
International Journal of Computational Geometry & Applications

c
 World Scienti�c Publishing Company

APPROXIMATE EUCLIDEAN SHORTEST PATHS

IN 3-SPACE

JOONSOO CHOI JUERGEN SELLEN

�

CHEE-KENG YAP

y

Courant Institute of Mathematical Sciences

New York University

251 Mercer Street, New York, NY 10012

Received (received date)

Revised (revised date)

Communicated by Editor's name

ABSTRACT

Papadimitriou's approximation approach to the Euclidean shortest path (ESP) in 3-

space is revisited. As this problem is NP-hard, his approach represents an important step

towards practical algorithms. However, there are several gaps in the original description.

Besides giving a complete treatment in the framework of bit complexity, we also improve

on his subdivisionmethod. Among the tools needed are root-separation bounds and non-

trivial applications of Brent's complexity bounds on evaluation of elementary functions

using oating point numbers.

Keywords: Approximate Euclidean Shortest Path, Exact Geometric Computation.

1. Introduction

The Euclidean shortest path (ESP) problem can be formulated as follows: given

a collection of polyhedral obstacles in physical space S, and source and target points

s

0

; t

0

2 S, �nd a shortest obstacle-avoiding path between s

0

and t

0

. Here S is typ-

ically E

2

or E

3

. It is evident that this is a basic problem in applications such as

robotics. The case S = E

2

has recently seen a breakthrough, with the O(n logn)

algorithm of Hershberger and Suri.

1

However, our interest is the case S = E

3

. Here,

Canny and Reif

2

proved that the problem is NP-hard. In contrast, Papadimitriou

3

described a polynomial-time approximation algorithm. The approximate Euclidean

shortest path problem has, in addition to the above inputs, an input parameter

� > 0 and we are required to construct an obstacle-avoiding path whose length is

at most (1 + �) times the length of the shortest path. As Papadimitriou suggested,

his algorithm has not just a theoretical result, but o�ers hope for practical imple-

mentation. The approach is basically simple and may be very similar to ones that

practitioners intuitively use, although without a corresponding analysis (see Ref.

�

This author is supported by a postdoctoral fellowship from the DAAD, Germany.

y

This author is supported by NSF grant #CCR-9002819.

1

[4]). An alternative approach using the idea of dividing the angular space evenly is

given by Clarkson.

5

Basically, his algorithm reduces the dependency of the running

time on n, while increasing the dependency on �.

Most geometric algorithms are developed within the context of one of two dis-

tinct computational frameworks, the algebraic framework or the bit framework. In

the algebraic framework, we count the number of algebraic operations, assuming

that each algebraic operation returns an exact value. Computational models ap-

propriate for the algebraic framework include arithmetic circuits and real RAMS.

In the bit framework, we are interested in the representation of algebraic values as

binary strings. Algebraic operations must be reduced to Boolean operations. Com-

putational models that cater to the bit framework include Boolean circuits and

Turing machines.

Most basic problems in the algebraic framework have only one input size param-

eter n, which is usually proportional to the number of algebraic values in the input.

For instance, the problem of multiplying two polynomials of degree n is said to

have input size n, and can be solved in O(n logn) algebraic operations. The result

of Hershberger and Suri mentioned above also falls under the algebraic framework.

Basic problems in the bit framework usually have two parameters, n and L, where

n is as before and L is the maximum bit size of any algebraic value. For instance,

isolating the roots of a polynomial of degree n where each coe�cient has at most L

bits. Sometimes n is bounded and may be omitted; an example is the GCD of two

integers. Most numerical approximation problems (such as the approximate ESP

above) naturally belong to the bit framework. In this case, we have an additional

input parameter, �. Usually, � is speci�ed by a positive integer s where � = 2

�s

.

This paper is interested in bit complexity. The bit framework will become more

important for computational geometry in the future. As the �eld now begins to

address implementation issues in earnest, it must focus on lower-level operation. In

lower-level operations, it is the bit size of numbers that is the main determinant

of complexity. An important paradigm form future implementations of geomet-

ric algorithm is \exact computation".

6

In exact computation, complexity crucially

depends on the bit size of numbers.

The main source of trouble in Papadimitriou's paper (and, for that matter,

Clarkson's paper) lies in the fact that it is a result in the bit model and yet it

lapses into the algebraic framework at several critical moments. This is inadmissible

because we know of no sensible combination of the bit framework with the algebraic

framework. After all, the NP-hardness result for ESP falls under the bit framework,

and the approximation result of Papadimitriou is generally viewed as an approach

to circumvent this hardness barrier. As an example of the lapses, note that lengths

of polygonal paths are sums of square-roots of rational numbers. These values are

no problem to compute in the algebraic framework, but in the bit framework, one

must work out the precision to which one need to compute these values. We will

see that the precision needed depends on how the numbers are to be used. One

cannot take this precision issue lightly as it is precisely (no pun intended) the high

precision needed for comparing sums of square-roots that prevents us from placing

2

the ESP problem (even the planar case) into the class NP.

Once one realizes these lapses, it is still not a routine matter to decide the

precision to which we must compute these algebraic numbers. We will employ

basic techniques of root bounds and algebraic computation (see Ref. [7]). One

complication is that we will be using approximations of approximations (and so on).

The second di�culty is that we need to compute elementary functions (exponential

and logarithmic functions) to carry out various approximations. This is done by

invoking Brent's results.

8

However, the application of these results in the context

of deriving bit complexity bounds requires some arguments, as we will see.

The heart of Papadimitriou's algorithm is a subdivision scheme to break up edges

into smaller segments. In our reworking of Papadimitriou's approach, we introduce

a new subdivision scheme that has two nice features. If � is halved, we can reuse

all the points in the previous subdivision. Of course this can save recomputation

in practice. Further, it turns out that our subdivision uses fewer points when � is

small. This is a slight asymptotic improvement. By exploiting this new subdivision

scheme, Choi, Sellen and Yap

9

give an incremental approximation approach which

yields an asymptotic improvements of running time.

The rest of this paper is organized as follows: in Section 2, we sketch Papadim-

itriou's algorithm in three parts and indicate where the di�culties come into each

part. In Section 3, the new subdivision method for edges is described. In Section

4, we sketch some general lemmas on application of Brent's complexity bounds for

oating point number computations. An Appendix is included for details. Sec-

tions 5 to 8 describe the �xes to the original algorithm, including the running time

analysis in the framework of bit complexity. We conclude in Section 9.

2. Outline of an Approximation Algorithm

Assume that we are given a collection of polyhedral obstacles, source and target

points s

0

; t

0

, and 0 < � � 1=2. We assume that the obstacles are bounded by

triangular facets. There are a total of n edges in the collection of obstacles. Each

vertex of obstacles and s

0

; t

0

are speci�ed by L-bit integers

a

. Throughout this

paper, we use a parameter

�

1

:=

�

C

0

n

;

where C

0

is a suitably large constant. For the present discussion, C

0

� 24 su�ces.

The algorithm of Papadimitriou can be divided into three parts:

(I) We divide each edge e into a set of segments by introducing points p

0

; p

�1

; p

�2

,

. . .. We call the p

i

's the break points and p

0

the origin of e. Each segment is

of the form �

i

= [p

i

; p

i+1

] for i 2Z. For a segment �, let `(�) be the length

of �. For any two segments �; �

0

, let D(�; �

0

) denote the shortest distance

between a point on � and a point on �

0

. We can view s

0

and t

0

as degenerate

segments. By construction each segment � satis�es

`(�) � �

1

D(s

0

; �): (2:1)

a

We assume that the integers are in range [�2

L

; 2

L

].

3

(II) The visibility graph G = (V;A) is constructed. The vertices V of the graph

comprise the segments from (I) and also s

0

; t

0

. The visibility edges A comprise

pairs (�; �

0

) of nodes that can see each other, meaning that there exists x 2

�; x

0

2 �

0

such that the line segment [x; x

0

] avoids the (interior of) obstacles.

We call such a line segment [x; x

0

] a visibility segment.

(III) We compute for each visibility edge (�; �

0

) a \nominal cost" C(�; �

0

), de�ned

to be the Euclidean distance between the midpoints of � and �

0

. We now apply

Dijkstra's shortest path algorithm to the weighted graph G

0

= (V;A; s

0

; C).

The shortest path � in G

0

from s

0

to t

0

is output.

The correctness of the algorithm amounts to the claim that C(�) is at most

(1 + �)C(�

�

) where C(�

�

) denotes the Euclidean length of an actual shortest path

�

�

. According to the original paper, everything hinges on a clever subdivision

scheme for the points p

�i

(i = 0; 1; . . .) in part (I).

We now give some counter indications:

(I)' The origin p

0

of an edge e is a specially chosen rational point. For jij > 0,

kp

0

� p

i

k

2

is equal to �

1

ks

0

� p

0

k

2

(1+ �

1

)

jij�1

. But this means that the coordinates

of p

i

would in general be irrational. The original paper assumes that p

i

can be

determined exactly. But in fact, we must determine the precision to which to

compute the points. This precision depends on the subsequent use of these points

| see (III)' below.

(II)' For any edge e, let span(e) denote the line through e. In general, for any

set X of points, span(X) is the a�ne span ofX. Following Papadimitriou, let us �x

two edges e; f and let x and y be real parameters for points in span(e) and span(f),

respectively. Let e(x) and f(y) denote the corresponding points. Now consider a

triangular facet T bounding an obstacle. We view T as the intersection of three

half-planes contained in span(T). Let H be one such half-plane. So its boundary

@H contains an edge of T . The set of potential visibility segments [e(x); f(y)] such

that span([e(x); f(y)]) intersects @H is a hyperbola

(x� a)(y � b) = c

for some a; b; c, as noted by Papadimitriou and Guibas.

3

However, the set H

�

of

points (x; y) corresponding to potential visibility segments that intersect H is never

of the form (x� a)(y� b) � c or (x� a)(y� b) � c. This is intuitively obvious since

the hyperbola is solely determined by @H, and does not take into account the actual

plane span(H). Assuming that we correctly �gure out the con�guration obstacle

H

�

corresponding to any half-plane H, the corresponding con�guration obstacle T

�

of T is now given by

T

�

= H

�

1

\H

�

2

\H

�

3

where H

1

\ H

2

\ H

3

= T . Finally, the free space FP in the (x; y) parameter

space is the complement of the union of all the T

�

's. The boundary of FP will

consist of axes-parallel line segments and hyperbolic segments. In the plane sweep

algorithm proposed to determine FP , the priority of events are the x-coordinates

of intersections of these straight lines and hyperbolas. The original paper assumes

we can compute these priorities exactly.

4

(III)' The original paper assumes that we can compute the nominal cost function

C(�; �

0

) exactly. There are two sources of inaccuracies: we can only compute the

midpoints of � approximately, and then we only compute an approximation to

the distance between two approximate midpoints. A more serious matter arises:

suppose the algorithm outputs a sequence of segments

�

1

; �

2

; . . . ; �

k

of the obstacles which are touched by an approximation to the shortest path. This

means that there exists a zig-zag path

� = (s; q

1

; r

1

; . . . ; q

k

; r

k

; t)

(where q

i

; r

i

2 �

i

) that avoids all obstacles. (Note that q

i

; r

i

can be quite far

apart in absolute terms.) We must compute an approximation to this zig-zag path,

since obtaining some explicit path is the raison d'être of most applications. The

approximation must be guaranteed to be obstacle-avoiding (and still achieves an

�-approximation).

3. A New Subdivision Scheme

In this section, we present a new subdivision scheme for edges. Our scheme is

motivated by the desire that the subdivision for �=2 is a re�nement of the subdivision

for �.

As in Ref. [3], the origin p

0

of an edge e is chosen to be the closest point on e to

the source s

0

. Let d = ks

0

� p

0

k

2

be this distance. We describe the subdivision of

the half-edge e

0

to one side of the origin (the other half-edge is treated by analogy).

Choose p

1

on e

0

at distance d from p

0

. The segment [p

0

; p

1

] is uniformly subdivided

into segments of length d�

1

=2 by introducing the points q

1

; q

2

; . . . such that

kp

0

� q

i

k

2

= (d�

1

=2) � i: (3:1)

The segments (resp., break points) between p

0

and p

1

are called the uniformly-

divided segments (resp., break points). The rest of the half-edge e

0

is subdivided

using the points p

2

; p

3

; . . . de�ned as follows. Letm be the smallest integer satisfying

2

m

�

log(`(e)=d)

log(1 + �

1

)

; (3:2)

where `(e) denotes the length of an edge e. Then we de�ne p

i

such that

kp

0

� p

i

k

2

= d

�

`(e)

d

�

(i�1)=2

m

: (3:3)

The segments (resp., break points) outside of p

1

are called the exponentially-divided

segments (resp., break points).

5

Lemma 1

(i) Each segment � created by the subdivision satis�es the basic inequality of Eq. (2.1).

(ii) There are at most N = O(n(L=�

1

)) segments in all the edges.

(iii) The subdivision for �=2 is a re�nement of the subdivision for �.

Proof.

(i) If � = [q

i

; q

i+1

] is a uniformly-divided segment, then the length of �, `(�),

trivially satis�es

`(�) = �

1

� (d=2) < �

1

�D(s

0

; �):

For an exponentially-divided segment � = [p

i

; p

i+1

], Eq. (3.2) and Eq. (3.3) imply

`(�) =

�

`(e)

d

�

1=2

m

� 1

!

� d

�

`(e)

d

�

(i�1)=2

m

� �

1

kp

0

� p

i

k

2

< �

1

D(s

0

; �):

The last inequality follows from triangular inequality of three points s

0

; p

i

and p

i+1

.

(ii) For any obstacle edge e, there are at most 2 � (2=�

1

) uniformly-divided segments

and 2 � 2

m

exponentially-divided segments. In Lemma 5, we will prove that 2

m

<

(8L + 16)=�

1

. Therefore there are O(n(L=�

1

)) segments in total.

(iii) Let q

0

i

(resp., p

0

i

) be a uniformly-divided (resp., exponentially-divided) break

point of the subdivision for �=2. Then clearly every q

i

of the subdivision for � is the

same as q

0

2i

.

For any �, let m(�) be the integer m de�ned in Eq. (3.2). Then m(�=2) is equal

to m(�) or m(�) + 1, since �

1

=2 � ln(1 + �

1

) � �

1

for �

1

2 [0; 1]. Therefore, if

m(�=2) = m(�), then both subdivisions introduce the same exponentially-divided

break points. Otherwise, every p

i

of the subdivision for � is the same as p

0

2i�1

, since

kp

0

� p

i

k

2

= d

�

`(e)

d

�

(i�1)=2

m(�)

= d

�

`(e)

d

�

(2i�2)=2

m(�)+1

= kp

0

� p

0

2i�1

k

2

:

2

Property (i) is similar to the original scheme. Property (ii) improves on the orig-

inal by an additive factor of O(n log(1=�

1

)=�

1

). This improvement can be signi�cant

because � might be exponentially small in L, especially if we want to guarantee that

we approach an actual shortest path. Property (iii) is advantageous to have when

we want to use successive re�nements of �.

4. Floating Point Number Computations

Approximate computations introduce a host of detailed calculations which we

highlight in this section. Our subdivision scheme requires us to compute values of

6

the formE

F

where E;F are numerical expressions. The following problem captures

what is needed:

(P1) Let s; L

1

; L

2

be given natural numbers and E;F be numerical ex-

pressions satisfying 2

�L

1

� F � 1 and �L

2

� lgE � �2

�L

2

. The

problem is to computeE

F

to precision s, in time polynomial in s; L

1

; L

2

.

In application, we have s = O(log (1=�

1

) + L), L

1

= O(log (1=�

1

) + L), and

L

2

= O(L) (see Section 7).

Note that bx approximates x to absolute precision (resp., relative precision) s

means jbx� xj < 2

�s

(resp., j(bx� x)=xj < 2

�s

). In the sequel, we will use the term

\precision" for relative precision.

We resort to Brent's results

8

on computation of elementary functions, and com-

pute E

F

using the following obvious straight line program:

(i) Compute V

1

which approximates E to precision s

1

;

(ii) Compute V

2

which approximates F to precision s

2

;

(iii) Compute V

3

which approximates ln(V

1

) to precision s

3

;

(iv) Compute V

4

which approximates V

2

� V

3

to precision s

4

;

(v) Compute V

5

which approximates exp(V

4

) to precision s

5

.

We want to conclude that (with suitable choices of s

i

's) V

5

approximates E

F

to

precision s. We would hope that the cost of these steps is polynomial in s; L

1

; L

2

.

The sequence of approximations is compounded by the fact that application of

Brent's result is not straightforward: his bounds for computing elementary func-

tions assume that each function is de�ned over an arbitrary but �xed domain [a; b].

Under this assumption, one can compute exp(x) and ln(x) to precision s with time

complexity (bit complexity) O(�(s) log s), where

�(s) = O(s log s log log s)

is the time complexity (bit complexity) of multiplying s-bit integers. When the do-

main [a; b] is variable, we need to pay for the conversion to the �xed range. Towards

a satisfactory solution of (P1), consider a subproblem:

(P2) Let s; L be given natural numbers and x a number satisfying 2

�L

�

jxj � 2

L

. Compute exp(x) to precision s in time polynomial in s; jxj.

Before we solve this problem, let us briey describe the oating point number

system we will be assuming.

4.1. Floating point numbers

A oating point number � is a pair he; fi of binary integers where e is the

exponent and f the fraction. Let hfi denote the number obtained by placing a

binary decimal point just in front of the most signi�cant one (`1') in f (if f = 0,

then de�ne hfi = 0). Thus 1=2 � hfi < 1 for f 6= 0. The number represented by �

is

2

e

� hfi:

7

We also write � � 2

e

hfi, to emphasize that � is the representation itself, not just

the value it represents. The precision of � is

b

equal to 1 + blg fc.

Lemma 2 Assuming a oating point representation of numbers, we can solve (P2)

in time O(�(s+jxj) log (s + jxj)) if 1 � jxj � 2

L

, and O(�(s+lgL)(L+log(s+lgL)))

if 2

�L

� jxj < 1.

Let us sketch a proof of Lemma 2. Let he; fi � x. We de�ne

y := x � 2

�dlg jxje

=

�

h1; fi; f = 1;

h0; fi; f > 1;

which lies in the range (1=2; 1]. Note that exp(x) = exp(y)

2

dlg jxje

. For x 2 (1=2; 1],

we can directly appeal to Brent's result. For jxj > 1, let s

0

= s + jxj. Applying

Brent's result, we can compute a value z which approximates exp(y) to precision s

0

in time O(�(s

0

) lg s

0

). Next we square z repeatedly for a total of dlg xe times, each

time taking care to truncate the result to precision s

0

. We then argue that the �nal

result approximates exp(x) to precision s. For jxj � 1=2, we compute square root

of z repeatedly for a total of �dlgxe times, each time taking care to truncate the

result to some suitable precision.

The upshot of a series of arguments similar to the above eventually leads us to:

Lemma 3 Assuming that we can compute E;F to any precision r in time T

E

(r),

T

F

(r), respectively, then we can solve problem (P1) in time

O(T

E

(s+L

2

)+T

F

(s+L

2

)+�(s+L

2

) log(s+L

2

)+�(s+lgL

0

)(L

0

+log(s+lgL

0

)));

where we write L

0

for L

1

+ L

2

. If L

0

= O(s), this simpli�es to O(T

E

(s) + T

F

(s) +

�(s)s):

Proof. See Appendix. 2

5. Con�guration Obstacles

Fix any two edges e

1

; e

2

of obstacles. Write e

i

= [p

i

; q

i

] and let us parameterize

the points on span(e

i

) such that xp

i

+(1�x)q

i

is denoted by e

i

(x), for x 2 R. The

set of pairs (x; y) corresponding to a potential visibility segment [e

1

(x); e

2

(y)] is thus

parameterized by the unit square Q = [0; 1]� [0; 1]. Of course, if x < 0 or x > 1,

the notation e

i

(x) is still meaningful and refers to a point on span(e

i

)ne

i

. Let Q be

embedded in Q

0

= R

2

, which denotes the parameter space for span(e

1

)� span(e

2

).

For any obstacle X � R

3

, let X

�

denote the set of points (x; y) 2 Q

0

such that

[e

1

(x); e

2

(y)] intersects the relative interior of X. We call X

�

the con�guration

obstacle corresponding to X.

As in Section 2, it is enough to understand the con�guration obstacle H

�

where

H is a half-plane. Assume that @H contains the edge [u; v] of a triangular face. Let

`(x; y) be the line passing through the points e

1

(x); e

2

(y). Consider the simplex

4 = 4(u; v; e

1

(x); e

2

(y)):

b

We write `log' when the actual base is irrelevant. But lg = log

2

and ln = log

e

.

8

The requirement that `(x; y) intersects @H amounts to saying Vol(4) = 0, where

2 �Vol(4) = det

�

u v e

1

(x) e

2

(y)

1 1 1 1

�

= � det(v � u j e

1

(x)� u j e

2

(y) � u)

= � det(v � u j (q

1

� u) + x(p

1

� q

1

) j (q

2

� u) + y(p

2

� q

2

))

= � det(v � u j p

1

� q

1

j p

2

� q

2

)xy � det(v � u j q

1

� u j p

2

� q

2

)y �

det(v � u j p

1

� q

1

j q

2

� u)x� det(v � u j q

1

� u j q

2

� u)

= �Axy �By �Cx�D: (5.1)

The coe�cients A;B;C;D are de�ned as the corresponding determinants. If A 6= 0,

we may rewrite the equation in a standard form for hyperbolas:

(Ax+ B)(Ay +C) = �AD + BC:

5.1. Degenerate Position

We say the two edges e

1

; e

2

are in degenerate position with respect to H if A = 0

or (A 6= 0) ^ (AD �BC = 0). Let us analyze two edges in degenerate position.

If A = 0, then

A = � det(v�u j p

1

�q

1

j p

2

�q

2

) = +det

�

u v u+ p

1

� q

1

u+ p

2

� q

2

1 1 1 1

�

= 0:

Therefore the points u; v; u+p

1

� q

1

; u+p

2

� q

2

are on the same plane, i.e., the two

edges e

1

; e

2

are in two parallel planes (or on the same plane) that are parallel with

the line @H.

Let us consider the second case. Using the relation (see Ref. [10])

det(a j b j c) det(a j d j e)� det(a j b j e) det(a j d j c) = det(a j b j d) det(a j c j e)

for a; b; c; d; e 2 R

3

, we get

AD � BC = det

�

u v u+ p

1

� q

1

q

1

1 1 1 1

�

� det

�

u v u+ p

2

� q

2

q

2

1 1 1 1

�

:

Thus if AD � BC = 0, then either span(e

1

) or span(e

2

) is coplanar with @H.

Suppose e

1

; e

2

is not in degenerate position with respect to H. It can be shown

that the sign of AD�BC depends on the direction of the vectors p

i

�q

i

with respect

to H and on whether span(e

i

) intersects H, for i = 1; 2.

5.2. Con�guration Obstacles

We are ready to describe H

�

� Q

0

. Let us de�ne two points (x

0

; y

0

); (x

1

; y

1

) 2

Q

0

as follows: span(H) intersects span(e

1

) at e

1

(x

0

) and intersects span(e

2

) at

e

2

(y

0

). Let P

i

be the plane containing @H and parallel to e

i

. Then P

1

intersects

span(e

2

) at e

2

(y

1

) and P

2

intersects span(e

1

) at e

1

(x

1

). Assuming non-degeneracy,

9

these intersection points are well-de�ned. Furthermore, imagine span(H) to be the

horizontal plane fZ = 0g in physical (X;Y; Z)-space, and that p

i

�q

i

have a positive

Z-component. The vertical and horizontal lines through (x

0

; y

0

) divide Q

0

into four

quadrants (I), (II), (III) and (IV). Note that a pair of quadrants (I, III) or (II, IV) is

always disjoint withH

�

. By symmetry, we may assume that e

1

; e

2

are parameterized

to increase in the positive Z direction. Then the �rst and third quadrants are

necessarily be disjoint from H

�

. Let us consider one possibility (the other cases

are similarly treated), where the line @H separates e

1

(x

0

) and e

2

(y

0

) on the plane

span(H) and e

1

intersects with H. We may assume (x

1

; y

1

) lies in quadrant (I) (the

other case is quadrant (III), which is symmetric). See Figure 1. The asymptotes

of the hyperbola in this case are the vertical and horizontal lines through (x

1

; y

1

).

Furthermore, (x

0

; y

0

) lies on the hyperbola. Suppose the hyperbola lies to the

northeast and southwest of (x

1

; y

1

). Then H

�

is shown as shaded in Figure 1. Note

that only one of the two components of the hyperbola is used: this is invariably the

case since one component of the hyperbola is located in a quadrant that is disjoint

with H

�

.

(x , y)1 1

y)0(x
0
,

Q

Fig. 1. Con�guration obstacle for a half-space.

6. Construction of the Visibility Graph

In this section, we shall (like Papadimitriou) count the number of algebraic

operations, to give some idea of the global complexity. To avoid confusion with the

bit complexity accounting in the next section, we call each algebraic operation a

\step".

Again focus on a pair of �xed edges e

1

; e

2

. The parameter space Q corresponds

to all potential visibility segments. The break points (these are the p

i

's and q

i

's in

Section 3) on e

1

and e

2

de�ne a grid on Q. For segments �

i

� e

i

(i = 1; 2), there is

a corresponding grid rectangle R = R(�

1

; �

2

) � Q. We say that R is covered if and

10

only if

R(�

1

; �

2

) nK

�

= ;;

where K

�

denotes all the con�guration obstacles. Clearly (�

1

; �

2

) is an edge in the

visibility graph G if and only if R(�

1

; �

2

) is not covered.

Our goal is to decide for every grid rectangle R whether or not it is covered;

if it is uncovered, we will further determine a rational sample point p such that a

ball of some small radius � centered at p is contained in R n K

�

. Note that this

determination will allow us to compute a guaranteed obstacle-avoiding path.

Let

M = �(L=�

1

)

be a bound on the maximumnumber of break points on any edge. Then there are at

most M

2

grid rectangles in Q. We proceed slightly di�erently than Papadimitriou.

First we compute the arrangement of the collection of boundary arcs correspond-

ing to all the con�guration obstacles. This can be computed in O(n�

4

(n)) time

where �

4

(n) = O(n � 2

�(n)

) and �(n) is the inverse of an Ackermann-like function.

This follows from the fact that any two boundary arcs can intersect at most twice,

and from the incremental algorithm in Ref. [11]. We next convert this arrangement

into an explicit representation of the boundary of the con�guration obstacle K

�

,

say, in O(n

2

logn) steps. Finally we perform an interesting kind of line sweep over

this representation ofK

�

in Q. Our goal is to decide for each grid rectangle whether

it is covered by K

�

. There are three kinds of events for the vertical sweepline:

(i) Vertices on the boundary of K

�

(including vertical asymptotes of hyperbolic

curves).

(ii) The break points q

�i

; p

�i

on e

1

.

(iii) Intersection points between horizontal grid lines (or horizontal asymptotes of

hyperbolic curves) and boundary arcs of K

�

. Unlike the �rst two types, this is

dynamically inserted into the priority queue.

The state of the sweepline is represented by a balanced binary tree T that

contains a leaf for each of the horizontal grid lines and for each of the boundary

arcs that intersect the sweepline. Whenever a grid line and a boundary arc become

adjacent in T , we check if they will generate an event of type (iii). Whenever we

come to an event of type (ii), we have just completely swept a column of at mostM

grid rectangles and will begin to sweep a new column of at mostM grid rectangles.

We need O(M) steps to do the necessary processing, i.e., to put out the decision for

each grid rectangle whether it is covered. There are O(n

2

) events of type (i) and

O(nM) events of type (iii). They can each be processed at O(log(M + n)) steps.

The events of type (ii) take O(M) steps each, and O(M

2

) altogether.

7. Bit Complexity

We shall now determine the bit complexity of the algorithm in the preceding

section. In particular, this calls for determining the precision to carry out the various

tasks. We need this, for example, to make sure that we can do line sweep correctly

and to be able to determine sample points in each grid rectangle R that is not

11

covered. We shall employ a variety of classical techniques in algebraic computing.

7

It is clearly of practical interest to obtain small constants for this precision.

The upshot of the calculations below is that

W = O(log(1=�

1

) + L)

bits of precision su�ces in the computation of points.

Having calculated the precision W , we can determine the bit complexity of our

algorithm. The break points p

�i

; q

�i

on all edges will be approximated to O(W)

bits, and as we shall show, these can be computed altogether in O(nM�(W)W)

time. Now let us again �x a pair of edges. To compute the arrangement of the

boundary curves of K

�

, we need to compute the intersection points between two

hyperbolic arcs and/or lines to precision W . One readily available method is to

compute the resultants (with respect to each of the two variables in turn) of the

two equations, and isolate the roots to precision W . This can be done in O(�(W))

time.

12

The intersection points can be easily extracted from these roots. Thus we

can compute the arrangement of boundary curves in time O(n�

4

(n) � �(W)). The

plane sweep to compute an explicit representation of K

�

takes time O(n

2

logn �W).

Now consider our plane sweep algorithm in Section 6, to construct the vis-

ibility graph. Each queue comparison takes time O(W), and time O(�(W)) is

needed to compute the events of type (iii). Thus the operations of type (i) cost

O(n

2

log (n+M) �W) altogether, type (ii) cost O(M

2

W) and type (iii) cost O(nM

log (n+M) � �(W)).

Using the relations n = O(M), �

4

(n) = O(n logn), and W = O(�(W)), we

conclude with the main result of this section:

Lemma 4 The bit complexity of the algorithm in the previous section, applied to

all pairs of edges, is

O(n

3

M logM�(W) + (nM)

2

W + nM�(W)W):

It remains to compute the precision W . For simplicity, we will ignore additive

constants in the size of integer numbers. In the following, we talk about \separating

a set of points" | this means we compute the x- and y-coordinates of these points

to su�cient precision so that the relative x-order and y-order of any two points

in the set are correctly determined. To guarantee that the plane sweep algorithm

works correctly, we have to separate intersection points between boundary curves,

intersection points between grid lines and boundary curves, and the grid points (i.e.,

the parameters of break points) themselves. In addition, we have to ensure that

approximate grid points are computed to enough precision such that Eq. (2.1) is

satis�ed.

In the following calculations, we need the range of the variables used in Eq. (3.1)

and Eq. (3.3).

Lemma 5 Let e = [p; q] be an obstacle edge, with length `(e) and distance d > 0 to

s

0

. Then

12

(i) 1 � `(e) < 2

L+2

,

(ii) 2

�L�2

< d < 2

L+2

,

(iii) `(e) > d implies `(e)=d >

p

1 + 2

�(4L+8)

and d=`(e) < 2

�2

�(4L+10)

,

(iv) 1 � 2

m

< (8L+ 16)=�

1

.

Proof.

(i) Trivially `(e) � 1. An edge with endpoints (�2

L

;�2

L

;�2

L

) and (2

L

; 2

L

; 2

L

)

has the biggest length.

(ii) The upper bound of d is the same as that of `(e). The lower bound can be

proved in the following way: let p

0

be the closest point of e from s

0

. Without loss

of generality, we assume that s

0

p

0

p is a right-angled triangle. Then d = ((kp �

s

0

k

2

)

2

� (kp� p

0

k

2

)

2

)

1=2

. Also pp

0

is the projection of ps

0

onto span(e). Therefore

d =

s

(kp� s

0

k

2

)

2

� (

�!

pq �

�!

ps

0

kp� qk

2

)

2

: (7:1)

Here

�!

pq �

�!

ps

0

denotes the inner product of two vectors

�!

pq and

�!

ps

0

. Since d > 0, we

have

d �

p

1=(kp� qk

2

)

2

> 2

�L�2

:

(iii) We use the same argument used to prove case (ii). Note that `(e)

2

; d

2

are

integers. Thus

`(e)=d =

p

`(e)

2

=d

2

=

s

`(e)

2

�

(kp� qk

2

)

2

(kp� s

0

k

2

� kp� qk

2

)

2

� (

�!

pq �

�!

ps

0

)

2

:

With `(e)=d > 1, we get

`(e)=d �

s

1 +

1

(kp� s

0

k

2

� kp� qk

2

)

2

>

p

1 + 2

�(4L+8)

:

From 1 + x � exp(x) � 1 + 2x for 0 � x � 1, we �nally get

p

1 + 2

�(4L+8)

>

2

2

�(4L+10)

. This proves the claim.

(iv) By de�nition

2

m

< 2 �

ln(`(e)=d)

ln(1 + �

1

)

:

The claim 2

m

< (8L + 16)=�

1

directly follows from (i), (ii), and ln(1 + �

1

) � �

1

=2,

for 0 � �

1

� 1. 2

7.1. Precision of Break Points

In this subsection, we shall determine the precision to which the parameters

of the break points have to be computed such that they are well separated and

13

Eq. (2.1) is satis�ed. This precision will be needed later when we calculate the

precision needed to separate intersection points between boundary arcs and grid

lines.

For an edge e = [p; q] and each break point p

i

2 e, let x

i

2 [0; 1] be the parameter

of p

i

on e, i.e., p

i

= x

i

p+ (1� x

i

)q.

Lemma 6 A precision of lg(1=�

1

) + 14L + 30 su�ces to separate two parameters

x

i

, x

j

of break points.

Proof. In parameter space, the gap between any two parameters x

i

and x

j

is

the same as the smallest length of segments divided by the length of e. For each

segment � � e, let `

e

(�) = `(�)=`(e).

Each uniformly-divided segment � satis�es

`

e

(�) = (1=2)d�

1

=`(e)

> (1=2)2

�L�2

�

1

2

�L�2

= 2

�(lg (1=�

1

)+2L+5)

:

The shortest exponentially-divided segment is �

1

= [p

1

; p

2

]. Therefore, each

exponentially-divided segment � satis�es

`

e

(�) � (d(

`(e)

d

)

1=2

m

� d)=`(e)

>

d

`(e)

((1 + 2

�(4L+8)

)

1=2

m+1

� 1)

�

d

`(e)

(1 + 2

�(m+4L+10)

� 1)

>

1

2

L+2

1

2

L+2

1

2

m+4L+10

� 2

�(lg (1=�

1

)+14L+30)

:

2

Similar calculations show that the same absolute precision is also su�cient to

guarantee the validity of Eq. (2.1):

Lemma 7 If two consecutive break points x

i

; x

i+1

for a segment � = [p

i

; p

i+1

] are

computed to absolute precision lg(1=�

1

)+14L+30, then `(e)jx

i+1

�x

i

j � �

1

D(s

0

; �).

We conclude:

Theorem 8 A precision of

W = O(lg(1=�

1

) + L)

su�ces to separate the parameters of the break points and to satisfy Eq. (2.1).

7.2. Computation of Break Points

14

The parameter x

i

for p

i

is computed by the following equation:

x

i

=

�

x

0

+ (1=2)�

1

di=`(e); p

i

is uniformly-divided,

x

0

+ (d=`(e))

1�(i�1)=2

m

; p

i

is exponentially-divided.

(7:2)

The parameter x

0

of the origin p

0

of e is

x

0

= j

�!

qs

0

�

�!

qp

�!

qp �

�!

qp

j:

Therefore x

0

is a rational number that can be represented with two integers of

maximum 2L bits.

Since we have to compute the approximation of x

i

to precision W , each term in

Eq. (7.2) should be computed to precision W + 1. Trivially, we can compute x

0

to

this precision in O(�(W)) time.

Now let us consider the exponentially-divided break points. By Eq. (7.1), d=`(e)

is the square-root of a rational number of bit size O(L), and can be approximated

to precision W in time O(�(W)W). By Lemma 5, we have 2

�2L�4

< d=`(e) <

2

�2

�4L�10

. Therefore by Lemma 3, we can compute the second term in O(�(W)W)

time.

This shows that we can compute the parameter x

i

of each exponentially-divided

break point in time O(�(W)W). Using the same arguments, it is easy to see that

the same holds for the uniformly-divided break-points. Concluding, we get:

Theorem 9 The parameters of all break points on all edges can be computed to

precision W in time O(Mn�(W)W).

7.3. Separation of Intersection Points

The approximate parameters of the break points de�ne the grid lines in our

plane sweep algorithm. In this section we calculate the precision to which we have

to compute the intersection points between boundary curves and/or grid lines, such

that events are scheduled properly, and such that the order of curves intersecting

the sweep line is determined correctly.

Let � be the x- or y-coordinate of an intersection point. The precision to which

we have to compute � is the sum of (i) the bit size of the integral part of the

maximum value of � and (ii) the absolute precision needed to separate any two

intersection points or the absolute precision needed to separate any intersection

point from 0. (Note that, although we are only interested in the con�guration

obstacle inside the parameter space Q

0

= [0; 1]� [0; 1], the plane sweep algorithm

requires us to keep track of boundary arcs (resp., intersection points) outside Q

0

.)

Let us consider the intersection between two hyperbolic functions P

i

(x; y) =

A

i

xy + B

i

y + C

i

x +D

i

, i = 1; 2, that bound con�guration obstacles. Our deriva-

tion (Eq. (5.1)) shows that A

i

; B

i

; C

i

; D

i

are integers of size 3L. By symmetry, it

su�ces to consider either the x- or the y-coordinates of points. The x-coordinates

of the intersection points between P

1

(x; y) and P

2

(x; y) are roots of the resultant

15

res

y

(P

1

; P

2

), where

res

y

(P

1

(x; y); P

2

(x; y)) = det

�

�

�

�

A

1

x+ B

1

C

1

x+D

1

A

2

x+ B

2

C

2

x+D

2

�

�

�

�

: (7:3)

The resultant is an integer polynomialwith coe�cients of length 6L. By Cauchy's

upper and lower bounds on roots of polynomials,

7

6L bits su�ce to represent the

integral part of any root, and 6L bits su�ce to separate the roots from 0.

Next let us calculate a lower bound on the gap between the x-coordinates of

two intersection points, assuming they are di�erent. Let � be the root of the re-

sultant R

(1;2)

= res

y

(P

1

(x; y); P

2

(x; y)) and � the root of the resultant R

(3;4)

=

res

y

(P

3

(x; y); P

4

(x; y)), where P

1

; P

2

; P

3

; P

4

are hyperbolic functions as above. The

polynomials R

(1;2)

and R

(3;4)

are integer polynomials of degree d � 2, with coe�-

cients of size 6L. Applying the generalized Hadamard's bound

c

(see Ref. [7])

j�� �j �

1

2(2

d+1

jjR

(1;2)

jj

2

� jjR

(3;4)

jj

2

)

d

to the two resultants, we get that 24L bits are needed to separate � and �. Summing

up this separation gap and the maximal bit size of the integral part of � (resp., �)

yields:

Lemma 10 A precision of 30L su�ces to separate the intersection points between

the hyperbolic curves.

Next let us determine the precision needed to separate the above intersection

points and the grid points. Let R(x) = Ax

2

+ Bx + C be the resultant de�ned

by Eq. (7.3). Each coe�cient of a grid point (i.e., the approximate parameter of a

break point) can be represented by a rational number D=E where E = 2

W

and D

is an integer such that jDj � E. Therefore it is the root of Q(x) = Ex �D. The

generalized Hadamard's bound again shows that 2W + 12L bits su�ce to separate

the roots of P (x) and Q(x). Adding again the size of the integral part of intersection

point coordinates, we conclude that a precision of 2W + 18L = O(W) su�ces to

separate intersection points of hyperbolic curves from grid points.

Proceeding in the same way for the remaining intersections, we �nally get:

Theorem 11 If intersection points are computed with precision O(W), then they

are separated from each other and from the grid points.

8. Coda

Having constructed the visibility graph G = (V;A), we wish to compute the

nominal cost of each visibility edge in A. Unlike the original algorithm, we do not

pick the distance between midpoints of segments to serve as nominal cost. This is

because these midpoints need not be rational points. However, we can pick any ra-

tional point in each segment instead of the midpoint. If we run Dijkstra's algorithm

on G, assuming that we know the exact nominal cost of each visibility edge, then

c

For a polynomial P , jjP jj

2

denotes (�

d

i=0

jp

i

j

2

)

1=2

, where p

0

; . . . ; p

d

are the coe�cients of P .

16

the original calculation shows that the length of the \approximate shortest path"

� is at most 1 + � times the length of the actual shortest path �

�

.

But, of course, our calculation only uses approximations to the nominal cost.

The approximations arise because we must take square-roots. Because we choose

rational points, it turns out that we only need to compute square-roots of rational

numbers x

i

to some absolute precision s.

If we take s = lg(4n=�) and �

1

= �=(24n), then we guarantee that the approxi-

mate length of � is less than (1+�)C(�

�

). This can be shown as follows: let

d

C(�) be

the approximate length of a path � consisting of k edges, and

d

p

x

i

the approximate

length of the i-th edge of �. Then

d

C(�) = �

k

i=1

d

p

x

i

� �

k

i=1

p

x

i

+ 2n � 2

�s

� (1 + �=2)C(�

�

) + �=2

� (1 + �)C(�

�

):

The last inequality follows from C(�

�

) � 1. The inequality �

k

i=1

p

x

i

� (1 +

�=2)C(�

�

) can be derived analogous to Ref. [3].

Since the maximum length of each edge of � is 2

L+2

, we have to compute the

approximate length of each edge to precision s+L+2 = lg(4n=�)+L+2 = O(W).

It thus takes O(�(W)) time to compute the approximate length of each edge in the

visibility graph (see Appendix).

Finally, we may invoke Dijkstra's algorithm to compute the approximate short-

est path �. Note that intermediate numbers are sums of at most 2n approximate

distances, and hence they have sizes at most O(W + logn) = O(W). Each op-

eration in Dijkstra's algorithm involving these numbers is either an addition or a

comparison, and thus takes timeO(W). Therefore the time complexity of Dijkstra's

algorithm is

O(N

2

�W + N

2

�(W));

where N := nM is an upper bound on the number of segments in all the edges.

One �nal point: suppose Dijkstra's algorithm yields a sequence of segments

(s

0

; �

1

; �

2

; . . . ; �

k

; t

0

). For each consecutive pair (�

i

; �

i+1

) of segments, we can

compute a rational sample point (x

i

; y

i

) 2 �

i

� �

i+1

such that the segment [x

i

; y

i

]

is a visibility segment (Section 2 (III)). Using the sample points, we �nally obtain

an explicit zig-zag path (Section 2 (III)') that is obstacle-avoiding.

Thus we get:

Theorem 12 There is an approximation algorithm for ESP that computes an ex-

plicit obstacle-avoiding path with relative error � > 0 in

O((n

3

M logM + (nM)

2

) � �(W))

time, where W = O(log(n=�) + L), and M = O(nL=�).

9. Conclusion

17

Papadimitriou's paper on approximate Euclidean shortest paths has become

recognized as a key result. In this paper, we recti�ed several gaps in his paper, and

presented for the �rst time, a true bit complexity bound for an �-approximation

algorithm for ESP.

It should be clear from our development that there are many tedious and non-

obvious details when we do such approximations. The result is an interesting mix of

combinatorial, numerical and algebraic complexity. Many of these tools are, in fact,

those that are necessary in order to make \exact computation" a practical reality.

6

In our solution, we tried to extract some general lemmas about approximate

computing with oating point numbers, to facilitate future applications of such

an approach. Note that one could avoid Brent's result by approximating Taylor's

expansion directly, but this is expected to yield an inferior bit complexity.

We may generally call this the method of generalized grids. Of course, grids are

a familiar practical technique in all of computational sciences. From a complexity

theoretic viewpoint, such methods have been shunned in the past as trivial or un-

interesting. This need not be so, as Papadimitriou's work has demonstrated. In

fact, grid methods may be the most practical recourse for solving some intractable

problems. It would be interesting to derive some general theorems about these

approaches.

References

1. J. Hershberger and S. Suri, \E�cient computation of Euclidean shortest paths in

the plane," Proc. 34th Annu. IEEE Sympos. Found. Comput. Sci., 1993, pp.

508{517. An improved O(n log n) bound was recently announced.

2. J. Canny and J. H. Reif, \New lower bound techniques for robot motion planning

problems," Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci., 1987, pp.

49{60.

3. C. H. Papadimitriou, \An algorithm for shortest-path motion in three dimensions,"

Inform. Process. Lett. 20 (1985) 259{263.

4. T. Lozano-P�erez and M. A. Wesley, \An algorithm for planning collision-free paths

among polyhedral obstacles," Commun. ACM, 22 (1979) 560{570.

5. K. L. Clarkson, \Approximation algorithms for shortest path motion planning,"

Proc. 19th Annu. ACM Sympos. Theory Comput., 1987, pp. 56{65.

6. C. -K. Yap, \Towards exact geometric computation," Proc. Fifth Canadian confer-

ence on computational geometry, 1993, pp. 405{419. Invited Talk.

7. C. -K. Yap, Fundamental Problems in Algorithmic Algebra (Princeton Univ. Press,

to appear.). Available on request from author (and via anonymous ftp).

8. R. Brent, \Fast multiple-precision evaluation of elementary functions," Journal of

the ACM 23 (1976) 242{251.

9. J. Choi and J. Sellen and C. -K. Yap, \Precision-sensitive Euclidean shortest path

in 3-space," Proc. 11th Annu. ACM Sympos. Comput. Geom., 1995.

10. H. Lass, Vector and tensor analysis (McGraw-Hill, 1950).

11. H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel and M. Sharir, \Arrange-

ments of curves in the plane: topology, combinatorics, and algorithms," Theoret.

Comput. Sci. 92 (1992) 319{336.

18

12. V. Pan, \Sequential and parallel complexity of approximate evaluation of polyno-

mial zeros," Comput. Math. Appl. 14 (1987) 591{622.

13. A. Aho, J. Hopcroft and J. Ullman, The design and analysis of computer algorithms

(Addition-Wesley Publishing Company, 1976).

Appendix A. Approximate Computation of Expressions

Brent

8

showed that elementary functions (exp; ln, etc.) can be evaluated to

precision s in O(�(s) log s) time for any oating point number x in a suitable �nite

interval. In this paper we have to evaluate various kinds of numerical expressions

to precision s for oating point numbers x in a variable range. To decide the time

complexity of computing these expressions, we use Brent's result on computing

exp(x) and ln(x). The basic idea can be sketched as follows:

(i) Transform x into another oating point number f(x) in a �xed range by some

scaling function f . Using our oating point representation, f(x) may be de�ned as

the fraction of x.

(ii) Apply Brent's result to evaluate exp(f(x)); ln(f(x)).

(iii) Rescale exp(f(x)); ln(f(x)) by a function f

0

with f

0

(exp(f(x))) = exp(x),

f

0

(ln(f(x))) = ln(x), respectively. The function f

0

basically is a sequence of either

multiplications or square-root computations.

Notice that the multiplications or square-roots in step (iii) have to be evaluated

for numbers in a variable range. Here, the oating point representation turns out

to be particularly useful.

A.1. Preliminaries

In this subsection, we review some results on computing elementary functions,

and extend the basic operations to the context of arbitrary precision oating point

numbers.

In our calculations, it is sometimes useful to switch between the use of (relative)

precision and absolute precision. First, let us identify the relationship between both

notations:

Proposition A.1 For a numerical expression E, let

^

E be a oating point number

that approximates E to precision s. Then

^

E approximates E to absolute precision

s� (blg jEjc+1). Conversely, computing E to absolute precision s means computing

E to relative precision s + (blg jEjc+ 1).

To compute basic operations, we shall utilize the following well known results

on computing reciprocals and square-roots:

Proposition A.2

8;13

Let [a; b] be a �xed range. Then there exists an algorithm

that, for any oating point number x 2 [a; b],

(i) evaluates 1=x to precision s in O(�(s)) time.

(ii) evaluates

p

x to precision s in O(�(s)) time.

19

Lemma A.3 Let x; y be oating point numbers with l-bit exponent and m-bit frac-

tion. Then there exist algorithms that

(i) evaluate x+ y to precision s in O(s+ l) time.

(ii) evaluate x � y; 1=x;

p

x to precision s in O(�(s) + l) time.

Note that m is irrelevant in these bounds.

Proof. Let x = he

x

; f

x

i and y = he

y

; f

y

i. Without loss of generality, we

assume e

x

� e

y

.

(i) For x+ y, we �rst have to normalize x so that the exponent of x is equal to the

exponent of y. The following two cases occur: (1) If e

y

� e

x

� s, then we attach

e

y

�e

x

leading 0's to f

x

and add up the two numbers to precision s. This operation

takes O(s + l) time. (2) If e

y

� e

x

> s, then the result of the addition equals y to

precision s. Trivially this operation takes O(s + l) time.

(ii) We have x � y = he

x

+ e

y

; f

x

� f

y

i. Therefore multiplication takes O(�(s) + l)

time, where f

x

� f

y

to precision s takes O(�(s)) time and e

x

+ e

y

takes O(l) time.

(iii) If f

x

6= 0, then 1=x = 1=h0; f

x

i � 2

�e

x

. Therefore computing 1=x to precision s

takes O(�(s)+ l) time, where computing 1=h0; f

x

i to precision s takes O(�(s)) time

by Proposition A.2, and the addition of exponents takes O(l) time.

(iv) We have

p

x =

�

p

h0; f

x

i � 2

e

x

=2

if e

x

is even,

p

h1; f

x

i � 2

(e

x

�1)=2

if e

x

is odd.

Therefore by Proposition A.2, computing

p

x to precision s takes O(�(s) + l) time.

2

For the exponential and the logarithmic function, Brent showed:

Proposition A.4

8

Let [a; b] be a �xed range, with, for the case (ii) below, 0 62 [a; b].

Then there exists an algorithm that, for any oating point number x 2 [a; b],

(i) evaluates exp(x) to precision s in O(�(s) log s) time.

(ii) evaluates ln(x) to precision s in O(�(s) log s) time.

In the following subsections, we show how to compute exp(x) and ln(x) for

arbitrary oating point numbers x. Finally, we use these results to compute E

F

for

numerical expressions E and F , as needed in Section 7.

A.2. The Logarithmic Function

For a given oating point number x, we want to compute lnx to precision s (i.e.,

to absolute precision s

3

= s � (blg j lnxjc + 1)). If x is in a �xed range [a; b], then

we will use Proposition A.4. Otherwise we will compute lnx by scaling as follows:

let y = x=2

dlg xe

, then y 2 (1=2; 1]. Therefore

lnx = ln (y � 2

dlg xe

)

= lny + dlgxe ln 2: (A.1)

20

Let

d

ln y and

d

ln 2 be approximations of lny and ln 2 to absolute precision s

1

and

s

2

, respectively:

d

ln y = lny + �

1

; j�

1

j < 2

�s

1

;

d

ln 2 = ln2 + �

2

; j�

2

j < 2

�s

2

:

Let

d

lnx =

d

ln y + dlgxe

d

ln 2. Then

j

d

lnx� lnxj = j lny + �

1

+ dlgxe(ln 2 + �

2

)� lnxj

= j�

1

+ �

2

dlg xej

We want to bound �

1

and �

2

such that

j

d

lnx� lnxj < 2

�s

3

:

To achieve this, we may choose

j�

1

j < 2

�s

3

�1

; j�

2

j <

2

�s

3

�1

jdlgxej

= 2

�s

3

�lg (jdlg xej)�1

:

Now let us consider the time complexity to compute ln(x) to precision s:

(i) Computing dlgxe and y takes O(j lgxj) time.

(ii) Computing lny to absolute precision s

3

+ 1 (i.e., to precision s � blg j lnxjc)

takes O(�(s � lg j lnxj) log(s � lg j lnxj)) time by Proposition A.4.

(iii) Computing ln 2 to absolute precision s

3

+ lg (jdlgxej) + 1 (i.e., to precision

s�blg j lnxjc+lg (jdlgxej)+1 = O(s)) takes O(�(s) log s) time by Proposition A.4.

As the time for evaluating Eq. (A.1) is dominated by the above complexities,

we arrive at running time O(l + �(s

0

) log s

0

), where s

0

= maxfs; s � lg j lnxjg. In

slightly simpli�ed form:

Lemma A.5 Let x be a oating point number with l-bit exponent and m-bit frac-

tion. Then we can compute ln(x) to precision s in time

O(l + �(s + log l) log(s+ log l)):

A.3. The Exponential Function

Our scheme of scaling and rescaling will require us to compute successively

squares or square-roots. During this process, we have to keep track of the error.

As a prerequisite to the following calculations, we consider two recursive functions

Y; Z de�ned as follows:

Y (x; �; k) =

�

exp(x) + � if k = 0;

Y (x; �; k� 1)

2

+ � if k > 0:

Z(x; �; k) =

�

exp(x) + � if k = 0;

Z(x; �; k� 1)

1=2

+ � if k > 0:

21

Lemma A.6 For x 2 (1=2; 1], 0 � � < 1, and a non-negative integer k, the func-

tions Y and Z satisfy

(i) Y (�x; �; k) � exp(�x)

2

k

+ 2

2

k+2

�4

�,

(ii) Z(�x; �; k) � exp(�x)

1=2

k

+ (k + 1)�.

Proof. We prove the inequalities by induction on k. For k = 0, the claim can

be checked directly. Assuming the claim holds for k � i, consider k = i+ 1:

Y (�x; �; i+ 1) = Y (�x; �; i)

2

+ �

� (exp(�x)

2

i

+ 2

2

i+2

�4

�)

2

+ �

< exp(�x)

2

i+1

+ 2

2

i+3

�4

�:

Z(�x; �; i+ 1) = Z(�x; �; i)

1=2

+ �

� (exp(�x)

1

2

i

+ (i + 1)�)

1=2

+ �

< exp(�x)

1

2

i+1

+ (i + 2)�:

2

To compute exp(x), we proceed as in the previous subsection. Recall that

computing exp(x) to precision s means computing exp(x) to absolute precision

s

0

= s � (blg exp(x)c + 1). We scale as follows: let y = x=2

dlgxe

, then y 2 (1=2; 1],

and

exp(x) = exp(

x

2

dlg xe

)

2

dlg xe

= exp(y)

2

dlg xe

: (A:2)

Case 1: Let x > 1. We de�ne a recursive function Y (k), k � 0, as follows:

Y (0) = exp(y) + �

0

;

Y (k + 1) = Y (k)

2

+ �

k+1

:

For k = dlgxe, we want to bound �

i

, 0 � i � k, such that

jY (k) � exp(y)

2

k

j < 2

�s

0

: (A:3)

Let us de�ne � = maxfj�

0

j; j�

1

j; . . . ; j�

k

jg. Then by Lemma A.6, we have

jY (k) � exp(y)

2

k

j = j(� � � ((exp(y) + �

0

)

2

+ �

1

)

2

+ � � �)

2

+ �

k

� exp(y)

2

k

j

� jY (y; �; k)� exp(y)

2

k

j

� 2

2

k+2

�4

�:

Thus, in order to satisfy Eq. (A.3), it su�ces to bound each �

i

, 1 � i � dlgxe, by

2

�s

0

�2

dlg xe+2

+4

.

Let us consider the time complexity to compute exp(x), x > 1:

(i) Computing dlgxe and y takes O(lgx) time.

(ii) Computing exp(y) to absolute precision s

0

+ 2

dlg xe+2

� 4 (i.e., to precision

22

O(s + x)) takes O(�(s + x) log (s + x)) time by Proposition A.4.

(iii) By Eq. (A.2), we have to square the result from (ii) dlgxe times. By the above

analysis, each square function should be computed to precision O(s + x). As the

size of exponents does not exceed O(x), the whole process takes time O((�(s+x)+

x) logx) (see Lemma A.3).

Therefore, in total, computing exp(x); x > 1, takes time O(�(s + x)[logx +

log (s + x)]).

Case 2: Let x 2 (0; 1=2]. Analogous to the case x > 1, we de�ne a recursive

function Z(k) by

Z(0) = exp(y) + �

0

;

Z(k + 1) = Z(k)

1=2

+ �

k+1

:

Note that lgx < 0. Thus for k = �dlg xe, we want to bound �

i

, 0 � i � k, such

that

jZ(k)� exp(y)

1

2

k

j < 2

�s

0

: (A:4)

Again let us de�ne � = maxfj�

0

j; j�

1

j; . . . ; j�

k

jg. Then by Lemma A.6, we have

jZ(k)� exp(y)

1

2

k

j = j(� � � ((exp(y) + �

0

)

1=2

+ �

1

)

1=2

+ � � �)

1=2

+ �

k

� exp(y)

1

2

k

j

� jZ(y; �; k)� exp(y)

1

2

k

j

� j(k + 1)�j:

Thus, in order to satisfy Eq. (A.4), it su�ces to bound each �

i

, 1 � i � �dlgxe, by

2

�s

0

�lg (�dlg xe+1)

.

Now let us consider the time complexity to compute exp(x), x 2 (0; 1=2]:

(i) Computing dlgxe and y takes O(j lgxj) time.

(ii) Computing exp(y) to absolute precision s

0

+ lg (�dlgxe + 1) (i.e., to precision

O(s+ lg (� lgx))) takes O(�(s+ lg (�dlg xe)) lg(s+ lg (�dlg xe))) time by Proposi-

tion A.4.

(iii) By Eq. (A.2), we have to take square-root of exp(y) for a total of �dlg xe

times. By the above analysis, each square-root should be computed to preci-

sion O(s + lg (� lg x)). As each exponent has size O(1), this takes time O(�(s +

lg (� lgx))(� lgx)).

Therefore, in total, computing exp(x), 0 < x � 1=2, takes time O(�(s +

lg (� lgx)) [� lgx+ lg (s+ lg (� lgx))]).

The above arguments can easily be extended to the case x < 0. Concluding, we

get the following result, implying Lemma 2:

Lemma A.7 Let x be a oating point number with l-bit exponent and m-bit frac-

tion. For jxj � 1, we can compute exp(x) to precision s in time

O(�(s + jxj) log(s + jxj)):

For 0 < jxj < 1, we can compute exp(x) to precision s in time

O(�(s + log l) � (l + log (s+ log l))):

23

A.4. Computation of E

F

In this subsection we will prove Lemma 3. Let E and F be two expressions

such that 2

�L

1

� F � 1 and �L

2

� lgE � �2

�L

2

, where L

1

; L

2

are positive

integers. The goal is to evaluate E

F

to precision s (i.e., to absolute precision

s

0

= s� (blg jE

F

jc+ 1) � s+ L

2

). We use our previous results on evaluating ln(x)

and exp(x) by computing E

F

= exp(F lnE), according to the straight line program

in Section 4.

Let Y be the result of this computation. Then

Y = exp((F + �

1

)(ln(E + �

2

) + �

3

) + �

4

) + �

5

:

We have to bound j�

1

j; j�

2

j; j�

3

j; j�

4

j; j�

5

j such that

jY � exp(F lnE)j < 2

�s

0

: (A:5)

We evaluate

jY � exp(F lnE)j

� j exp((F + j�

1

j)(lnE + ln (1 + j�

2

j=E) + j�

3

j) + j�

4

j) + j�

5

j � exp(F lnE)j

� j exp((F + j�

1

j)(lnE + j�

2

j=E + j�

3

j) + j�

4

j)� exp(F lnE)j+ j�

5

j:

Let j�

5

j < 2

�s

0

�1

. Then it remains to bound j�

1

j; j�

2

j; j�

3

j; j�

4

j such that

j exp((F + j�

1

j)(lnE + j�

2

j=E + j�

3

j) + j�

4

j)� exp(F lnE)j < 2

�s

0

�1

:

Simplifying this by using � = maxfj�

1

j; j�

2

j; j�

3

j; j�

4

jg, we get

j exp((F + j�

1

j)(lnE + j�

2

j=E + j�

3

j) + j�

4

j)� exp(F lnE)j

� j exp(F lnE + �F=E + �F + � lnE + �

2

=E + �

2

+ �)� exp(F lnE)j

� j exp(F lnE)(1 + �2

L

2

+8

� 1)j

� 2

L

2

+8

�:

Thus if � < 2

�s

0

�L

2

�9

, then Eq. (A.5) is satis�ed.

Now let us consider the time complexity to compute E

F

. Let us assume that

computing E and F to precision r takes O(T

E

(r)) and O(T

F

(r)) time, respectively.

(i) From the above analysis, we have to computeE to absolute precision s

0

+L

2

+9 =

s� (F j lgEj+ 1) + L

2

+ 9 (i.e., to precision O(s + L

2

)). This takes O(T

E

(s+ L

2

))

time.

(ii) Also from the above analysis, we have to compute F to absolute precision

s

0

+ L

2

+ 9 = s � (F j lgEj+ 1) + L

2

+ 9 (i.e., to precision O(s + L

2

)). This takes

O(T

F

(s + L

2

)) time.

(iii) By Lemma A.5, computing lnE to absolute precision s

0

+ L

2

+ 9 (i.e., to

precision O(s + L

2

)) takes O(�(s + L

2

) log (s + L

2

)) time.

(iv) After that, we multiply the approximate values for F and lnE to absolute

precision s

0

+L

2

+9 (i.e., to precision O(s+L

2

)). This takes O(�(s+L

2

)+L

1

+L

2

)

24

time by Lemma A.3.

(v) Finally, computing Y to precision s takes time maxf�(s+L

2

) log(s+L

2

); �(s+

lg(L

1

+ L

2

))((L

1

+ L

2

) + log(s + lg(L

1

+ L

2

))g by Lemma A.7 (note that �L

2

�

F lnE � �2

�(L

1

+L

2

)

).

We conclude:

Lemma A.8 Let E;F be two expressions with 2

�L

1

� F � 1 and �L

2

� lgE �

�2

�L

2

. If we can compute E to precision r in time T

E

(r) and F to precision r in

time T

F

(r), then we can compute E

F

to precision s in time

O(T

E

(s + L

2

) + T

F

(s + L

2

) +

�(s+ L

2

) log(s + L

2

) +

�(s+ lg(L

1

+ L

2

))((L

1

+ L

2

) + log(s + lg(L

1

+ L

2

)))):

25

