Waldschmidt [8], Theorem C). For n ≥ 2, let γ0, γ1, · · · , γn be algebraic numbers, and let
β1, · · · , βn be nonzero algebraic numbers. For 1 ≤ j ≤ n, let log βj be any determination of the logarithm
of βj. Suppose that

D ≥ [Q(γ0, γ1, · · · , γn, β1, · · · , βn) : Q], W ≥ max
0≤j≤n

{ht(γj)},

Vj ≥ max {ht(βj), | log βj |/D, 1/D}, V1 ≤ · · · ≤ Vn,

V +
n−1 = max {Vn−1, 1}, V +

n = max {Vn, 1}.
1 < E ≤ min {eDV1 , min

1≤j≤n
{4DVj/| logβj |}}.

If Λ := γ0 + γ1 log β1 + · · · + γn log βn is non-zero, then

|Λ| > exp {−28n+51n2nDn+2V1 · · ·Vn(W + log(EDV +
n ))(log(EDV +

n−1))(log E)−n−1}.

By applying Proposition 7 after replacing γ0 → iγ0, βj → βj + i
√

1 − β2
j , 1 ≤ j ≤ n, we transform

Proposition 7 into the following form, which is suitable to our situation:

Corollary 8. Let γ0, γ1, . . . , γn, β1, . . . , βn ∈ C (n ≥ 2) be nonzero algebraic numbers. If Λ := γ0 +
γ1 arccosβ1 + · · · + γn arccosβn is non-zero, then

|Λ| > exp {−28n+51
n

2n

D
n+2

V1 · · ·Vn(W + log(EDV
+

n
))(log(EDV

+

n−1))(log E)−n−1},

where

D ≥ 2n+1 deg(γ0) · · ·deg(γn) · deg(β1) · · · deg(βn), W ≥ max
0≤j≤n

{ht(γj)},

Vj ≥ max {2ht(βj) +
3

2
log 2, | arccosβj |/D, 1/D}, V1 ≤ · · · ≤ Vn,

V +
n−1 = max {Vn−1, 1}, V +

n = max {Vn, 1},
1 < E ≤ min {eDV1 , min

1≤j≤n
{4DVj/| arccosβj |}}.

3.3 Asymptotic Bit Complexity

Now we bound the bit complexity of the expression from (10)

Λ := F (t∗) = t∗ + arccosα(t∗) − arccos(δ(t∗)) − 2k arccos(−1), (12)

where t∗ is a zero of one of the following (algebraic) functions: (i) α(t) ± 1 , (ii) δ(t) ± 1, (iii) F ′(t). The
complexity argument for the other cases arising from (6), (7), (8) would be identical. To apply Corollary 8,
we first need to bound the following quantities:

deg(t∗), deg(α(t∗)), deg(δ(t∗)), ht(t∗), ht(α(t∗)), ht(δ(t∗)), ht(2k). (13)

Lemma 9. Let γ be a zero of f [t] ∈ Q[t]. Then we have:

(1) deg(γ) ≤ deg(f).

(2) ht(γ) ≤ (deg(f) + 2)B(f) log 2 + 1
2 log(deg(f) + 1).
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Proof. (1) is obvious. For the proof of (2), let fγ(t) ∈ Z[t] be the minimal polynomial of γ. Let n = deg(f)
and B = B(f). Write

f(t) =
pn

qn

tn +
pn−1

qn−1
tn−1 + · · · + p0

q0
,

where pn, q0, . . . , qn 6= 0, and maxn
i=0 {|pi|, |qi|} ≤ 2B. Note that

f(t) =
1

q0q1 · · · qn

·
(

q0 · · · qn−1pntn + q0 · · · qn−2pn−1qntn−1 + · · · + p0q1 · · · qn

)

=
1

q0q1 · · · qn

· fγ(t)g(t),

for some g(t) ∈ Z[t]. From (11), we have M(q0 · · · qn) · M(f) = M(fγ)M(g), and hence,

M(fγ) ≤ M(q0) · · ·M(qn) · M(f) = |q0| · · · |qn| · M(f) ≤ 2(n+1)B · M(f)

≤ 2(n+1)B ·
√

1 + n · 2B = 2(n+2)B
√

1 + n,

where the last inequality comes from Lemma 6 (4). Now we have

ht(γ) =
1

deg(fγ)
log(M(fγ)) ≤ log(M(fγ))

≤ log
(

2(n+2)B
√

1 + n
)

= (n + 2)B log 2 +
1

2
log(n + 1),

which completes the proof.

Lemma 10. Let γ be an algebraic number, and let g(t) ∈ Q[t]. Suppose that ht(γ) ≥ 1. Then we have

ht(g(γ)) ≤ 1

2
deg(g) (deg(g) + 1) · ht(γ) + 2 log 2 · (deg(g) + 1)B(g) + log(deg(g) + 1). (14)

Proof. Let n = deg(g) and B = B(g). Write

g(t) =
pn

qn

tn +
pn−1

qn−1
tn−1 + · · · + p0

q0
,

where pn, q0, . . . , qn 6= 0 and maxn
i=0 {|pi|, |qi|} ≤ 2B. Now we have

ht(g(γ)) = ht

(

pn

qn

γn +
pn−1

qn−1
γn−1 + · · · + p0

q0

)

≤ ht

(

pn

qn

· γn

)

+ ht

(

pn−1

qn−1
· γn−1

)

+ · · · + ht

(

p0

q0

)

+ log(n + 1)

≤
n
∑

i=1

ht
(

γi
)

+
n
∑

i=0

(ht (pi) + ht (qi)} + log(n + 1)

≤ ht (γ) ·
n
∑

i=1

i +

n
∑

i=0

2 log
(

2B
)

+ log(n + 1)

≤ 1

2
n(n + 1) · ht(γ) + 2 log 2 · (n + 1)B + log(n + 1),

which completes the proof.

Lemma 11. The following hold for the polynomials a(t), b(t), and d(t):

B(a) = O(B), B(b) = O(B), B(d) = O(BN log N),

B(a′) = O(B log N), B(b′) = O(B log N), B(d′) = O
(

BN(log N)2
)

.
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Proof. Use the relations between a, b, d and c1, c2, c3, and Lemma 6, along with the following:

B(d) ≤ B
(

c2
1 + c2

2 + (st − c3)
2
+ 1 − r2

)

≤ B
(

c2
1

)

+ B
(

c2
2

)

+ B
(

(st − c3)
2
)

+ B
(

r2
)

+ 4

≤ 2 · (N + 1) log2(N + 1) · 2B + (N + 1) log2(N + 1) · 2B(st − c3) + 2B + 4

= O(BN log N),

B(d′) ≤ B (2c1c
′
1 + 2c2c

′
2 + 2 (st − c3) (s − c′3))

≤ 1 + B (c1c
′
1 + c2c

′
2 + (st − c3) (s − c′3))

≤ B (c1c
′
1) + B (c2c

′
2) + B ((st − c3) (s − c′3)) + 3

≤ 2 · N log2 N · (B + O (B log N)) + N log2 N · (B + O (B log N)) + 3

= O
(

BN (log N)
2
)

.

By using Lemmas 5, 6, 9, 10, and 11, we obtain the following estimates for the quantities in (13) for each
of the cases (i) α(t∗) ± 1 = 0 , (ii) δ(t∗) ± 1 = 0, and (iii) F ′(t∗) = 0.

(i) When α(t∗) ± 1 = 0:

α(t∗) =
a(t∗)

√

a(t∗)2 + b(t∗)2
= ±1 → a(t∗)

2 = a(t∗)
2 + b(t∗)

2 → b(t∗) = 0 → c2(t∗) = 0.

Note that deg(c2) ≤ N and B(c2) ≤ B. So we have:

deg(t∗) ≤ deg(c2) ≤ N, (15)

deg(α(t∗)) = deg(±1) = 1, (16)

deg(δ(t∗)) = deg

(

d(t∗)

a(t∗)

)

≤ deg(t∗) ≤ N, (17)

ht(t∗) ≤ (deg(c2) + 2)B(c2) log 2 +
1

2
log(deg(c2) + 1) ≤ (N + 2)B log 2 +

1

2
log(N + 1)

= O(BN), (18)

ht(α(t∗)) = ht(±1) = 0, (19)

ht(δ(t∗)) = ht

(

d(t∗)
√

a(t∗)2 + b(t∗)2

)

= ht

(

d(t∗)

a(t∗)

)

≤ ht(a(t∗)) + ht(d(t∗))

≤ 1

2
deg(a) (deg(a) + 1) · ht(t∗) + 2 log 2 · (deg(a) + 1)B(a) + log (deg(a) + 1)

+
1

2
deg(d) (deg(d) + 1) · ht(t∗) + 2 log 2 · (deg(d) + 1)B(d) + log (deg(d) + 1)

≤
{

1

2
N(N + 1) + N(2N + 1)

}

· O (BN) + 2 log 2 · (N + 1) · O(B)

+2 log 2 · (2N + 1) · O(BN log N) + log (N + 1) + log (2N + 1)

= O
(

BN3
)

. (20)

(ii) When δ(t∗) ± 1 = 0:

→ δ(t∗) =
d(t∗)

√

a(t∗)2 + b(t∗)2
= ±1 → a(t∗)

2 + b(t∗)
2 − d(t∗)

2 = 0

9



Let u(t) := a(t)2 + b(t)2 − d(t)2 ∈ Q[t]. Note that deg(u) ≤ 4N and

B(u) = B
(

a2 + b2 − d2
)

≤ B
(

a2
)

+ B
(

b2
)

+ B
(

d2
)

+ 2

≤ 2 · (N + 1) log2(N + 1) · 2B + (2N + 1) log2(2N + 1) · 2B(d) + 2

= O
(

BN2 (log N)2
)

So we have

deg(t∗) ≤ deg (u) ≤ 4N, (21)

deg(α(t∗)) = deg

(

a(t∗)
√

a(t∗)2 + b(t∗)2

)

≤ deg(t∗) ≤ 4N, (22)

deg(δ(t∗)) = deg(±1) = 1, (23)

ht(t∗) ≤ (deg(u) + 2)B(u) · log 2 +
1

2
log(deg(u) + 1)

≤ (4N + 2) log 2 · O
(

BN2 (log N)
2
)

+
1

2
log(4N + 1) = O

(

BN3 (log N)
2
)

, (24)

ht(α(t∗)) = ht

(

a(t∗)
√

a(t∗)2 + b(t∗)2

)

= ht

(

a(t∗)

d(t∗)

)

≤ ht(a(t∗)) + ht(d(t∗))

≤ 1

2
deg(a) (deg(a) + 1) · ht(t∗) + 2 log 2 · (deg(a) + 1)B(a) + log (deg(a) + 1)

+
1

2
deg(d) (deg(d) + 1) · ht(t∗) + 2 log 2 · (deg(d) + 1)B(d) + log (deg(d) + 1)

≤
{

1

2
N(N + 1) + N(2N + 1)

}

· O
(

BN3 (log N)
2
)

+ 2 log 2 · (N + 1) · O(B)

+2 log 2 · (2N + 1) · O(BN log N) + log (N + 1) + log (2N + 1)

= O
(

BN5 (log N)
2
)

, (25)

ht(δ(t∗)) = ht(±1) = 0. (26)

(iii) When F ′(t∗) = 0: Note that

F ′(t) = 1 − α(t)
√

1 − α(t)2
+

δ(t)
√

1 − δ(t)2

= 1 −
a′(t)

√
a(t)2+b(t)2−a(t) a(t)a′(t)+b(t)b′ (t)√

a(t)2+b(t)2

a(t)2+b(t)2
√

1 − a(t)2

a(t)2+b(t)2

+

d′(t)
√

a(t)2+b(t)2−d(t) a(t)a′(t)+b(t)b′(t)√
a(t)2+b(t)2

a(t)2+b(t)2
√

1 − d(t)2

a(t)2+b(t)2

=
1

{a(t)2 + b(t)2}
√

a(t)2 + b(t)2 − d(t)2

·
[

{(

a(t)2 + b(t)2
)

− (a′(t)b(t) − a(t)b′(t))
}
√

a(t)2 + b(t)2 − d(t)2

+
{

d′(t)
(

a(t)2 + b(t)2
)

− d(t) (a′(t)a(t) + b′(t)b(t))
}]

So we have v(t∗) = 0, where

v(t) :=
{

a(t)2 + b(t)2 − a′(t)b(t) + a(t)b′(t)
}2 {

a(t)2 + b(t)2 − d(t)2
}

−
{

d′(t)
(

a(t)2 + b(t)2
)

− d(t) (a′(t)a(t) + b′(t)b(t))
}2 ∈ Q[t].
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Note that deg(v) ≤ 8N , and

B(v) ≤ (4N + 1) log2(4N + 1) ·
{

B
(

(

a2 + b2 − a′b + ab′
)2
)

+ B(u)
}

+4N log2(4N) · 2B
(

d′(a2 + b2) − d(aa′ + bb′)
)

+ 1

≤ (4N + 1) log2(4N + 1) ·
{

(2N + 1) log2(2N + 1) · 2B
(

a2 + b2 − a′b + ab′
)

+O
(

BN2 (log N)
2
)}

+4N log2(4N) · 2
{

B
(

d′(a2 + b2)
)

+ B (d(aa′ + bb′)) + 1
}

+ 1

≤ O
(

N2 (log N)
2
)

·
{

B
(

a2
)

+ B
(

b2
)

+ B (a′b) + B (ab′) + 3
}

+ O
(

BN3 (log N)
3
)

+O (N log N) · 2N log2(2N) ·
{

B (d′) + B
(

a2
)

+ B
(

b2
)

+ B(d) + B (aa′) + B (bb′) + 2
}

+ 1

≤ O
(

N2 (log N)
2
)

· O
(

BN (log N)
2
)

+ O
(

BN3 (log N)
3
)

+O (N log N) · 2N log2(2N) · O
(

BN (log N)
2
)

+ 1

= O
(

BN3 (log N)
4
)

.

So we have

deg(t∗) ≤ deg(v) ≤ 8N, (27)

deg(α(t∗)) = deg

(

a(t∗)
√

a(t∗)2 + b(t∗)2

)

≤ deg(t∗) ≤ 8N, (28)

deg(δ(t∗)) = deg

(

d(t∗)
√

a(t∗)2 + b(t∗)2

)

≤ deg(t∗) ≤ 8N, (29)

ht(t∗) ≤ (deg(v) + 2)B(v) log 2 +
1

2
log(deg(v) + 1) = O

(

BN4 (log N)
4
)

, (30)

ht(α(t∗)) = ht

(

a(t∗)
√

a(t∗)2 + b(t∗)2

)

≤ ht (a(t∗)) + ht
(

√

a(t∗)2 + b(t∗)2
)

= ht(a(t∗)) +
1

2
ht
(

a(t∗)
2 + b(t∗)

2
)

≤ ht(a(t∗)) +
1

2

{

ht
(

a(t∗)
2
)

+ ht
(

b(t∗)
2
)

+ log 2
}

= 2ht(a(t∗)) + ht(b(t∗)) +
1

2
log 2

≤ 3 ·
{

1

2
N(N + 1) · ht(t∗) + 2 log 2(N + 1)B + log (N + 1)

}

+
1

2
log 2

= O
(

BN6 (log N)4
)

, (31)

ht(δ(t∗)) = ht

(

d(t∗)
√

a(t∗)2 + b(t∗)2

)

≤ ht(d(t∗)) + ht(a(t∗)) + ht(b(t∗)) +
1

2
log 2

= O (ht(d(t∗))) = O

(

1

2
· 2N(2N + 1) · ht(t∗) + 2 log 2(2N + 1) · O (BN log N) + log(2N + 1)

)

= O
(

BN6 (log N)
4
)

. (32)

Lemma 12. The constant k in (12) is bounded as: k = O
(

2BN2(log N)2
)

.
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Proof. t1 and t2 in
t1 − 2π ≤ t + arccosα(t) − arccos(−δ(t)) ≤ t2 + 2π

are zeros of u(t) = a(t)2 + b(t)2 − d(t)2. So by using the Cauchy bound, we have

|2k| ≤ |ti|
π

+ 2 ≤ 1 + 22B(u)

π
+ 2 = O

(

2BN2(log N)2
)

.

Now we are ready for the following bit complexity bound:

Theorem 13. The sign of Λ in (12) can be determined using O
(

B3 log B · N28 (log N)13
)

bits.

Proof. Note that Λ = t∗ + arccosα(t∗) − arccos(δ(t∗)) − 2k arccos(−1). To apply Corollary 8, we let n = 3,
γ0 = t∗, γ1 = 1, γ2 = −1, γ3 = −2k, β1 = α(t∗), β2 = δ(t∗), β3 = −1. From (15)–(32), we have

deg(γ0) = O(N), deg(γ1) = deg(γ2) = deg(γ3) = 1,

deg(β1) = deg(β2) = O(N), deg(β3) = 1,

ht(γ0) = O
(

BN4 (log N)
4
)

, ht(γ1) = ht(γ2) = 0, ht(γ3) = O
(

BN2 (log N)
2
)

,

ht(β1) = ht(β2) = O
(

BN6 (log N)4
)

, ht(β3) = 0.

Since

24 deg(γ0) deg(γ1) deg(γ2) deg(γ3) deg(β1) deg(β2) deg(β3) = O
(

N3
)

,

max{ht(γ0), ht(γ1), ht(γ2), ht(γ3)} = O
(

BN4 (log N)4
)

,

we take D = C1 · N3 and W = C2 · BN4 (log N)
4

for some positive constants C1, C2. Note that

max
{

2ht(βi) + 3
2 log 2, arccosβi/D, 1/D

}

≤ max
{

O
(

BN6 (log N)4
)

, π/
(

C1N
3
)

}

= O
(

BN6 (log N)4
)

for i = 1, 2, and max {2ht(β3), arccosβ3/D, 1/D} ≤ max
{

0, π/
(

C1N
3
)}

≤ C3 · N−3 for some positive con-

stant C3. So we take V1 = C3·N−3 and V2 = V +
2 = V3 = V +

3 = C4BN6 (log N)
4
. Since min

{

eDV1 , min1≤j≤3 {4DVj/ |arccosβj

min
{

eC1C3 , (1/π) · min
{

4C1C3, 4C1C4BN9 (log N)
4
}}

, we can take E = C5 for some constant C5 > 1. Now

by Corollary 8, we have

− log(|Λ|) < C · D5V1V2V3 ·
{

W + log
(

EDV +
3

)}

· log
(

EDV +
2

)

· (log E)−4

= C ·
(

C1N
3
)5 ·

{

C3C
2
4B2N9 (log N)

8
}

·
{

C2BN4 (log N)
4
+ log

(

C1C4C5BN9 (log N)
4
)}

· log
(

C1C4C5BN9 (log N)
4
)

· (log C5)
−4

= O
(

N15
)

· O
(

B2N9 (log N)
8
)

· O
(

BN4 (log N)
4
)

· O (log B + log N)

= O
(

B3N28 (log N)
12 · (log B + log N)

)

= O
(

B3 log B · N28 (log N)
13
)

Remark 1. The number of times we need to determine the signs of such Λ’s is bounded by:

(# zeros of α ± 1, δ ± 1, F ′) ≤ (# zeros of b, u, w) = O(N).

Remark 2. We have no intention to claim the asymptotic bound in Theorem 13 is the best we can get:
The various estimation in Section 3 are rather ‘generous’. Furthermore, there has been some improvements
[4] for Waldschmidt’s result, Proposition 7.
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4 Open Problems and Extensions

The main open problem arising directly from this paper is to decide collision between two helical motions.
The method in Section 2 covers slightly more general situations. For example, the motion of the point

p can be of the form: h(t) = (cos t, sin t, st) + (p1(t), p2(t), p3(t)), where pi(t)’s are algebraic functions.
Because non-circular part of the motion can be absorbed by c(t), we obtain the same form of equation as
(2). Also considering two balls, instead of a ball and a point, in the same type of motions does not change
the form of the equation: say the radii of the balls are r1 and r2, then we want to check the equation
‖h(t) − c(t)‖ ≤ r1 + r2.

However, a fundamentally different situation can occur if we consider, for example, an elliptic motion
instead of a circular motion. The second-degree trigonometric functions do not cancel out as in (2). So the
corresponding equation would look like

ρ cos 2t + a(t) cos t + b(t) sin t + d(t) = 0, (33)

for a constant ρ. This equation is not reduced to the form of (3) to which we can apply the zero bound
discussed in Section 3.2. Currently, we do not know how to deal with equations of this type.

A similar difficulty arises if we consider a more general semi-algebraic body. Even if we consider a pure
helical motion of a point and an algebraically parametrized motion, the collision equation that we have to
deal with may involve higher-degree trigonometric functions, for example, up to sin dt, where d is the degree
of a polynomial (among possibly many) that defines the semi-algebraic body.
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