
Recent Progress in

Exact Geometric Computation ⋆

C. Li

Courant Institute of Mathematical Sciences
New York University, New York, NY 10012, USA.

S. Pion

INRIA Sophia Antipolis, France.

C. K. Yap

Courant Institute of Mathematical Sciences
New York University, New York, NY 10012, USA.

Abstract

Computational geometry has produced an impressive wealth of efficient algorithms.
The robust implementation of these algorithms remains a major issue. Among the
many proposed approaches for solving numerical non-robustness, Exact Geomet-
ric Computation (EGC) has emerged as one of the most successful. This survey
describes recent progress in EGC research in three key areas: constructive zero
bounds, approximate expression evaluation and numerical filters.

Key words: Exact Geometric Computation, Constructive Zero Bounds,
Nonrobustness Problems, Robust Algorithms, Approximate Expression
Evaluation, Precision-Driven Computation, Numerical Filters, Interval Arithmetic,
C++ Libraries.

⋆ This paper is based on a talk presented at the DIMACS Workshop on Algorithmic
and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Com-
puter Science, March 12 – 16, 2001. The work is supported by NSF/ITR Grant
#CCR-0082056 and by the IST Programme of the EU as a Shared-cost RTD (FET
Open) Project under Contract No IST-2000-26473 (ECG - Effective Computational
Geometry for Curves and Surfaces).

Email addresses: chenli@cs.nyu.edu (C. Li),
Sylvain.Pion@sophia.inria.fr (S. Pion), yap@cs.nyu.edu (C. K. Yap).

Preprint submitted to Elsevier Science 26 June 2004



1 Introduction

Numerical non-robustness represents a major challenge in the implementa-
tion of geometric algorithms. By its nature, geometric computation has two
components, a numerical part and a combinatorial part. Numerical computa-
tion is involved in both the construction of new geometric objects and in the
evaluation of geometric predicates. An example of the former is computing
intersection points and an example of the latter is deciding whether a point
is on a hyperplane. Geometric predicates are especially critical, as they deter-
mine the combinatorial relations among objects. Incorrect evaluation of such
predicates can lead to inconsistencies. In general, computational geometry al-
gorithms are designed under a Real RAM model of computation where all
numerical computations are exact. As machine arithmetic is widely used as
substitute for this assumed exact arithmetic, numerical errors are inevitable
in implementation. Today, machine arithmetic has converged to the IEEE
standard [93,36]. But more generally, machine arithmetic is an example of
fixed-precision arithmetic. Although numerical errors can sometimes be toler-
ated and interpreted as small perturbations in inputs, serious problems arise
when such errors lead to invalid combinatorial structures or inconsistent state
during a program execution.

There are many possible approaches to solving the non-robustness problem,
but in recent years, an approach called Exact Geometric Computation (EGC)
has emerged as one of the most successful. Major software libraries such as
LEDA[48] and CGAL[46] offer robust algorithms built on EGC principles. The
purpose of this paper is to describe recent developments in three key aspects of
EGC: constructive zero bounds, approximate expression evaluation and filter
techniques.

Paper Outline. In Section 2, we briefly review three general approaches to
numerical non-robustness: arithmetic, geometric and the EGC approaches.
Section 3 addresses the problem of constructive zero bounds, the theoretical
tool that makes EGC possible. Sections 4 treats the problem of approximate
expression evaluation, the algorithmic centerpiece in any general EGC number
library. Section 5 treats numerical filtering, the key to practical efficiency in
EGC. We conclude in Section 6.

2 Literature Review

The problems of numerical non-robustness have received much attention in the
computational geometry community in the last 15 years ([29,45,92,58,20,30]).
In [100], this literature is classified along two lines: papers that aim to make

2



fixed-precision algorithms more robust, and those that aim to make the exact
algorithms more efficient. Below, we refer to these as the inexact and exact
approaches, respectively. However, our review uses a somewhat orthogonal
classification. We focus on two general approaches: the arithmetic approach
tries to make algorithms robust by making the arithmetic more accurate, while
the geometric approach achieves robustness by ensuring certain geometric
and topological properties of the problem at hand. For more detail surveys,
see [100,79,72].

2.1 Arithmetic Approaches

This is a natural first place to look for a solution since the root cause of
numerical non-robustness is errors from approximate arithmetic. The “naive”
arithmetic solution says that we just have to compute exactly, without any
errors. This requires the use of multi-precision (i.e., unbounded precision)
arithmetic. Such arithmetic is implemented in software libraries called “big
number packages” (big integers, big rationals, big floats, big complex, etc).
For surveys of multi-precision numbers, see [101,39]. All big number packages
support the four basic arithmetic operations (+,−,×,÷). Within the domain
of rational numbers, it is clear that these operations can be performed without
errors. But for irrational numbers, arbitrary precision no longer ensures error-
freeness. The usual understanding of “number representation” is that it is
some form of positional number system (basically, as strings of digits in some
base). In this sense, the algebraic number

√
2 cannot be represented exactly.

However, it is well-known from computer algebra that we can represent and
perform all the usual arithmetic operations on algebraic quantities, including
exact comparison. Furthermore, by appeal to a general result that goes back
to Tarski, any problem that is algebraic can be computed without errors [97].
This general result is the basis for the development of the exact approaches.

The problem with the above naive view of exact arithmetic is the inefficiency
of algebraic computations. The complexity of each operation depends on the
bit lengths of operands. In cascaded computations, the bit length of numbers
increases quickly. Even for rational operations, the worst-case complexity is
exponential in the number of operations. Thus, Yu [102] concluded that exact
rational arithmetic for 3-D polyhedral modeling is impracticable. Karasick
et al. [52] reported that the naive use of rational arithmetic in the divide-
and-conquer algorithm for 2-D Delaunay triangulation costs a performance
penalty of 104 over the corresponding floating-point implementation. But by
introducing interval filters, they show that this computation can be sped-up
three orders of magnitude. Such results give hope for the exact approach.

Approximate arithmetic is used by the inexact approaches, mostly in the

3



form of machine arithmetic. An early example is Ottmann et al [69] who
showed that the use of machine arithmetic with a scalar product primitive
can improve the robustness of geometric algorithms. But approximate arith-
metic is increasingly used in exact approaches as well. This is a surprising
development because in the early days of exact geometric computation, re-
searchers assumed that all arithmetic operations must ultimately be reduced
to exact integer computations. In this context, perhaps the first example of
the use of approximate arithmetic is [26] where the exact implementation of
Fortune’s sweepline algorithm is studied. The critical predicates here involve
the comparison of square-root expressions. Previously, exact approaches re-
duce such comparisons to exact integer arithmetic, using repeated squaring.
But the use of approximate arithmetic, combined with zero bounds, turns out
to be superior. It is also one of the first uses of zero bounds.

It is important to see how approximate arithmetic solves the efficiency bottle-
neck of naive exact arithmetic. The latter ultimately reduces to big rational
arithmetic. For various reasons, rational computations tend to be very slow
compared to big integer computations. Big integer arithmetic serves as the
baseline of comparison in multi-precision arithmetic. For all practical purposes,
multi-precision approximate arithmetic may be identified with big float arith-
metic. Big float arithmetic is fast because its complexity is basically that of big
integer arithmetic, plus some modest overhead. Equally important, approxi-
mate arithmetic algorithms tend to have adaptive complexity which makes
them practical.

Other ideas to improve robustness at the arithmetic level (without necessarily
completely eliminating non-robustness) are to improve the accuracy or range
of fixed precision arithmetic [21,60]. Other techniques here include providing
accurate scalar products [69] and machine architectures that provide a “fused
multiplication and add” (FMA) primitive. Programming language support for
robustness can be valuable for programmers. For instance, special facilities for
robust arithmetic has been incorporated into programming languages (e.g.,
Numerical Turing [50], Pascal-SC [10]).

2.2 Geometric Approaches

The geometric approach leads to considerably more diverse forms than the
arithmetic approach. We briefly touch on some major representatives. The
general idea is to ensure that certain geometric properties are preserved by
the algorithms. This is often enough to ensure no inconsistent states in the
algorithm (hence robust). For instance, if we are computing the Voronoi dia-
gram of a planar point set, we want to ensure that the output is a planar graph
[88]. Topological approaches are subsumed under geometric approaches in our

4



current classification. The first decision facing the robust algorithm designer
is the choice of which properties to preserve, and this is dictated by efficiency
considerations and needs of the application.

Finite Resolution Geometry. If we compute in fixed precision arithmetic,
then one approach is to invent novel “finite resolution geometries” [40] as a
substitute for the standard Euclidean geometry. This ersatz geometry can only
preserve a few of the properties found in Euclidean geometry. A very natural
and popular model for finite precision geometry is the integer grid. Greene and
Yao [40] investigated line arrangement computation in this geometry. See also
[43,41]. Here, line segment may become polygonal lines so that their intersec-
tions preserve properties such as non-braiding and connected intersection.

Approximate Predicates and Fat Geometry. Another approach focuses
on the imprecise nature of predicate evaluations. The Epsilon Geometry
of Guibas et al. [42] uses “epsilon-predicates” which return a real number in-
stead of the usual −1, 0, +1. A return value of ǫ > 0 means that there is a
perturbation of the input by at most ǫ such that the exact predicate becomes
true. If ǫ < 0, this means that any perturbation of the input up to ǫ will
still satisfy the exact predicate. In terms of geometry, we can think of the
imprecise predicates as inducing “fat objects” (so a point becomes a ball, and
a line becomes a cylinder, etc). Indeed, the widespread programming trick
called epsilon tweaking amounts to a similar fattening of geometric objects
[97,81]. Milenkovic [64] proposed to perturb objects so as to guarantee a min-
imum separation distance (“well separated”). This ensures that approximate
predicates actually yield correct decisions.

Consistency and Topological Approaches. In the introduction, we noted
that the evaluation of predicates in a geometric algorithm determine the com-
binatorial relations among geometric objects in the algorithm. The consis-
tency approach ensures that the computed combinatorial relations are con-
sistent with some perturbation of the numerical input. This amounts to re-
quiring that the outcome of evaluating any predicate is never inconsistent with
previous outcomes. Fortune [31] noted that in principle it is possible to make
most algorithms “parsimonious” (such algorithms never perform conditional
tests whose results are implied by the results of previous tests). The reason is
that, assuming all predicates are polynomial sign evaluations, the statement
that a predicate evaluation is a logical consequence of previous evaluations can
be phrased in the language of the existential theory of the reals. The decision
problem for this language is at least NP -hard but in polynomial space [19].

In practice, we want more than just consistency. Otherwise, we can give the
non-redundant predicates any answer we like! We can often minimize the de-
pendency between the combinatorial part and numerical part of an algorithm.
This is the gist of the Topology-Oriented Approach advocated by Sugihara

5



and Iri [90,89,86,87,91]. In making decisions, the combinatorial part is given
primacy over the numerical part. As a result, the combinatorial structures
are guaranteed to be valid in the special sense of satisfying certain selected
properties such as planarity. Similar ideas are advocated by Schorn [80], but
phrased in terms of ensuring properties of primitive operations.

For any particular problem, the topology-oriented approach leaves open as
to which topological properties the algorithm designer should pick. A general
theory is possible using the idea of “realizable” combinatorial structures. This
was advocated by Hoffmann et al. [44]. They noted that achieving consistent
algorithms is tantamount to theorem proving (akin to Fortune’s parsimonious
algorithm). Thus the consistency approach is generally infeasible.

2.3 Exact Geometric Computation

We now describe an approach that, strictly speaking, ought to be classified un-
der arithmetic approaches. In [97], we call this the Exact Geometric Com-
putation (EGC for short) to emphasize that the “exactness” is in the ge-
ometry, not in the arithmetic. EGC is the most successful approach in this
informal sense: any problem that has been successfully treated by other ap-
proaches can also be treated using EGC, but EGC has done more. Moreover,
the EGC solution is often more general and has better properties (since the
underlying Euclidean geometry is preserved). But how does an arithmetic
approach ensure anything about geometry? The answer is simple. The con-
sistency approach ensures the outcome of the predicate evaluations is correct
for some perturbed input (and hence consistent). But EGC insists that the
outcome of every predicate evaluation is correct for the given input (not some
perturbed input). EGC thereby guarantees that the combinatorial output of
the algorithm is the exact one. Two important computational consequences
follow:

(1) EGC is computationally feasible. EGC avoids two infeasibility traps. First,
it avoids the infeasibility of the consistency approach: by ensuring the combi-
natorial output is exact, we achieve consistency without having to do theorem
proving. Second, it avoids the infeasibility of naive numerical exactness: we
only need to compute to sufficient precision to make the correct predicate
evaluation. This adaptive complexity is vital in practice.

(2) It is possible to create a software EGC library whereby programmers can
write robust programs just by calling the library to perform their arithmetic.
For a large class of problems, such an EGC library is a “general solution”,
as opposed to being a problem-specific or algorithm-specific solution. This
contrasts with many geometric approaches, or the earlier work in EGC [26,13],

6



which offer problem-specific solutions.

The class of problems which is known to be amenable to such a treatment are
the algebraic problems [97]. The algebraic problems constitute the majority 1

of problems treated in contemporary computational geometry.

We use the term EGC numbers to refer to any number type that supports
exact comparisons. The main service of a EGC library is to provide such
number types. Early studies in EGC focused on integer or rational number
types (e.g., [32]). The Real/Expr Package [101] extends this to the class of
constructible real numbers (numbers definable over {±,×,÷,

√·} ∪ Z). The
Core Library [51,47], as the successor of Real/Expr, is aimed at achieving a
user-friendly interface, especially for user’s access of numerical accuracy [96].
The EGC numbers in Core Library are called Expr; it is the first 2 EGC
numbers to incorporate arbitrary real algebraic numbers. In contrast to the
Core Library, the major libraries CGAL and LEDA offer, in addition to their
EGC number types, also a large repertoire of algorithms, data structures and
related services. The EGC number type in LEDA is called LEDA real[14,48].
The CGAL library [46] offers its own rational EGC numbers, but for more
general EGC numbers, CGAL uses either LEDA real or Core Library.

The Challenges Ahead. EGC is in the midst of an exciting development
that seemed quite remote 10 years ago. It has emerged as the dominant ap-
proach to non-robustness. Using EGC libraries, programmers can now rou-
tinely write completely robust and reasonably efficient geometric code for a
large class of problems. Both LEDA and CGAL have been commercialized and
used in industrial applications. For the rational bounded-depth class of prob-
lems [97], the consensus is that their nonrobustness problems have essentially
been solved (in theory if not in practice). Such problems include convex hulls
of points, mesh generation and polyhedral Boolean operations. But what lies
ahead?

1. The perennial challenge of efficiency for EGC is currently focused on high
degree algebraic computation. Such computations as found in CAD applica-
tions remain a severe challenge, as all current CAD software are nonrobust.
These issues are just now beginning to be addressed in earnest (e.g., [3,53,28]).

2. When EGC algorithms are embedded in larger application systems (such
as a mesh generation system), we need to cascade the output of one algorithm
as input to another algorithm. As the output of an EGC algorithm may be
in high precision, it is desirable to reduce this precision in the cascade. The

1 Most problems found in standard references [76,27,68,11,66,22,37] are all alge-
braic. Non-algebraic examples do arise, e.g., some kinds of Voronoi diagrams, short-
est paths with circular obstacles and in non-holonomic motion planning.
2 Since Version 1.6 (June 2003).

7



geometric rounding problem is this: given a consistent geometric object T
in high precision, to “round” it to a consistent object T ′ at a lower precision.
For instance, suppose T is a triangulation (in the plane or higher dimensions).
We do not require that T ′ is topologically equivalent to T . Otherwise, it is
easy to run into NP -hardness, as in [63]. In particular, we allow topology to
change in T ′ (e.g., if two close points in T may collapse to a single point in
T ′). In the literature, “rounding problems” are often a composition of two
problems: a construction problem combined with a bona-fide rounding prob-
lem. The snap rounding problem [43] for intersecting line segments is such a
composite problem. We prefer to solve such composite problems in two steps:
first compute the exact geometric object T , and then rounding T to a lower
precision version T ′. The first step is considered solved using EGC. So we
focus on the second step only. See also [38].

3. The “fundamental problem of EGC” is the zero problem. Relative to any
set Ω of real algebraic operators, the problem is to decide whether E = 0 for
any given expression E over Ω. The main open question here concerns the
decidability of the zero problem for non-algebraic expressions. This problem
will be treated in detail in the next section. See [25] on the introduction of
hypergeometric functions into EGC. Without resolving the zero problem for
such functions, a weak form of EGC must be adopted.

4. At the practical level, users of EGC libraries often find surprising efficiency
penalties for innocuous decisions. For instance, in traversing the vertices of a
polygon represented by a circular list (P0, P1, . . . , Pn), one might use a while-
loop with the exit test “Pi = P0” (for i = 1, . . . n). In an actual 3 example,
where the Pi’s are computed points on the unit 2-sphere, this slowed the
computation to a halt. Another example, if there are common subexpressions
involving square-roots, the difference between writing code that shares these
subexpressions and code that does not share can be huge. For that matter,
using machine floating-point arithmetic is not without its pitfalls for the un-
wary user. EGC arithmetic is no different. Such phenomenon could be avoided
by using smart compiler technology in EGC libraries. This area must be ad-
dressed if EGC libraries are to be widely used.

5. A model of the EGC mode of computation and its complexity awaits de-
velopment. A proper foundation requires a theory of real computation that
treats the zero problem properly: current theories like computable analysis or
TTE [95] make the zero problem undecidable, while the algebraic theory of
Blum-Shub-Smale [7] makes the zero problem trivial. We propose in [99], a
theory of real approximation that avoids both extremes. Another fundamental
issue is the complexity model. Standard complexity analysis based on input
size is inadequate for evaluating the complexity of real computation; we need

3 Private communication, Professor Siu-Weng Cheng.

8



to express the complexity as a function of the output precision. This is the
bit-analogue of output-sensitivity in computational geometry. The study of
precision-sensitive algorithms is initiated in [83,2].

3 Constructive Zero Bounds

The possibility or impossibility of EGC computation ultimately hinges on
the computability of the sign of an expression. For algebraic expressions, it is
possible to determine the sign by purely algebraic or symbolic means. However,
the current EGC libraries use a numerical approach based on zero bounds. This
approach was first used in Real/Expr[101].

Throughout this paper, an expression E refers to a syntactic object con-
structed from a given set Ω of operators over the reals R. Each operator in
Ω either has a fixed arity (which is a natural number) or is “anadic” (taking
any number of arguments). Let E(Ω) denote the set of expressions over Ω.
For instance, if Ω = {0, 1, +,−,×,

√·}, then E(Ω) is the set of division-free
radical expressions. Note that Ω may include 0-ary operators or constants.
Thus E ∈ E(Ω) denotes a real value val(E), defined inductively in the nat-
ural way. Since the algebraic operators may be partial, val(E) may be unde-
fined, denoted val(E) =↑. We say E is invalid if val(E) =↑, and E is valid
otherwise. Thus “expressions” in this paper are essentially straightline pro-
grams (cf. [94]), viewed as a rooted, labeled directed acyclic graph (DAG).
The sharing of subexpressions is allowed. We generally follow the usual abuse
of notation by writing “E” instead of val(E) when the context is clear.

Definition 1 We call b > 0 a zero bound (or root bound) for an expression
E if the following holds: if E is valid and E 6= 0 then |E| ≥ b. We also say
(− log2 b) is a zero bit-bound for E.

Note that b is a conditional bound: it is not a bound when E is invalid or
zero. Although there are many kinds of “zero bounds”, our definition makes
it plain that we are interested in bounding zeros away from 0. To determine
the sign of E from a zero bound b, we compute a numerical approximation Ẽ
such that if E =↑ then Ẽ =↑; otherwise, |E − Ẽ| < b

2
. Then

sign(E)=





sign(Ẽ) if |Ẽ| ≥ b
2

or Ẽ =↑
0 otherwise

(1)

The zero bound determines the worst-case complexity in sign determination.
Thus, it is important to find (efficiently computable) zero bounds that are as

9



large as possible. Such bounds may vary greatly depending on the operators
in Ω. Call the set Ω a (computational) basis if Ω contains {±,×} ∪Z (where
Z are the integers). The following hierarchy of bases is useful in practice:

• Polynomial basis: Ω0 = {±,×} ∪ Z.
• Rational basis: Ω1 = Ω0 ∪ {÷}.
• Radical (or constructible) basis: Ω2 = Ω1 ∪ { n

√· : n ≥ 2}.
• Algebraic basis: Ω3 = Ω2 ∪ {Root(P, i) : P ∈ Z[x], i ∈ Z}. Here Root(P, i)

means the i-th largest real root of the polynomial P (useful interpretations
can be given when i ≤ 0). If the coefficients of P are allowed to be other
expressions, we get the “diamond operator” of [16] and denote the corre-
sponding basis by Ω+

3 .
• Elementary basis: Ω4 = Ω3 ∪ {exp(·), ln(·)}.
• Hypergeometric basis: Ω5 = Ω4 ∪H where H denotes the set of real hyper-

geometric functions [25].

Note that Root(P, i) is a 0-ary operator, used for introducing arbitrary real
algebraic values into expressions, while the diamond operator is an anadic
operator to create real algebraic values out of other expressions. No efficient
implementation of the diamond operator is currently available. In many ar-
eas of computational sciences, non-algebraic operators are needed: Ω4 is the
simplest basis beyond the algebraic case. Basic functions such as the trigono-
metric functions are captured in Ω5. No known root bounds are known for Ω4,
but Richardson [77] has an important conditional result; partial results are
also known from transcendental number theory.

3.1 Review of Constructive Zero Bounds

Zero bounds have been extensively studied in the classical literature (e.g.,
[59] or [62, chap. 2]). From an algorithmic point of view, many classical re-
sults are non-constructive. A “constructive zero bound” for a class E of ex-
pressions is an effectively computable function B : E → R such that B(E)
is a zero bound for each E ∈ E . All the current bounds have the form
B(E) = β(u1(E), . . . , um(E)) where β is some easy-to-compute bounding
function, and u1(E), . . . , um(E) is a set of numerical parameters that are
maintained via a set of recursive rules. One of these parameters is invariably
an upper bound D(E) on the degree of val(E). For E ∈ E(Ω3), we define D(E)

to be the product of the degrees of each node in E; the degree of a k

√
(·)-node is

k, and degree of a Root(P, i)-node is the degree of P , and otherwise the degree
of a node is 1. Most of constructive zero bounds cited below are applicable
for the class Ω2, but the exact operator set Ω may be deduced from the given
tables.

Canny’s bound. Canny [18] shows that given a zero-dimensional system Σ

10



E d(E) ℓ(E) h(E)

rational a
b

1
√

a2 + b2 max{|a|, |b|}
E1 ± E2 d1d2 ℓd2

1 ℓd1

2 2d1d2+min{d1,d2} (h121+d1 )d2 (h2
√

1 + d2)d1

E1 × E2 d1d2 ℓd2

1 ℓd1

2 (h1
√

1 + d1)d2 (h2
√

1 + d2)d1

E1 ÷ E2 d1d2 ℓd2

1 ℓd1

2 (h1
√

1 + d1)d2 (h2
√

1 + d2)d1

k
√

E1 kd1 ℓ1 h1

Table 1
Rules for Degree-Length and Degree-Height bounds

of n polynomial equations with n unknowns, if (α1, . . . , αn) is a solution, then
|αi| ≥ (3dc)−ndn

for all non-zero component αi. Here c (resp., d) is an upper
bound on the absolute value of coefficients (resp., the degree) of any polyno-
mial in Σ. Canny’s bound has a proviso, that the homogenized system Σ̂ has a
non-vanishing U -resultant. Equivalently, Σ̂ has finitely many zeros at infinity.
Yap [98, p. 350] gave a bound without such a proviso. Such multivariate zero
bounds are easily translated into bounds on expressions over Ω+

3 , in the style
of [15].

Degree-Length and Degree-Height bounds. The Degree-Length bound
[98] maintains two numerical parameters: d(E) and ℓ(E) which are upper
bounds on the degree and length (i.e., 2-norm) of the minimal polynomial of
E. The bound here is B(E) = 1/ℓ(E) (Landau’s bound). A similar Degree-
Height bound [101] maintains the parameters d(E) and h(E). The bound here
is B(E) = 1/(1 + h(E)) (Cauchy’s bound). These parameters, as with all the
parameters in the zero bounds to be discussed, are maintained by induction on
the structure of the expression DAG, using a set of mutually recursive rules.
Table 1 shows the recursive rules. Note that di, ℓi, hi (i = 1, 2) in the table
is short hand for d(Ei), ℓ(Ei), h(Ei). These rules are justified by the resultant
calculus. In practice, we can replace d(E) by the more accurate D(E) defined
above.

Degree-Measure bound. Mahler’s measure for a complex polynomial P (x) =
a

∏n
i=1(x− αi) ∈ C[x] is defined as m(P ) = |a| ·∏n

i=1 max{1, |αi|}. For an al-
gebraic number α, m(α) is defined as the measure of its minimal polynomial.
It is not hard to show that if α 6= 0 then

1

m(α)
≤ |α| ≤ m(α). (2)

For an expression E ∈ E(Ω3), let the parameter M(E) be maintained using
the rules in column 5 of Table 4. Mignotte [62] shows that M(E) is an upper
bound on the Mahler measure m(E). Thus B(E) = 1/M(E) is a zero bound,
which Burnikel et al. [15] calls the Degree-Measure bound. The Degree-Measure
bound turns out to be always better than the Degree-Length bound [15].
Sharpened forms of the original Degree-Measure bound are reported in [57,82].

11



E u(E) l(E)

1. integer a |a| 1

2. E1 ± E2 u(E1)l(E2) + l(E1)u(E2) l(E1)l(E2)

3. E1 × E2 u(E1)u(E2) l(E1)l(E2)

4. E1 ÷ E2 u(E1)l(E2) l(E1)u(E2)

5. k
√

E1
k

√
u(E1) k

√
l(E1)

Table 2
BFMS Rules

BFMS bound. One of the best constructive zero bounds for the class of
radical expressions is from Burnikel et al. [15] (hereafter called the BFMS
bound). For division-free expressions, it is an improvement over previously
known bounds. But in presence of divisions, the BFMS bound is not necessar-
ily an improvement of the Degree-Measure bound. Conceptually the BFMS
approach first transforms a radical expression E to a quotient of two division-
free expressions U(E) and L(E). Two parameters u(E) and l(E), the upper
bounds on the conjugates of U(E) and L(E), respectively, are maintained by
the recursive rules in Table 2. Clearly, if E is division-free, then L(E) = 1 and
val(E) is an algebraic integer. The BFMS bound is

B(E) = (u(E)D(E)2−1l(E))−1. (3)

If E is division-free, the bound improves to

B(E) = (u(E)D(E)−1)−1. (4)

BFMSS bound. The zero bit-bound in (3) is quadratic in D(E); this factor
can become a serious efficiency issue. Consider a simple example: E0(x, y) =

(
√

x +
√

y)−
√

x + y + 2
√

xy where x, y are L-bit integers. This expression is

identically 0 for any x, y. The BFMS bound with D(E0) = 8 yields a zero bit-
bound of 17.5L+O(1) bits. But in case, x and y are viewed as rational numbers
(with denominator 1), the bit-bound becomes 157.5L+O(1). Thus introducing
rational numbers at the leaves of expression DAGs has a major impact on
the BFMS bound. Burnikel et al. [16] extended the BFMS bound to the so-
called BFMSS bound which is applicable to expressions in E(Ω+

3 ). But their
key improvement was a simple device to avoid the above-mentioned quadratic
behavior in many cases. Specifically, in the last row of Table 2, when E = k

√
E1,

they propose the new rule u(E) = k

√
u(E1)l(E1)k−1 and l(E) = l(E1). But one

could equally use u(E) = u(E1) and l(E) = k

√
u(E1)k−1l(E1). Yap noted if we

use the symmetrized rule

u(E) = min{ k

√
u(E1)l(E1)k−1, u(E1)}, l(E) = min{l(E1),

k

√
u(E1)k−1l(E1)},

then the BFMSS bound is never worse than the BFMS bound. With this
modification, the BFMSS bound can now be based on (4). For our expression

12



E0(x, y) above, the BFMSS gives a bit-bound of 42L + O(1) when the L-bit
integers x, y are viewed as rational numbers with denominator 1.

Eigenvalue bound. This bound is based on matrix eigenvalues [78]. Let
Λ(n, b) denote the set of eigenvalues of n×n matrices with integer entries with
absolute value at most b. It is easily seen that Λ(n, b) is a finite set of algebraic
integers. Moreover, if α ∈ Λ(n, b) is non-zero then |α| ≥ (nb)1−n. Hence, if
E is a division-free radical expression, and n(E) and b(E) are parameters
such that val(E) ∈ Λ(n(E), b(E)) then we can use the bounding function
β(n, b) = (nb)1−n. The parameters n(E) and b(E) are maintained by Table 3.

E n(E) b(E)

1. integer a 1 |a|
2.

√
cd 2 max{|c|, |d|}

3. E1 ± E2 n1n2 b1 + b2

4. E1 × E2 n1n2 b1b2

5. k
√

E1 kn1 b1

6. P (E1) n1 P (n1b1)

Table 3
Scheinerman’s Rules

The rule for
√

cd is rather special, but it can be extremely useful. In Rule
6, the polynomial P (x) is given by

∑d
i=0 |ai|xi when P (x) =

∑d
i=0 aix

i. This
rule is not explicitly stated in [78], but can be deduced from an example he

gave. E.g., to test if α =
√

2 +
√

5− 2
√

6−
√

3 is zero, the Eigenvalue bound
requires calculating α to 39 digits [78] while the BFMS bound says 12 digits
are enough.

Conjugate bound. This bound from Li and Yap [57] was originally proposed
to handle expressions in E(Ω3). The basic idea is exploit the relation that, for
any algebraic number α 6= 0,

|α| ≥ (µ(α)deg(α)−1lead(α))−1, (5)

where deg(α) is the degree of α, µ(α) = max{|ξ| : ξ is a conjugate of α}, and
lead(α) the leading coefficient of the minimal polynomial Irr(α). Hence, we
may use the bound

B(E) = (µ(E)(D(E)−1)lc(E))−1

where the parameters D(E), lc(E) and µ(E) are upper bounds on (respec-
tively) deg(E), lead(E) and µ(E). In the presence of division, we maintain
three more parameters: ν(E) to lower bound µ(E); tc(E) to upper bound
tail(E); and M(E) to upper bound m(E). Here tail(E) is the tail coefficient,
i.e., the constant term of Irr(E). The rules are given in Table 4. The last
entry in Line 3 of this Table is missing; this special entry is taken to be
max{M(E)−1, (µ(E)D(E)−1lc(E))−1}, and it is justified by (2) and (5).

13



E lc(E) tc(E) M(E) µ(E) ν(E)

1. rational a
b

|b| |a| max{|a|, |b|} | a
b
| | a

b
|

2. Root(P ) |lead(P )| |tail(P )| ‖P‖2 1 + ‖P‖∞ (1 + ‖P‖∞)−1

3. E1 ± E2 lcD2

1 lcD1

2 MD2

1 MD1

2 2D(E) MD2

1 MD1

2 2D(E) µ(E1) + µ(E2) (*)

4. E1 × E2 lcD2

1 lcD1

2 tcD2

1 tcD1

2 MD2

1 MD1

2 µ(E1)µ(E2) ν(E1)ν(E2)

5. E1 ÷ E2 lcD2

1 tcD1

2 tcD2

1 lcD1

2 MD2

1 MD1

2 µ(E1)/ν(E2) ν(E1)/µ(E2)

6. k
√

E1 lc1 tc1 M1
k

√
µ(E1)

k

√
ν(E1)

7. Ek
1 lck

1 tck
1 Mk

1 µ(E1)k ν(E1)k

Table 4
Recursive rules for Conjugate Bound

The Factoring Method. Pion and Yap [75] introduced a zero bound tech-
nique based on the following idea: maintain a zero bound b for an expression
E = E1E2 in the factored form, b = b1b2 where bi (i = 1, 2) is a zero bound
for Ei. The bi’s are maintained using one of the previous methods. The trick
is to choose an easily factorable form for E where this has an advantage.
Indeed there is such an form, namely, E = E12

n5m where n, m ∈ Z. When
the input numbers in E are binary or decimal numbers, we can easily extract
such powers of 2 and 5 at the leaves. These powers of 2 and 5 are propagated
throughout the various nodes. This technique seems generally applicable to
the known zero bounds. For instance, applied to the BFMSS bound, we ob-
tain the BFMSS[2, 5] bound. Both the BFMSS[2, 5] and Measure[2, 5] bounds
have been implemented in Core Library. It is proved that these bounds are
never worse than the original version, but can be much better for some ex-
pressions (e.g., determinants).

3.2 Comparison of Constructive Zero Bounds

Comparisons between various constructive zero bounds are found in [15,57].
In general, a direct comparison of these zero bounds is difficult because they
use different set of parameters and bounding functions. Our strategy to gain
some insights is to compare their performance on various special subclasses
of expressions. Of the known zero bounds, there are three that are not dom-
inated by any other methods: the BFMSS, Conjugate and Measure bounds.
Furthermore, these three are mutually incomparable.
1. For division-free radical expressions, the BFMS bound and the Conjugate
bound agree, and both are not dominated by the other known bounds.
2. For general algebraic expressions, in terms of zero bit-bound, Conjugate
bound is at most D · M where D is the degree bound, and M is the zero
bit-bound from the Degree-Measure bound.
3. For expressions of the form

∑n
i=1

√
ai, the Conjugate bound and the Degree-

Measure bound can be better than each other, depending on the size param-
eters used for the expressions. But both bounds are always better than the

14



BFMS bound.
4. If E is a radical expression with rational values at the leaves, and E has no
divisions or shared radical nodes, the Conjugate bound is never worse than
the BFMS bound, and can be better in many cases.
5. A critical test in Fortune’s sweepline algorithm is to determine the sign of

the expression E = a+
√

b
d
− a′+

√
b′

d′
where a’s, b’s and d’s are 3L-, 6L- and 2L-bit

integers, respectively. The BFMS bound requires (79L + 30) bits, the Degree-
Measure bound requires (64L + 12) bits, and the Conjugate bound requires
(19L + 9) bits. To illustrate the effect of these bounds, consider the running
time (in seconds) for testing if E = 0 in Table 5. Random input numbers with
different L values are generated. The platform is a Sun UltraSPARC with a
440 MHz CPU and 512MB main memory.

L 10 20 50 100 200

Conjugate 0.01 0.03 0.12 0.69 3.90

BFMS 0.03 0.24 1.63 11.69 79.43

Degree-Measure 0.03 0.22 1.62 10.99 84.54

Table 5
Timings for Fortune’s expression

3.3 Treatment of Special Cases

Zero separation bounds. In both the Core Library and LEDA, the compar-
ison of two expressions α and β is obtained by computing the zero bound of
α − β. However, more efficient techniques can be used. If P (X) ∈ C[X] is a
non-zero polynomial, sep(P ) denotes the minimum |αi − αj | where αi 6= αj

range over all pairs of complex zeros of P . When P has less than two distinct
zeros, define sep(P ) =∞. Suppose A(X) and B(X) are the minimal polyno-
mials for α and β, then |α− β| ≥ sep(AB). If the degrees of A, B are at most
d, d′, and the heights of A, B are at most h, h′, then a zero separation bound
for A(X)B(X) (which need not be square-free) is given by

|α− β| ≥
[
2(n+1)/2(n + 1)hh′

]−2n
(6)

where n = d + d′ (see Corollary 6.33 in [98, p. 176,173] and use the fact that
‖AB‖2 ≤ (n + 1)hh′). The advantage of using (6) is that the zero bit bound
here is linear in d + d′, and not dd′, as would be the case if we use resultant
calculus. We compute α and β to an absolute error < sep(AB)/4 each, then
declare them to be equal iff their approximations differ by ≤ sep(AB)/2 from
each other. Otherwise, the approximations tell us which number is larger.

Zero test. Zero testing is the special case of sign determination in which we
want to know whether an expression is zero or not. Many predicates in compu-

15



tational geometry programs are really zero tests (e.g. detection of degeneracy,
checking if a point lies on a hyperplane). In the application of EGC to theorem
proving [94], the truth of a geometric theorem is equivalent to the zero outcome
in many cases. In our numerical approach based on zero bounds, the complex-
ity of sign determination is determined by the zero bound when the outcome
is zero. Since zero bounds can be overly pessimistic, it is desirable to have an
independent method of testing if an expression is zero. Such a zero test can
be used as a filter for the sign determination algorithm: only when the filter
detects a non-zero do we call the iterative numerical method. Yap and Blömer
[6] observed that for expressions of the form E =

∑n
i=1 ai

√
bi (ai ∈ Z, bi ∈ N),

zero testing is deterministic polynomial time, while the sign determination
problem is not known to be polynomial time. Blömer [6,4] extended this to
the case of general radicals using a theorem of Siegel; he also gave a proba-
bilistic algorithm for zero test [5]. When the radicals are nested, we can apply
denesting algorithms [49,55], but these methods are non-numerical.

4 Approximate Expression Evaluation

At the core of any EGC number library is an algorithm for approximate
expression evaluation. This is the problem where, given an expression E
and a relative or absolute precision p, we want to compute an approximation
of val(E) to within precision p.

The precision measure p we consider here will be either relative and absolute
measures: if x, p are real numbers, let Rel(x, p) denote the set of numbers x̃
such that |x − x̃| ≤ 2−p|x|, and Abs(x, p) denote the set of numbers x̃ such
that |x − x̃| ≤ 2−p. We say that y is a relative p-bit approximation of x if
y ∈ Rel(x, p); absolute p-bit approximations are similarly defined.

Let Approx(E, p) denote such an algorithm to compute an absolute p-bit
approximation to val(E). The choice of absolute (rather than relative) pre-
cision here is not arbitrary: the absolute precision version is a more basic
problem [99]. The main computational paradigm for such an algorithm is the
precision-driven approach [101]. Intuitively, this can be viewed as an iter-
ative “downward-upward process” operating on the input expression DAG. In
the downward direction, we propagate precision values (starting with p at the
root) down to the leaves. Each node u in E represents a subexpression Eu. Let
pu be the precision propagated to u. If u is a leaf node, we assume the abil-
ity to compute an absolute pu-bit approximation for val(Eu). In the upward
direction, we propagate approximations Vu for val(Eu) up to the root. This
upward propagation amounts to a bottom-up evaluation of the expression E.

16



Our propagation rules provide the following guarantee:

If the expression Eu is valid, then Vu ∈ Abs(val(Eu), pu). (7)

Conditional and Unconditional Approximation. An approximation al-
gorithm satisfying (7) is said to have conditional approximation. When Eu

is invalid, the value Vu can be anything. The algorithm has unconditional
approximation if, in addition to (7), we have Vu =↑ iff Eu is invalid. Here
we view ↑ as a distinguished value, which the algorithm must output (this is
unlike standard treatment of partial functions in computability theory). We
can convert conditional approximation of E into an unconditional approxima-
tion if we can compute zero bounds for all subexpressions Eu. In terms of our
hierarchy {Ωi : i = 0, . . . , 5}, we only know how to compute zero bounds for
E ∈ E(Ω+

3 ).

REMARKS:
1. Our precision-driven mechanism generalizes the standard “lazy evaluation”
technique: the lazy technique has no downward propagation, but has an iter-
ated upward propagation of approximate values, together with some stopping
criteria at the root.
2. The optimal method of propagating precision is an open problem. Detailed
algorithms for the propagation of “composite precision” (a generalization of
relative and absolute precision) are given by Koji [70]. Our simpler approach
of propagating only absolute precision follows [56,99].

4.1 Propagation Rules for Elementary Expressions

Let E is an elementary expression, i.e., E ∈ E(Ω4). Table 6 gives the recur-
sive rules to down-propagate precision, and to up-propagate approximations
at any subexpression Eu of E. If E1, E2 are the subexpressions at the children
of the root of E, let p1, p2 be the precision to be propagated to E1, E2. The
downward rules specify the values of p1 and p2. This depends on the operator
at the root of E. For example, if the operator is ±, then the downward rules in
Line 1 says that p1 = p2 = p + 2. Note that some rules refer to the quantities
µ+

i or µ−
i ; we will return to this later.

The upward rules tell us how to obtain an approximation Ẽ for E from the
approximate values Ẽi of Ei (i = 1, 2). These rules are quite uniform: let
E = E1 ◦E2 where ◦ is a binary operator in Ω4. Then Ẽ is defined to be (Ẽ1 ◦
Ẽ2)p+1. The latter expression describes an absolute p+1 bit approximation of

Ẽ1 ◦ Ẽ2. In general, if X and p are reals then (X)p denotes any absolute p-bit
approximation of X. If the operator at E is unary, an analogous rule applies
(see Lines 4,5,6). The proof that Table 6 is correct (i.e., property (7) holds) is
found in [99].

17



Downward Rules Upward Rules

E p1 p2 Ẽ

1. E1 ± E2 p + 2 p + 2 (Ẽ1 ± Ẽ2)p+1

2. E1 × E2 max{a1, p + 1 + µ+
2 } max{a2, p + 1 + µ+

1 } (Ẽ1 × Ẽ2)p+1

where a1 + a2 = p + 2

3. E1 ÷ E2 p + 2 − µ−
2 max{1 − µ−

2 , p + 2 − 2µ−
2 + µ+

1 } (Ẽ1/Ẽ2)p+1

4.
√

E1 max{p + 1, 1 − (µ−
2 /2)} (

√
Ẽ1)p+1

5. exp(E1) max{1, p + 2 + 2µ
+

1
+1} (exp(Ẽ1)p+1

6. ln(E1) max{1 − µ−
1 , p + 2 − µ−

1 } (ln(Ẽ1)p+1

Table 6
Absolute Precision Approximation of Elementary Expressions

REMARKS:
1. The approximate value Ẽ is represented by big floats in practice. Thus
Ẽ1 ◦ Ẽ2 could be computed exactly for ◦ ∈ {+,−,×}. But our rules (following
[56]) no longer require exact computation, making them more sensitive to the
actual precision needed.
2. In [99], rules for propagating relative precision in elementary expressions
are given with one exception: no rule for E = ln(E1) is possible.

4.2 Propagating Bounds on Magnitude of Expressions

For any expression E, define µ(E) = lg |val(E)|. By definition, the µ(0) = −∞.
We can maintain an upper bound µ+

E, and/or lower bound µ−
E on µ(E) using

the rules in Table 7. These bounds are the same parameters we encountered
earlier in Table 6.

E µ+
E

µ−
E

rational a
b

⌈
lg(a

b
)
⌉ ⌊

lg(a
b
)
⌋

E1 ± E2 max{µ+
E1

, µ+
E2

} + 1 ⌊lg(|E|)⌋
E1 × E2 µ+

E1
+ µ+

E2
µ−

E1
+ µ−

E2

E1 ÷ E2 µ+
E1

− µ−
E2

µ−
E1

− µ+
E2√

E1

⌈
µ+

E1
/2

⌉ ⌊
µ−

E1
/2

⌋

exp(E1)

⌈
1.45 · 2µ

+

E1

⌉ ⌊
1.43 · 2µ

−

E1

⌋

ln(E1)
⌈
lg(µ+

E1
)
⌉ ⌊

lg(µ−
E1

)
⌋
− 1

Table 7
Rules for upper and lower bounds on µ(E)

Most entries in Table 7 are straightforward: these rules ensure that µ+
E , µ−

E

are integers. In practice, these values can be big integers or machine doubles.
When using machine doubles, we replace the ceiling and floors of Table 7 by
appropriate rounding modes; the resulting bounds would be more accurate.
Also, the arithmetic would be very fast, but the danger of overflow is greater.
The main subtlety in this table is the entry for µ−

E when E = E1±E2. Call this

18



the special entry because, due to potential cancellation, we cannot derive a
lower bound on µ(E) in terms of µ−

E1
and µ−

E2
only. There are two ways to

determine this entry. (1) We could approximate E with increasing precision
until we see its most significant bit, or reach the zero bound in which case
E = 0. This method determines ⌊µ(E)⌋ exactly. (2) Method two is applicable
only under certain conditions: when E1 and E2 have the same sign in case of
addition, or have opposite signs in case of subtraction, or their magnitudes
differ by more than 1 bit (determined by their µ bounds). In these cases,
provided these signs or magnitudes are available, we can deduce µ−

E directly.
Method two acts as a fast filter for method one.

The ComputeMu Algorithm. Based on Table 7, we could develop a simple
algorithm called ComputeMu(E) to compute µ−

E and µ+
E . The Approx Algorithm

calls ComputeMu, but to compute the special entry of Table 7, ComputeMu may
have to call Approx. Hence these 2 algorithms are mutually recursive. This
mutual recursion does not lead to infinite loops.

Computing the special entry by method one requires zero bounds. Since zero
bounds for elementary expressions are not known, even the conditional ap-
proximation of arbitrary elementary expressions is an open problem. But in
order for Approx to succeed on as large a subclass of elementary expressions
as possible, ComputeMu must avoid computing any µ−

E or µ+
E unless strictly

required. We sometimes also need the sign, and this too can be folded into
ComputeMu in a natural way. The upshot is a multi-argument function,

ComputeMu(E, uflag, lflag, sflag) (8)

where the three extra variables are Boolean flags specifying whether the val-
ues µ+

E, µ−
E, sign(E) (resp.,) are needed. For instance, if E = E1/E2 then

Approx(E) will call ComputeMu(E1, true, false, false) and
ComputeMu(E2, false, true, true). The reason that the sflag is true in the
second call is because we need to know whether E2 = 0 or not. These flags
originate during the evaluation of E according to Table 6:

• E = E1 ±E2. No µ bounds on E1, E2 are needed.
• E = E1 ×E2 or E = exp(E1). Only the µ+

Ei
’s are needed.

• E = k
√

E1 or E = ln(E1). Only µ−
E1

is needed.
• E = E1 ÷E2. Only µ+

E1
and µ−

E2
are needed.

ComputeMu recursively calls itself (or Approx in case of the special entry), and
propagates these flags according Table 7. At any node u in E, when any of the
values µ+

Eu
, µ−

Eu
and sign(Eu) have been computed, it is stored at u. ComputeMu

checks for such values before trying to compute any of them – this is important
because nodes are shared.

19



This completes our description of a precision-driven evaluation. In practice,
other features built on top of this overall design (e.g., Core Library has a
floating-point filter). While our new design is an improvement over an older
one [70], it is still suboptimal. For instance, to determine the sign of E1E2, we
always determine the sign of E1. But if E2 = 0, this computation is wasted.
One solution is to simultaneously determine the signs of E1 and E2, stopping
immediately when either one returns a 0. The idea is to expend equal effort for
the 2 children, but this may be complicated in the presence of shared nodes.

5 Numerical Filters

In the EGC techniques of the previous sections, the use of multi-precision
arithmetic is essential. Another avenue to gain efficiency is to exploit machine
floating-point arithmetic which is fast and highly optimized on current hard-
ware. The basic idea is simple: we must “check” or “certify” the output of
machine evaluation of predicates, and only go for the slower exact methods
when this fails.

In EGC, certifiers are usually (numerical) filters. These filters certify prop-
erty of computed numerical values, typically its sign. This often amounts to
computing some error bound, and comparing the computed value with this
bound. When such filters aim to certifying machine floating-point arithmetic,
we call them floating-point filters. We can also consider a cascade of cer-
tifiers of increasing effectivity for the problem. Such cascades can be quite
effective [34,17]. There is an obvious connection between the notion of certi-
fiers and the area of program checking [8,9]. It is also worth mentioning that
similar techniques have later been used on large determinant sign evaluations
based on distance to the nearest singularity [71].

There are two main classifications of numerical filters: static or dynamic. Static
filters are those that can be computed at compile time for the most part,
and they incur a low overhead at runtime. However, static error bounds may
be overly pessimistic and thus less effective. Dynamic filters exhibit opposite
characteristics: they have higher runtime cost but are much more effective
(i.e., fewer false rejections). We can have semi-static filters which combine
both features.

Certifiers can be used at different levels of granularity: from individual ma-
chine operations (e.g., arithmetic operations for dynamic filters), to subrou-
tines (e.g., geometric predicates [54]), and to algorithms (e.g., [61]). See Funke
et al. [35] for a general framework for filtering each “step” of an algorithm.

Computing upper bounds in machine arithmetic. In the implementa-

20



tion of numerical filters, we need to compute sharp upper bounds on numerical
expressions. To be specific, suppose you have IEEE double values x and y. How
can you compute an upper bound on |z| where z = xy? We first compute

z̃ ← |x| ⊙ |y|. (9)

Here, | · | is done exactly by the IEEE arithmetic, but the multiplication ⊙ is
not exact. One aspect of IEEE arithmetic is that we can change the rounding
modes [93]. Thus changing the rounding mode to round towards +∞, we will
have z̃ ≥ |z|. Otherwise, we only know that z̃ = |z|(1+ δ) where |δ| ≤ u. Here
u = 2−53 is the “unit of rounding” for the arithmetic. We will describe the
way to use the rounding modes later, in the interval arithmetic section. But
here, instead to avoid rounding modes, we further compute w̃ as follows:

w̃ ← z̃ ⊙ (1 + 4u). (10)

It is assumed that overflow and underflow do not occur during the computation
of w̃. Note that 1+4u = 1+2−51 is exactly representable. Therefore, we know
that w̃ = z̃(1 + 4u)(1 + δ′) for some δ′ satisfying |δ′| ≤ u. Hence,

w̃ = z(1 + δ)(1 + δ′)(1 + 4u)

≥ z(1− 2u + u2)(1 + 4u)

= z(1 + 2u− 7u2 + 4u3)

> z

Note that if any of the operations ⊕, ⊖ or ⊘ is used in place of ⊙ in (9), the
same argument still shows that w̃ is an upper bound on the actual value. We
summarize this result:

Lemma 1 Let E be any rational numerical expression and let Ẽ be the ap-
proximation to E evaluated using IEEE double precision arithmetic. Assume
the input numbers in E are IEEE doubles and E has k ≥ 1 operations.
(i) We can compute an IEEE double value MaxAbs(E) satisfying the inequality
|E| ≤ MaxAbs(E), in 3k machine operations.
(ii) If all the input values are positive, 2k machine operations suffice.
(iii) The value Ẽ is available as a side effect of computing MaxAbs(E), at the
cost of storing the result.

Proof. We simply replace each rational operation in E by at most 3 machine
operations: we count 2 flops to compute z̃ in equations (9), and 1 flop to
compute w̃ in (10). In case the input numbers are non-negative, z̃ needs only
1 machine operation. Q.E.D.

21



Expr E MaxLen(E) MaxErr(E)

Var x MaxLen(x) given max{0, 2MaxLen(E)−53}
F ± G 1 + max{MaxLen(F ), MaxLen(G)} MaxErr(F ) + MaxErr(G) + 2MaxLen(F±G)−53

FG MaxLen(F ) + MaxLen(G) MaxErr(F )2MaxLen(G) + MaxErr(G)2MaxLen(F )

+2MaxLen(F G)−53

Table 8
Parameters for the FvW filter

5.1 Static Filters

Fortune and Van Wyk [33] were the first to implement and quantify the efficacy
of filters for exact geometric computation. Their filter was implemented via the
LN preprocessor system. Let us now look at the simple filter they implemented
(which we dub the “FvW Filter”), and some of their experimental results.

The FvW filter. Static error bounds are easily maintained for a polynomial
expression E with integer values at the leaves. Let Ẽ denote the IEEE dou-
ble value obtained by direct evaluation of E using IEEE double operations.
Fortune and Van Wyk compute a bound MaxErr(E) on the absolute error,

|E − Ẽ| ≤ MaxErr(E). (11)

It is easy to use this bound as a filter to certify the sign of Ẽ: if |Ẽ| >
MaxErr(E) then sign(Ẽ) = sign(E). Otherwise, we must resort to some fall
back action. For simplicity, assume this action is to immediately use an infal-
lible method, namely computing exactly using a Big Number package.

Let us now see how to compute MaxErr(E). It turns out that we also need
the magnitude of E. The base-2 logarithm of the magnitude is bounded by
MaxLen(E). Thus, we say that the FvW filter has two filter parameters,

MaxErr(E), MaxLen(E). (12)

We assume that each input variable x is assigned an upper bound MaxLen(x)
on its bit length. Inductively, if F and G are polynomial expressions, then
MaxLen(E) and MaxErr(E) are defined using the rules in Table 8.

Observe that the formulas in Table 8 assume exact arithmetic. In implemen-
tations, we compute upper bounds on these formulas. We assume that the
filter has failed in case of an overflow; it is easy to see that no underflow
occurs when evaluating these formulas. Checking for exceptions has an extra
overhead. Since MaxLen(E) is an integer, we can evaluate the corresponding
formulas using IEEE arithmetic exactly. But the formulas for MaxErr(E) will
incur error, and we need to use some form of lemma 1.

22



Framework for measuring filter efficacy. We want to quantify the efficacy
of the FvW Filter. Consider the primitive of determining the sign of a 4 × 4
integer determinant. First look at the unfiltered performance of this primitive.
We use the IEEE machine double arithmetic evaluation of this determinant
(with possibly incorrect sign) as the base line for speed; this is standard
procedure. This base performance is then compared to the performance of
some standard (off-the-shelf) Big Integer packages. This serves as the top line
for speed. The numbers cited in the paper are for the Big Integer package in
LEDA (circa 1995), but the general conclusion for other packages are apparently
not much different. For random 31-bit integers, the top line time yields 60 time
increase over the base line. We will say

σ = 60 (13)

in this case; the symbol σ reminds us that this is the “slowdown” factor.
Clearly, σ = σ(L) is a function of the bit length L as well. For instance, with
random L = 53 bit signed integers, the factor σ becomes 100. Going back
to L = 31, but using static filters implemented in LN, the factor σ ranges
from 13.7 to 21.8, for various platforms and CPU speeds [33, Figure 14]. For
simplicity, we say σ = 20, for some mythical combination of platforms and
CPUs. Thus the static filters improve the performance of exact arithmetic 4

by the factor

φ = 60/20 = 3. (14)

In general, using unfiltered exact integer arithmetic as base line, the symbol
φ (or φ(L)) denotes the “filtered improvement”. We use it as a measure of the
efficacy of filtering.

The above experimental framework is clearly quite general, and estimates
the efficacy of a filter by a number φ. The framework requires the following
choices: (1) a “test algorithm” (we picked one for 4 × 4 determinants), (2)
the “base line” (the standard is IEEE double arithmetic), (3) the “top line”
(we picked LEDA’s Big Integer), (4) the input data (we used random 31-bit
integers). Another measure of efficacy is the fraction ρ of approximate values
Ẽ which fail to pass the filter. In [24], a general technique for assessing the
efficacy of an arithmetic filter is proposed based on an analysis which consists

4 The formula is φ = σ1/σ2 where σ1 is the slowdown factor in an exact number
package, and σ2 is the slowdown factor when the same exact number is filtered.
But we do not have σ1 for LN’s exact number type, so the LEDA number is used.
Remark that since σ1, σ2 are both ratios, we need not insist that they be determined
on exactly the same set of tests. This flexibility is important if we want to use our
framework to compare published filtering results from different papers.

23



of evaluating both the threshold value and the probability of failure of the
filter.

For a true complexity model, we need to introduce size parameters. In EGC,
two size parameters are of interest: the combinatorial size n and the bit size
L. Hence all these parameters ought to be written as σ(n, L), φ(n, L), etc.

Realistic versus synthetic problems. Static filters have an efficacy factor
φ = 3 (see (14)) in evaluating the sign of randomly generated 4-dimensional
matrices (L = 31). Such problems are called “synthetic benchmarks” in [17].
It would be interesting to see the performance of filters on realistic bench-
marks, i.e., actual algorithms for natural problems that we want to solve. But
even here, there are degrees of realism. Let us equate realistic benchmarks with
algorithms for problems such as convex hulls, triangulations, etc. The point of
realistic benchmarks is that they will generally involve a significant amount of
non-numeric computation. Hence the φ-factor in such settings ought to be dif-
ferent from (in fact, less than) the synthetic setting. To quantify this, suppose
that a fraction

β (0 ≤ β ≤ 1) (15)

of the running time of the algorithm is attributable to numerical computa-
tion. After replacing the machine arithmetic with exact integer arithmetic,
the overall time becomes (1−β)+βσ = 1+(σ−1)β. With filtered arithmetic,
the time becomes 1 + (σ − 1)βφ−1. So “realistic” efficacy factor φ′ for the
algorithm is

φ′ :=
(1 + (σ − 1)β

1 + (σ − 1)β/φ
.

It is easy to verify that φ′ < φ (since φ > 1). Note that our derivation as-
sumes the original time is unit! This normalization is valid in our derivation
because all the factors σ, φ that we use are ratios and are not affected by the
normalization.

The factor β is empirical, of course. But even so, how can we estimate this? For
instance, for 2- and 3-dimensional Delaunay triangulations, Fortune and Van
Wyk [33] noted that β ∈ [0.2, 0.5]. Burnikel, et al. [17] suggest a simple method
for obtaining β: simply execute the test program in which each arithmetic
operation is repeated c > 1 times. This gives us a new timing for the test
program,

T (c) = (1− β) + cβ.

Now, by plotting the running time T (c) against c, we obtain β as the slope.

Some detailed experiments on 3D Delaunay triangulations have been made by
Devillers and Pion [23], comparing different filtering strategies; they conclude

24



that cascading predicates is the best scheme in practice. Other experiments
on interval arithmetic have been done by Seshia, Blelloch and Harper [84].

5.2 Dynamic Filters

To improve the quality of the static filters, we can use runtime information
about the actual values of the variables, and dynamically compute the error
bounds. We can again use MaxErr(E) and MaxLen(E) as found in Table 8 for
static error. The only difference lies in the base case: for each variable x, the
MaxErr(x) and MaxLen(x) can be directly computed from the value of x. It is
possible to make a dynamic version of the FvW filter, but we will not detail
it here due to lack of space.

The BFS filter. This is a dynamic filter, but it can also be described as
“semi-static” (or “semi-dynamic”) because one of its two computed param-
eters is statically determined. Let E be a radical expression, i.e., involving
+,−,×,÷,

√·. Again, let Ẽ be the machine IEEE double value computed
from E in the straightforward manner (this time, with division and square-
roots). In contrast to the FvW Filter, the filter parameters are now

MaxAbs(E), Ind(E).

The first is easy to understand: MaxAbs(E) is an upper bound on |E|. The
second, called the index of E, is a natural number whose rough interpretation
is that its base 2 logarithm is the number of bits of precision which are lost
(i.e. which the filter cannot guarantee) in the evaluation of the expression.
Together, they satisfy the following invariant:

|E − Ẽ| ≤ MaxAbs(E) · Ind(E) · 2−53 (16)

The value 2−53 may be replaced by the unit roundoff error u in general. Table 9
gives the recursive rules for maintaining MaxAbs(E) and Ind(E). The base case
(E is a variable) is covered by the first two rows: notice that they distinguish
between exact and rounded input variables. A variable x is exact if its value
is representable without error by an IEEE double. In any case, x is assumed
not to lie in the overflow range, so that the following holds

|round(x)− x| ≤ |x|2−53.

The bounds are computed using IEEE machine arithmetic, denoted

⊕, ⊖, ⊙, ⊘,
√̃
·.

The question arises: what happens when the operations lead to over- or un-
derflow in computing the bound parameters? It can be shown that underflows

25



for ⊕, ⊖ and
√̃· can be ignored, and in the case of ⊙ and ⊘, we just have to

add a small constant MinDbl = 10−1022 to MaxAbs(E).

Expression E MaxAbs(E) Ind(E)

Exact var. x x 0

Approx. var. x round(x) 1

E = F ± G MaxAbs(F ) ⊕ MaxAbs(G) 1 + max{Ind(F ), Ind(G)}
E = FG MaxAbs(F ) ⊙ MaxAbs(G) 1 + Ind(F ) + Ind(G)

E = F/G
|Ẽ|⊕(MaxAbs(F )⊘MaxAbs(G))

(|G̃|⊘MaxAbs(G))⊖(Ind(G)+1)2−53
1 + max{Ind(F ), Ind(G) + 1}

E =
√

F

{
(MaxAbs(F ) ⊘ F̃ ) ⊙ Ẽ if F̃ > 0

e

√
MaxAbs(F ) ⊙ 226 if F̃ = 0

1 + Ind(F )

Table 9
Parameters of the BFS filter

Assuming (16), we have the following criteria for certifying the sign of Ẽ:

|Ẽ| > MaxAbs(E) · Ind(E) · 2−53 (17)

Of course, this criteria should be implemented using machine arithmetic (see
(10) and notes there). One can even certify the exactness of Ẽ under certain
conditions. If E is a polynomial expression (i.e., involving +,−,× only), then
E = Ẽ provided

1 > MaxAbs(E) · Ind(E) · 2−52. (18)

Finally, we look at some experimental results. Table 10 shows the σ-factor
(recall that this is a slowdown factor compared to IEEE machine arithmetic)
for the unfiltered and filtered cases. In both cases, the underlying Big Integer
package is from LEDA. The last column adds compilation to the filtered case.
It is based on an expression compiler, EXPCOMP, somewhat in the spirit
of LN (see Section 5.3). At L = 32, the φ-factor (recall this is the speedup
due to filtering) is 65.7/2.9 = 22.7. When compilation is used, it improves to
φ = 65.7/1.9 = 34.6. [Note: the reader might be tempted to deduce from these
numbers that the BFS filter is more efficacious than the FvW Filter. But the
use of different Big Integer packages, platforms and compilers, etc, does not
justify this conclusion.]

BitLength L Unfiltered σ BFS Filter σ BFS Compiled σ

8 42.8 2.9 1.9

16 46.2 2.9 1.9

32 65.7 2.9 1.9

40 123.3 2.9 1.8

48 125.1 2.9 1.8

Table 10
Random 3× 3 determinants

26



While the above results look good, it is possible to create situations where fil-
ters are ineffective. Instead of using matrices with randomly generated integer
entries, we can use degenerate determinants as input. The results recorded in
Table 11 indicate that filters have very little effect. Indeed, we might have ex-
pected it to slow down the computation, since the filtering efforts are strictly
extra overhead. In contrast, for random data, the filter is almost always effec-
tive in avoiding exact computation.

BitLength L Unfiltered σ BFS Filter σ BFS Compiled σ

8 37.9 2.4 1.4

16 45.3 2.4 1.4

32 56.3 56.5 58.4

40 117.4 119.4 117.5

48 135.2 136.5 135.1

Table 11
Degenerate 3× 3 determinants

The original paper [17] describes more experimental results, including the
performance of the BFS filter in the context of algorithms for computing
Voronoi diagrams and triangulation of simple polygons.

Dynamic filter using interval arithmetic. As mentioned, a simpler and
more traditional way to control the error made by floating-point computations
is to use interval arithmetic [65,1]. Some work has been done by Pion et
al. [73,74,12] in this direction.

Interval arithmetic represents the error bound on an expression E at runtime
by an interval [Em; Ep] where Em, Ep are floating-point values and Em ≤ E ≤
Ep. Interval operations such as +,−,×,÷,√ can be implemented using IEEE
arithmetic, exploiting its rounding modes. Changing the rounding mode has a
certain cost (mostly due to flushing the pipeline of the FPU), but the remark
has been made that it can usually be done only twice per predicate: at the
beginning by setting the rounding mode towards +∞, and at the end to reset
it back to the default mode. This can be achieved by observing that computing
a+b rounded towards −∞ can be emulated by computing −((−a)−b) rounded
towards +∞. A similar remark can be done for−,×,÷. Therefore it is possible
to eliminate most rounding mode changes, which makes the approach much
more efficient.

Most experimental studies (e.g. [23,84]) show that using interval arithmetic
implemented this way usually induces a slowdown factor of 3 to 4 on algo-
rithms, compared to floating-point. It is also noted that interval arithmetic is
the most efficacious dynamic filter, failing rarely. This technique is available
in the CGAL library, covering all predicates of the geometry kernel.

27



5.3 Tools for automatic generation of code for the filters

Given the algebraic formula for a predicate, it is tedious and error-prone to
derive the filtered version of this predicate manually. Therefore tools have been
developed to generating such codes.

We have already mentioned the first one, LN, which targets the FvW filter
[33]. This tool does not address the needs of more complex predicates, which
may contain divisions, square roots, branches or loops. Another attempt has
been made by Funke et al. [17] with a tool called EXPCOMP (standing for
expression compiler), which parses slightly modified C++ code of the original
predicate, and produces static and semi-static BFS filters for them.

The CGAL library implements filtering using interval arithmetic for all the
predicates in its geometry kernel. The filtered versions of these predicates
used to be generated by a Perl script [73,74], but the current approach uses
template mechanisms to achieve this goal entirely within C++. The advantage
of dynamic filters is that the code generator need not analyze the internal
structure of the predicate.

Most recently, Nanevski, Blelloch and Harper [67] have proposed a tool that
produces filters using Shewchuk’s method [85], for the SML language, from
an SML code of the predicate.Seeing these past and ongoing works, it seems
important to have general software tools to generate such numerical code.
Such work is connected to compiler technology and static code analysis.

6 Conclusions

Exact Geometric Computation is both general and simple: its analysis of the
non-robustness phenomenon is completely general, and its prescription for
what to do is conceptually simple. It does not require a problem-by-problem
analysis of how to apply some meta principle. The availability of EGC libraries
such as LEDA, CGAL and Core Library shows that EGC can be made widely
accessible to the general programmer. We discussed some key issues in this pa-
per. The sign determination problem and the application of constructive zero
bounds are critical. Progress in zero bounds has made them fairly effective
for many problems, but it remains a major open problem to construct a zero
bound whose bit-length is linear in the expression degree. Adaptive numerical
computation is another essential area for improving efficiency of EGC. We
discussed two aspects: precision-driven computation and filtering. A challenge
in precision-driven computation is to prove, among its many possible variants,
one variant that is optimal in a reasonable model of complexity. Filter tech-

28



nology itself can be developed into a profoundly interesting subject on its own
right, including making connections to program checking.

Through EGC, numerical non-robustness for a large class of geometric compu-
tation has been brought out of the realm of “unsolved” to the realm of “solved
but practically challenging”. These are problems in low dimensions and low
degree problems. For high degree problems, such as arise in computation over
curves and surfaces, efficiency remains a serious challenge. This is an area
where researchers are beginning to increasingly focus upon. For non-algebraic
problems, the fundamental question whether they even admit EGC solutions
is completely open. This is the main theoretical open problem of EGC, and
relates to some deep questions in mathematics.

In conclusion, we have reasons to be optimistic that EGC concepts will become
more and more a part of the computing landscape.

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computation. Academic
Press, New York, 1983.

[2] T. Asano, D. Kirkpatrick, and C. Yap. Pseudo approximation algorithms,
with applications to optimal motion planning. In 18th ACM Symp. on Comp.
Geometry, pages 170–178, Barcelona, Spain, 2002. ACM Press. To appear,
Special Conference Issue of J.Discrete & Comp. Geom.

[3] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, and K. M. und E. Schmer.
A computational basis for conic arcs and boolean operations on conic polygons.
In 10th European Symposium on Algorithms (ESA’02), pages 174–186, 2002.
Lecture Notes in CS, No. 2461.

[4] J. Blömer. Computing sums of radicals in polynomial time. IEEE Foundations
of Computer Sci., 32:670–677, 1991.

[5] J. Blömer. A probabilistic zero-test for expressions involving roots of rational
numbers. Proc. of the Sixth Annual European Symposium on Algorithms, pages
151–162, 1998. LNCS 1461.

[6] J. Blömer. Simplifying Expressions Involving Radicals. PhD thesis, Free
University Berlin, Department of Mathematics, October, 1992.

[7] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer-Verlag, New York, 1997.

[8] M. Blum and S. Kannan. Designing programs that check their work. J. of the
ACM, 42(1):269–291, Jan. 1995.

29



[9] M. Blum, M. Luby, and R. Rubinfeld. Self-testing and self-correcting programs,
with applications to numerical programs. J. of Computer and System Sciences,
47:549–595, 1993.

[10] G. Bohlender, C. Ullrich, J. W. von Gudenberg, and L. B. Rall. Pascal-SC,
volume 17 of Perspectives in Computing. Academic Press, Boston-San Diego-
New York, 1990.

[11] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University
Press, 1997. Translated by Hervé Brönnimann.

[12] H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient
dynamic filters for computational geometry. Discrete Applied Mathematics,
109:25–47, 2001.

[13] C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment
Intersections. Ph.D thesis, Universität des Saarlandes, March 1996.

[14] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Exact geometric
computation made easy. In Proc. 15th ACM Symp. Comp. Geom., 1999.

[15] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily
computable separation bound for arithmetic expressions involving radicals.
Algorithmica, 27:87–99, 2000.

[16] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation
bound for real algebraic expressions. In Lecture Notes in Computer Science,
pages 254–265, 2001.

[17] C. Burnikel, S. Funke, and M. Seel. Exact geometric computation using
cascading. IJCGA (Special issue), 11(3):245–266, 2001.

[18] J. F. Canny. The complexity of robot motion planning. ACM Doctoral
Dissertation Award Series. The MIT Press, 1988. PhD thesis, M.I.T.

[19] J. F. Canny. Some algebraic and geometric configurations in PSPACE. In
Proc. 20th Annu. ACM Sympos. Theory Comput., pages 460–467, 1988.

[20] B. Chazelle et al. Application challenges to computational geometry.
In Advances in Discrete and Computational Geometry, volume 223 of
Contemporary Mathematics, pages 407–463. AMS, 1999. The Computational
Geometry Impact Task Force Report (1996).

[21] C. Clenshaw, F. Olver, and P. Turner. Level-index arithmetic: an introductory
survey. In P. Turner, editor, Numerical Analysis and Parallel Processing, pages
95–168. Springer-Verlag, 1987. Lecture Notes in Mathematics, No.1397.

[22] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-Verlag,
Berlin, 1997.

[23] O. Devillers and S. Pion. Efficient exact geometric predicates for Delaunay
triangulations. In Proc. 5th Workshop Algorithm Eng. Exper., pages 37–44,
Jan. 2003.

30



[24] O. Devillers and F. P. Preparata. A probabilistic analysis of the power of
arithmetic filters. Discrete Comput. Geom., 20:523–547, 1998.

[25] Z. Du, M. Eleftheriou, J. Moreira, and C. Yap. Hypergeometric
functions in exact geometric computation. In V.Brattka, M.Schoeder,
and K.Weihrauch, editors, Proc. 5th Workshop on Computability and
Complexity in Analysis, pages 55–66, 2002. Malaga, Spain, July 12-13,
2002. In Electronic Notes in Theoretical Computer Science, 66:1 (2002),
http://www.elsevier.nl/locate/entcs/volume66.html.

[26] T. Dubé and C. K. Yap. A basis for implementing exact geometric
algorithms (extended abstract), September, 1993. Paper from URL
http://cs.nyu.edu/cs/faculty/yap.

[27] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,
1987.

[28] I. Z. Emiris, A. V. Kakargias, S. Pion, M. Teillaud, and E. P. Tsigaridas.
Towards an open curved kernel. In Proc. 20th Annu. ACM Sympos. Comput.
Geom., 2004. to appear.

[29] A. R. Forrest. Computational geometry and software engineering: Towards a
geometric computing environment. In D. F. Rogers and R. A. Earnshaw,
editors, Techniques for Computer Graphics, pages 23–37. Springer-Verlag,
1987.

[30] S. Fortune, editor. Special Issue on Implementation of Geometric Algorithms,
volume 27:1 of Algorithmica. Springer-Verlag, 2000.

[31] S. J. Fortune. Stable maintenance of point-set triangulations in two
dimensions. IEEE Foundations of Computer Sci., 30:494–499, 1989.

[32] S. J. Fortune and C. J. van Wyk. Efficient exact arithmetic for computational
geometry. In Proc. 9th ACM Symp. on Computational Geom., pages 163–172,
1993.

[33] S. J. Fortune and C. J. van Wyk. Static analysis yields efficient exact integer
arithmetic for computational geometry. ACM Transactions on Graphics,
15(3):223–248, 1996.

[34] S. Funke. Exact arithmetic using cascaded computation. Master’s thesis, Max
Planck Institute for Computer Science, Saarbrücken, Germany, 1997.

[35] S. Funke, K. Mehlhorn, and S. Näher. Structural filtering: A paradigm for
efficient and exact geometric programs. In Proc. 11th Canadian Conference
on Computational Geometry, 1999.

[36] D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[37] J. E. Goodman and J. O’Rourke, editors. Handbook of Discrete and
Computational Geometry. CRC Press LLC, 1997. Second edition expected
in 2003.

31



[38] M. Goodrich, L. Guibas, J. Hershberger, and P. Tanenbaum. Snap rounding
line segments efficiently in two and three dimensions. In Proc. 13th ACM
Symp. on Computational Geom., pages 284–293, 1997.

[39] P. Gowland and D. Lester. A survey of exact arithmetic implementations. In
J. Blank, V. Brattka, and P. Hertling, editors, Computability and Complexity
in Analysis, pages 30–47. Springer, 2000. 4th International Workshop, CCA
2000, Swansea, UK, September 17-19, 2000, Selected Papers, Lecture Notes in
Computer Science, No. 2064.

[40] D. H. Greene and F. F. Yao. Finite-resolution computational geometry. IEEE
Foundations of Computer Sci., 27:143–152, 1986.

[41] L. Guibas and D. Marimont. Rounding arrangements dynamically. In Proc.
11th ACM Symp. Computational Geom., pages 190–199, 1995.

[42] L. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: building robust
algorithms from imprecise computations. ACM Symp. on Comp. Geometry,
5:208–217, 1989.

[43] J. D. Hobby. Practical segment intersection with finite precision output.
Comput. Geom. Theory Appl., 13(4):199–214, Oct. 1999.

[44] C. Hoffmann, J. Hopcroft, and M. Karasick. Towards implementing robust
geometric computations. ACM Symp. on Comp. Geometry, 4:106–117, 1988.

[45] C. M. Hoffmann. The problems of accuracy and robustness in geometric
computation. IEEE Computer, 22(3), March 1989.

[46] The CGAL Homepage. Computational Geometry Algorithms Library (CGAL)
Project. URL http://www.cgal.org/.

[47] The CORE Project Homepage. URL http://www.cs.nyu.edu/exact/.

[48] The LEDA Homepage. URL http://www.mpi-sb.mpg.de/LEDA/.

[49] G. Horng and M. D. Huang. Simplifying nested radicals and solving
polynomials by radicals in minimum depth. Proc. 31st Symp. on Foundations
of Computer Science, pages 847–854, 1990.

[50] T. Hull and M. Cohen. Toward an ideal computer arithmetic. In Proceedings
of the 8th Symposium on Computer Arithmetic, pages 5–48. IEEE, 1987.

[51] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core Library for robust
numeric and geometric computation. In Proc. 15th ACM Symp. on Comput.
Geometry, pages 351–359, June 1999.

[52] M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulation
using rational arithmetic. ACM Trans. on Graphics, 10:71–91, 1991.

[53] M. I. Karavelas and I. Z. Emiris. Root comparison techniques applied to
computing the additively weighted Voronoi diagram. In Proc. 14th ACM-
SIAM Sympos. Discrete Algorithms (SODA), pages 320–329, 2003.

32



[54] L. Kettner and E. Welzl. One sided error predicates in geometric
computing. In K. Mehlhorn, editor, Proc. 15th IFIP World Computer
Congress, Fundamentals - Foundations of Computer Science, pages 13–26,
1998.

[55] S. Landau. Simplification of nested radicals. SIAM Journal of Computing,
21(1):85–110, 1992.

[56] C. Li. Exact Geometric Computation: Theory and Applications. Ph.d. thesis,
Department of Computer Science, New York University, Jan. 2001. Download
http://cs.nyu.edu/exact/doc/.

[57] C. Li and C. Yap. A new constructive root bound for algebraic expressions.
In Proceedings of the Twelfth ACM-SIAM Symposium on Discrete Algorithms
(SODA 2001), pages 496–505, Jan. 2001.

[58] M. C. Lin and D. Manocha, editors. Proceedings of the First ACM Workshop
on Applied Computational Geometry, 1996.

[59] M. Marden. The geometry of the zeros of a polynomial in a complex variable.
American Mathematical Society, 1949.

[60] S. Matsui and M. Iri. An overflow/underflow-free floating-point representation
of numbers. J. Inform. Process, 4(3):123–133, 1981.

[61] K. Mehlhorn, S. Näher, T. Schilz, R. Seidel, M. Seel, and C. Uhrig. Checking
geometric programs or verification of geometric structures. In Proc. 12th ACM
Symp. on Computational Geom., pages 159–165. Association for Computing
Machinery, May 1996.

[62] M. Mignotte and D. Ştefănescu. Polynomials: An Algorithmic Approach.
Springer, 1999.

[63] V. Milenkovic and L. Nackman. Finding compact coordinate representations
for polygons and polyhedra. ACM Symp. on Comp. Geometry, 6:244–252,
1990.

[64] V. J. Milenkovic. Verifiable implementations of geometric algorithms using
finite precision arithmetic. Artificial Intelligence, 37:377–401, 1988.

[65] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

[66] K. Mulmuley. Computational Geometry: an Introduction through Randomized
Algorithms. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1994.

[67] A. Nanevski, G. Blelloch, and R. Harper. Automatic generation of
staged geometric predicates. In International Conference on Functional
Programming, Florence, Italy, 2001. Also Carnegie Mellon CS Tech Report
CMU-CS-01-141.

[68] J. O’Rourke. Computational Geometry in C. Cambridge University Press,
second edition edition, 1998.

33



[69] T. Ottmann, G. Thiemt, and C. Ullrich. Numerical stability of geometric
algorithms. In Proc. 3rd ACM Sympos. Comput. Geom., pages 119–125, 1987.

[70] K. Ouchi. Real/Expr: Implementation of an exact computation package.
Master’s thesis, New York University, Department of Computer Science,
Courant Institute, January 1997. URL http://cs.nyu.edu/exact/doc/.

[71] V. Y. Pan and Y. Yu. Certification of numerical computation of the sign of
the determinant of a matrix. Algorithmica, pages 708–724, 2001.

[72] N. M. Patrikalakis, W. Cho, C.-Y. Hu, T. Maekawa, E. C. Sherbrooke, and
J. Zhou. Towards robust geometric modellers, 1994 progress report. In Proc.
1995 NSF Design and Manufacturing Grantees Conf., pages 139–140, 1995.

[73] S. Pion. De la géométrie algorithmique au calcul géométrique. Thèse de
doctorat en sciences, Université de Nice-Sophia Antipolis, France, 1999. TU-
0619.

[74] S. Pion. Interval arithmetic: An efficient implementation and an application
to computational geometry. In Workshop on Applications of Interval Analysis
to systems and Control, pages 99–110, 1999.

[75] S. Pion and C. Yap. Constructive root bound method for k-ary rational
input numbers, September, 2002. Extended Abstract. Submitted, 2003 ACM
Symp. on Comp. Geom.

[76] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag,
1985.

[77] D. Richardson. How to recognize zero. J. of Symbolic Computation, 24:627–
645, 1997.

[78] E. R. Scheinerman. When close enough is close enough. Amer. Math. Monthly,
107:489–499, 2000.

[79] S. Schirra. Robustness and precision issues in geometric computation. In
J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry,
chapter 14, pages 597–632. Elsevier Science Publishers B.V. North-Holland,
Amsterdam, 2000.

[80] P. Schorn. An axiomatic approach to robust geometric programs. J. of
Symbolic Computation, 16:155–165, 1993.

[81] M. G. Segal and C. H. Sequin. Consistent calculations for solids modelling. In
Proc. 1st ACM Sympos. Comput. Geom., pages 29–38, 1985.

[82] H. Sekigawa. Using interval computation with the Mahler measure for zero
determination of algebraic numbers. Josai Information Sciences Researches,
9(1):83–99, 1998.

[83] J. Sellen, J. Choi, and C. Yap. Precision-sensitive Euclidean shortest path in
3-Space. SIAM J. Computing, 29(5):1577–1595, 2000. Also: 11th ACM Symp.
on Comp. Geom., (1995)350–359.

34



[84] S. A. Seshia, G. E. Blelloch, and R. W. Harper. A performance comparison
of interval arithmetic and error analysis in geometric predicates. Technical
Report CMU-CS-00-172, School of Computer Science, Carnegie-Mellon
University, 2000.

[85] J. R. Shewchuk. Robust adaptive floating-point geometric predicates. In
Proc. 12th ACM Symp. on Computational Geom., pages 141–150, May 1996.

[86] K. Sugihara and M. Iri. A solid modeling system free from topological
inconsistency. J.Information Processing, Information Processing Society of
Japan, 12(4):380–393, 1989.

[87] K. Sugihara and M. Iri. Two design principles of geometric algorithms in finite
precision arithmetic. Applied Mathematics Letters, 2:203–206, 1989.

[88] K. Sugihara and M. Iri. Construction of the Voronoi diagram for ‘one million’
generat ors in single-precision arithmetic. Proc. IEEE, 80(9):1471–1484, Sept.
1992.

[89] K. Sugihara and M. Iri. An approach to the problem of numerical errors in
geometric algorithms. Proc., 37th Convention of the Information Processing
Society of Japan, Kyoto, pages 1665–1666, September 12–14, 1988.

[90] K. Sugihara and M. Iri. Geometric algorithms in finite-precision arithmetic.
Research Memorandum RMI 88-10, Dept. of Math. Engineering and
Instrumentation Physics, Faculty of Engineering, University of Tokyo,
September, 1988. 13th International Symposium on Mathematical
Programming, Tokyo, Aug 29–Sep 2, 1988.

[91] K. Sugihara, M. Iri, H. Inagaki, and T. Imai. Topology-oriented
implementation—an approach to robust geometric algorithms. Algorithmica,
27:5–20, 2000.

[92] R. Tamassia et al. Strategic directions in computational geometry. ACM
Computing Surveys, 28(4), Dec. 1996.

[93] The Institute of Electrical and Electronic Engineers, Inc. IEEE Standard 754-
1985 for binary floating-point arithmetic, 1985. ANSI/IEEE Std 754-1985.
Reprinted in SIGPLAN 22(2) pp. 9-25.

[94] D. Tulone, C. Yap, and C. Li. Randomized zero testing of radical expressions
and elementary geometry theorem proving. In J. Richter-Gebert and D. Wang,
editors, Proc. 3rd Int’l. Workshop on Automated Deduction in Geometry
(ADG’00), number 2061 in Lecture Notes in Artificial Intelligence, pages 58–
82. Springer, 2001. Zurich, Switzerland.

[95] K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.

[96] C. Yap. A new number core for robust numerical and geometric
libraries. In 3rd CGC Workshop on Geometric Computing, 1998.
Invited Talk. Brown University, Oct 11–12, 1998. For abstracts, see
http://www.cs.brown.edu/cgc/cgc98/home.html.

35



[97] C. K. Yap. Towards exact geometric computation. Comput. Geometry: Theory
and Appl., 7:3–23, 1997. Invited talk, Proceed. 5th Canadian Conference on
Comp. Geometry, Waterloo, Aug 5–9, 1993.

[98] C. K. Yap. Fundamental Problems in Algorithmic Algebra. Oxford Univ. Press,
2000.

[99] C. K. Yap. On guaranteed accuracy computation. In F. Chen and D. Wang,
editors, Geometric Computation. World Scientific Publishing Co., Singapore,
2004. To appear.

[100] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 41, pages
927–952. CRC Press LLC, Boca Raton, FL, 2nd edition edition, 2004.

[101] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du
and F. K. Hwang, editors, Computing in Euclidean Geometry, pages 452–486.
World Scientific Press, 1995. 2nd edition.

[102] J. Yu. Exact arithmetic solid modeling. Ph.D. dissertation, Department of
Computer Science, Purdue University, West Lafayette, IN 47907, June 1992.
Technical Report No. CSD-TR-92-037.

36


