
Exact Geometric Computation: Theory and
Applications

by

Chen Li

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2001

Approved:

Research Advisor: Professor Chee Yap

c
 Chen Li

All Rights Reserved, 2001

To my parents

iii

Acknowledgment

First of all, I wish to express my profound gratitude to my advisor, Professor Chee Yap.

Without his encouragement, support and patient guidance, most of this would not have

been possible. He has always been available and enthusiastic to help when I need it

during the last four years. His insightful advice laid the foundation of my work.

I am very grateful to Professor Marsha Berger and Professor Vijay Karamcheti for

their continuous advice and support throughout my thesis research. I would also like to

thank my thesis committee members Professor Michael Overton and Professor Edmond

Schonberg for their careful reading and suggestions. In addition, I thank my research

collaborators, Shankar Krishnan, Jose E. Moreira, Igor Pechtchanski and Daniela Tu-

lone, for the inspiration and help they gave me.

My graduate school years cannot be a truly pleasant and memorable one without

all my friends here. I salute them all, although I can only mention a few here. Among

them are Ee-Chien Chang, Fangzhe Chang, Hseu-ming Chen, Xianghui Duan, Dongn-

ing Guo, Bin Li, Ninghui Li, Zhijun Liu, Madhu Nayakkankuppam, Xueying Qin,

Xiaoping Tang, Zhe Yang, Ting-jen Yen and Dewang Zhu.

My biggest gratitude goes to my family. I thank my sisters Qing Li and Jie Li for

their support and faith in me. This dissertation is dedicated to my parents, Shujiang

Chen and Dr. Hongzhong Li, for their love and encouragement that I can always count

on.

iv

Abstract

This dissertation explores the theory and applications of Exact Geometric Compu-

tation (EGC), a general approach to robust geometric computing. The contributions of

this thesis are organized into three parts.

A fundamental task in EGC is to support exact comparison of algebraic expressions.

This leads to the problem of constructive root bounds for algebraic expressions. Such

root bounds determine the worst-case complexity of exact comparisons. In the first

part, we present a new constructive root bound which, compared to previous bounds,

can give dramatically better performance in many common computations involving

divisions and radical roots. We also improve the well-known degree-measure bound by

exploiting the sharing of common sub-expressions.

In the second part, we discuss the design and implementation of the Core Library,

a C++ library which embraces the EGC approach to robust numerical and geometric

computation. Our design emphasizes ease of use and facilitates the rapid development

of robust geometric applications. It allows non-specialist programmers to add robust-

ness into new or existing applications with little extra effort. A number of efficiency

and implementation issues are investigated.

Although focused on geometric computation, the EGC techniques and software we

developed can be applied to other areas where it is critical to guarantee numerical pre-

cision. In the third part, we introduce a new randomized test for the vanishing of

multivariate radical expressions. With this test, we develop a probabilistic approach

to proving elementary geometry theorems about ruler-and-compass constructions. A

probabilistic theorem prover based on this approach has been implemented using the

Core Library. We present some empirical data.

v

Contents

Dedication iii

Acknowledgment iv

Abstract v

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Geometric Computing and Exactness 2

1.2 Previous Work . 4

1.3 Exact Geometric Computation (EGC) 9

1.4 Our Contributions . 12

2 Constructive Root Bounds 16

2.1 Root Bounds and Exact Geometric Computation 17

2.2 Previous Work . 20

2.3 The General Framework . 25

vi

2.4 A New Constructive Root Bound . 28

2.5 Improved Degree-Measure Bound . 36

2.6 Comparison of the Root Bounds . 38

2.7 Experimental Results . 43

2.8 Summary . 45

3 The Core Library: Design and Implementation 47

3.1 Introduction . 48

3.2 Numerical Precision . 53

3.2.1 Definitions . 54

3.2.2 Bounds on the Magnitude of Expressions 55

3.2.3 Propagation of Precision Requirements 56

3.3 Design of the Library . 60

3.3.1 Overview of the Core Library Architecture 60

3.3.2 Expressions . 63

3.3.3 The Real Package . 69

3.3.4 The BigFloat Class . 70

3.4 System Optimization . 71

3.5 Summary . 72

4 Randomized Zero Testing of Radical Expressions and Geometry Theorem

Proving 76

4.1 A Randomized Zero Test for Multivariate Radical Expressions with

Square Roots . 77

4.1.1 Straight Line Program and Rational Degree 78

vii

4.1.2 Equivalent Transformations 85

4.1.3 Preparation . 88

4.1.4 Probabilistic Zero Test . 92

4.2 Probabilistic Proving of Elementary Geometry Theorems 102

4.2.1 Background . 102

4.2.2 Algebraic Formulation . 103

4.2.3 Probabilistic Proving by Random Examples 109

4.3 Summary . 117

5 Conclusions and Future Work 118

5.1 Conclusions . 118

5.2 Future Work . 120

Bibliography 123

viii

List of Figures

3.1 Overview of the system architecture. 61

3.2 Class hierarchy in the Expr package. 74

3.3 Reference counting. 75

4.1 The transformation E
2

7! E

0

2

(from [55]). 89

4.2 Simson’s theorem. 104

ix

List of Tables

2.1 Rules for degree-length and degree-height bounds 21

2.2 BFMS rules . 23

2.3 Scheinerman’s rules . 25

2.4 Recursive rules for l(E) (and associated t(E) and M(E)) 30

2.5 The polynomial P
E

and its leading and last coefficients 32

2.6 Recursive rules for bounds on conjugates 34

2.7 The original and our improved degree-measure bounds 36

2.8 Timings for Fortune’s expression in 2.1 44

2.9 Timings for Fortune’s algorithm on degenerate inputs 45

2.10 Timings for Example 2 . 45

3.1 Rules for upper and lower bounds on lg(jEj) 56

3.2 Syntax-guide propagation of precision bounds 58

4.1 Inductive definition of rational degrees 81

4.2 An alternative definition of rational degrees 82

4.3 Rules for rational degrees of transformed SLP 99

4.4 Polynomial equations for the hypotheses in Simson’s theorem 106

x

Chapter 1

Introduction

Numerical non-robustness problems associated with the approximate floating-point arith-

metic are very common in practice when implementing geometric algorithms. Gener-

ally geometric computation is very vulnerable to numerical errors. There has been con-

siderable recent interest in robust implementation of geometric algorithms. A general

framework to achieve geometric robustness is Exact Geometric Computation (EGC).

This thesis is aimed to make EGC more efficient and easily accessible to non-specialist

programmers. We present some theoretical results on constructive root bounds for al-

gebraic expressions. An EGC software library, the Core Library, has been developed.

We apply the Core Library in proving elementary geometry theorems about ruler-and-

compass constructions probabilistically based on a novel randomized zero test of mul-

tivariate radical expressions.

1

1.1 Geometric Computing and Exactness

Computational Geometry investigates algorithms for geometric problems. Geometric

computing is different than numerical computation in that it involves both combinato-

rial and numerical information. The consistency between combinatorial and numerical

data should be maintained.

Geometric algorithms are usually designed under a Real RAM model of compu-

tation, in which it is assumed that real numbers can be represented exactly and all

arithmetic operations and comparisons within the real number field R can be performed

exactly in unit time. Although this assumption is reasonable for the asymptotic analysis

of the complexity of problems and has indeed enabled theoretical research to flourish,

unfortunately in general it does not hold in practical situations where the approximate

floating-point arithmetic is widely used as a standard substitute for the assumed (ex-

act) real arithmetic. The Real RAM model understates a problem’s complexity in more

realistic computation models. Theoretically (say, in a Real RAM model) the consis-

tency between numerical and combinatorial data can be guaranteed by the correctness

of underlying algorithms. But when using floating-point numbers, it is common that nu-

merical errors introduced can violate the consistency. As a result, the implementation

of geometric algorithms is particularly challenging in practice. This is an important

reason for the fact that the rate of technology transfer lags much behind the growth

of theoretical results in computation geometry. Recently, there has been considerable

interest in robust geometric computation [20, 54, 36, 7, 57, 49].

Floating-point number systems (such as the IEEE 754 standard [27]), although

naively a reasonable approach to real number arithmetic, have serious shortcomings

[20, 16]. Straight-forward implementation of geometric algorithms using floating-point

2

numbers could easily introduce some undesirable numerical errors. These errors can

accumulate and propagate throughout the whole application. It is often difficult to pre-

dict the occurrence and magnitude of these errors. Even worse, such numerical errors,

however tiny, could trigger much more serious inconsistency problems between the nu-

merical and combinatorial data. Sometimes even if the consistency is maintained, the

combinatorial structures involved may still be incorrect (e.g., when they are only con-

sistent with some numerically “perturbed” configurations). These problems could well

confuse the subsequent steps in a program execution and make software non-robust.

Without a general solution, it is tedious, if not impossible, to deal with them. This

problem has received deserved attention in the Computational Geometry community

since the 1980s (see [54, 36, 7]).

Yap [59] suggests that exactness in geometric computing does not necessarily mean

that numerical values must be represented and computed exactly. Instead, “geometric

exactness” means that the conditional tests, which determine the control flow of a pro-

gram, must be handled in a mathematically correct way. Basically, this will guarantee

the correctness of combinatorial structure involved in a computation. Nevertheless, this

also presents a significant relaxation from the conventional concept of numerical exact-

ness. First, it frees us from keeping and computing exact numerical values which some-

times is not feasible (e.g. when irrational numbers such as
p

2 are involved). It also

suggests why the naive use of exact integer or rational arithmetic is subject to great per-

formance penalty. The reason is that the full numerical accuracy is not always needed.

Secondly, it implies the solution should be driven by the precision actually needed in

critical conditional tests. This leads to the development of a number of techniques

that can improve performance, such as precision-driven computation, lazy evaluation,

3

adaptive computation and floating-point filters.

1.2 Previous Work

There is a significant amount of literature on the non-robustness problem in computa-

tional geometry. Various approaches have been proposed to attack this problem at the

arithmetic, geometry or algorithm levels.

Exact Arithmetic Exact arithmetic supports exact computation with the four basic

arithmetic operations (+;�;�;�) over the rational field Q. It represents big integer

or rational numbers to arbitrary precision. Generally, the asymptotic complexity of

each operation depends on the bit length of operands. For example, let us suppose both

operands have n bits. The straight-forward “long multiplication” has a time complexity

ofO(n2). Schönhage and Strassen discovered anO(n lgn lg lgn) algorithm [50] based

on FFT, which is the fastest multiplication algorithm so far under the Turing machine

model. It has been shown that divisions can be performed within a speed comparable to

that of multiplications, up to a constant factor [31]. Note that the bit length of operands

could be increased drastically in cascaded computation (e.g., potentially doubled after

each multiplication). Karasick, Lieber and Nackman [30] reported that the naive use of

rational arithmetic in the divide-and-conquer algorithm for 2-D Delaunay triangulation

costs a performance penalty of 104 over the floating-point implementation.

In evaluating integral polynomial expressions, modular arithmetic is an efficient

alternative to exact integer arithmetic if the upper bound (or the possible range) of the

result is known a priori. By carefully choosing the moduli, the multiplication can be

done usingO(n) primitive operations.

4

Generally, exact arithmetic discussed above requires software support. A number

of big number packages have been developed, including the GNU’s MP [24], the CLN

package [22], the libI package [12], Arjen Lenstra’s lip package [33] and LEDA Inte-

ger/Rational [25]. Although exact arithmetic eliminates the non-robustness by handling

all numerical computations in a fully accurate way, the use of exact arithmetic is con-

strained by its huge cost, inability to handle irrational numbers, and most of all, the fact

that it is not precision driven.

Tolerance based approaches Some approaches admit the existence of numerical errors

and study the effects of such errors in predicate evaluation. �-Tweaking is a simple

and perhaps the most widely-used method to tackle numerical non-robustness prob-

lems, especially when the program in question is simple and the programmer has some

knowledge about the input and intermediate values. Instead of comparing two expres-

sions directly in a conditional test, the distance between them is compared against some

small threshold value �. The two expressions are considered equal if this distance is

smaller than �. Note that this effectively changes the geometry of objects (e.g., a line

now becomes a pipe, etc.). Moreover, the relation defined by the rule

a � b, ja� bj < �

is not an equivalence relation because the transitivity does not hold (i.e., a � b and

b � do not imply a �). It is non-trivial to guarantee the logical consistency among

all the decisions made in a program execution using this strategy.

More sophisticated tolerance based approaches, such as the Epsilon Geometry in-

troduced by Guibas et. al. [18], apply forward error analysis on selected geometric

predicates to tell whether an answer is true, false or unknown (due to potential round-

5

ing errors in the predicate evaluation, etc.). Although no action is specified to take for

the unknown case, such approaches nevertheless can serve as a filter for easy cases.

An arithmetic level approach to quantify possible numerical errors is interval arith-

metic [43, 44, 1]. Given a real quantity x, it computes an interval [x
l

; x

u

℄ such that

x

l

� x � x

u

. A set of rules for interval operations is the following:

a+ b 7! [a

l

+ b

l

; a

u

+ b

u

℄

a� b 7! [a

l

� b

u

; a

u

� b

l

℄

a� b 7! [minfa

l

b

l

; a

l

b

u

; a

u

b

l

; a

u

b

u

g;maxfa

l

b

l

; a

l

b

u

; a

u

b

l

; a

u

b

u

g℄

a � b 7! [minf

a

l

b

l

;

a

l

b

u

;

a

u

b

l

;

a

u

b

u

g;maxf

a

l

b

l

;

a

l

b

u

;

a

u

b

l

;

a

u

b

u

g℄; 0 62 [b

l

; b

u

℄

Taking only about twice as long as ordinary arithmetic, interval arithmetic provides

truly reliable estimates for forward error analysis. The main drawback of interval arith-

metic, especially when performed with fixed precision, is the rapid growth of interval

size which can render a computation quickly ineffective.

Floating-point Filters It has been noted that the robustness of geometric computation

usually depends on the correctness of critical conditional tests. Numerical errors from

floating-point arithmetic can be tolerated as long as they do not compromise the out-

come (e.g., true or false) of those critical tests. Considering the huge performance gap

between exact computation and floating-point arithmetic (which has been supported by

most current computer hardware), it is really important to activate exact computation

only when it is absolutely necessary. The problem then is how to judge the reliability

of a result from primitive floating-point operations.

An important concept here is filtering, which has been proved to be very effective

in practice [15]. Basically, all the arithmetic computations are first performed using

6

floating-point arithmetic, and then a floating-point filter can tell whether the results can

be trusted or not in presence of potential rounding errors during the computation. For

example, suppose a predicate is to determine the sign of an expression E. We first

compute an approximate value ~

E using the floating-point arithmetic. At the same time,

a filter computes an upper bound e on the accumulated numerical error through forward

error analysis such that jE � ~

Ej � e. Therefore, if j ~Ej > e, then E and ~

E must have

the same sign. Otherwise, exact computation should be employed to determine the

exact sign. The heuristic behind it is that in most cases, errors introduced by imprecise

floating-point operations are not large enough to affect the signs. Thus, we should use

the fast floating-point arithmetic whenever we can.

Shewchuk presents a fast adaptive-precision exact arithmetic method [52] based on

floating-point computation. In his method, an arbitrary precision floating-point num-

ber is stored in the multiple-term format, as a sum of ordinary floating-point numbers.

It first computes an approximation using the IEEE floating-point arithmetic. When

needed, it can increase the precision of approximation by progressively producing

chunks with an order of magnitude O(�k) (for the k-th term) where � is the machine

epsilon defined in the IEEE standard [27]. However, breaking an expression evaluation

into an adaptive form is not automated and could be a non-trivial task to non-specialists.

His method is for integral expressions only which permit the addition, subtraction and

multiplication operations. We are not aware of any extension of Shewchuk’s paradigm

to the division and square-root operations.

The error tracking in filters is usually based on some facts about the specification

of the underlying floating-point arithmetic standard (such as IEEE 754). Depending on

how an implementation divides the filtering task between the run time and the compi-

7

lation time, there are three categories of filters: static [15], dynamic and semi-dynamic

[3]. Most filtering techniques are at the arithmetic operation level. A recent paper

by Pan and Yu [47] proposes a technique to certify the sign of determinants which sug-

gests a promising direction in designing filters at the expression level so that the specific

structure of certain expressions can be utilized.

Geometric Rounding and Perturbation Geometric rounding [17] converts algorithms

and objects in the continuous domain to a uniform and discrete domain with finite reso-

lution which simulates fixed precision representation and manipulation of real numbers.

Although the conversion preserves certain critical topological constraints (e.g., intersec-

tion relationship between lines and orientation of an intersection point against a line,

etc.), the topology of the scene may be changed (e.g. a line may become a polyline.).

What constraints are critical to be kept is often problem-specific. Such techniques has

been applied to solve the line arrangement problem robustly [17].

Perturbation approaches [19, 42] re-arrange the geometry of input objects to main-

tain some minimal distance between objects (i.e., in some sense, “well separated”)

so that predicate evaluation can be correctly handled by comparing to some threshold

value �.

Generally geometric perturbation and rounding are algorithm-dependent and have

only been applied to linear objects in low dimensions. For objects with high dimension,

it is hard to confine the effect of a single positional perturbation within a local scope.

Design Robust Algorithms Fortune [14] classifies a geometry algorithm as robust if it

can always produce a correct result under the Real RAM model, and under approximate

arithmetic always produce an output which is consistent with some perturbation of the

8

true input. If this perturbation is small, we call it stable.

It is helpful to consider robustness in designing algorithms. Some properties of al-

gorithms (e.g. the degree of expression polynomial) affect the performance when trans-

lated and executed in a robust programming environment. Other important properties

include numerical stability, degree of algebraic numbers involved and the redundancy

among conditional tests. Liotta et al. [37] discussed a degree-driven algorithm design.

Sugihara et al. [53] propose a complete separation of the combinatorial part and numer-

ical part in an algorithm and emphasize the validity of combinatorial part of outputs.

1.3 Exact Geometric Computation (EGC)

Among the various approaches proposed to address the numerical non-robustness prob-

lem in computational geometry, Exact Geometric Computation (EGC) advocated by

Yap [61, 60, 29] and others is very promising in that it can be applied directly to many

geometric problems without requiring any special considerations and treatments spe-

cific to individual algorithms. EGC is a general framework to solve the numerical

non-exactness problems in geometric computing. As we have discussed in Section 1.1,

the non-exactness problem happens in predicate evaluation within a program. Most

expressions in geometric computation are algebraic. Comparisons between algebraic

expressions are common conditional tests in geometric programs. The EGC approach

supports exact comparison of algebraic expressions.

Comparing two algebraic expressions can be reduced to determining the sign of

algebraic algebraic numbers. In some simpler cases, it can be further reduced to testing

9

whether an expression is zero or not. For example,

E

1

> E

2

, E

1

� E

2

> 0

E

1

= E

2

, E

1

� E

2

= 0:

Ideally we want the evaluation of such predicates to be carried out with complete

accuracy in order to achieve geometric exactness. But the floating-point arithmetic

used by most programmers is intrinsically approximate, and any pre-determined finite

precision is not always sufficient for all applications. Instead of trying to compute the

value exactly, usually resorting to big number packages, EGC focuses on determining

the sign of expressions correctly. Determining the sign of a general real expression

is hard (e.g., it is an open problem if the expression involves transcendental functions

and/or �). However, the sign of an algebraic expression can be determined. We adopt

a numerical approach based on algebraic root bounds. Basically we approximate the

value of an expression numerically to sufficient precision until a positive or negative

sign comes out or we know from root bounds that its value is really zero. Computation

of root bounds usually depends on various algebraic attributes associated with that value

(such as degree and length [62], etc.).

An EGC system presents users with a collection of number or expression types

which substitute for the role of the primitive number types built in programming lan-

guages, such as double in C++. The operations over these types can guarantee any

specified absolute or relative precision. Programmers can write robust codes by simply

building their applications on these exact types as they do on primitive number types.

Basically this set of exact types presents a virtual Real RAM machine for computa-

tion within the algebraic number field, and hence justifies the Real RAM assumption

generally assumed in designing computational geometry algorithms (recall that this is

10

exactly the reason for non-exactness problems). Unfortunately, the cost of arithmetic

operations is no longer unit, neither is the cost for reading and writing a real number.

The asymptotic time complexity depends on the bit complexity of operations. The nu-

merical precision required in the worst cases is dominated by root bounds. Usually the

actual running cost is much higher than that of the standard floating-point arithmetic.

Hence, efficiency is an important problem here that needs to be studied.

Under EGC, it is usually assumed that the input is numerically accurate and valid

(i.e., consistent with the topology as stated). Given such accurate and valid inputs,

the EGC approach can guarantee the correctness of the combinatorial structure in the

results. When necessary, this approach is also able to produce a result whose numerical

part is consistent with the corresponding combinatorial structure and/or meets arbitrary

relative or absolute precision requirements specified by users.

Since early 1990s, considerable research efforts have been made on this topic and

some libraries based on this idea have been developed. Our Core Library [23, 29, 58, 35]

provides a small numerical core consisting of a number of exact data types encapsulated

by an easy-to-use interface which enables users to access different accuracy levels and

to produce robust codes in a transparent manner. The Core Library project is based on

a previous research effort, Real=Expr [61, 46], at NYU. A similar effort is LEDA [25],

an ongoing project at the Max Planck Institute of Computer Science since 1988, which

aims to provide an extensive range of robust data types and algorithms for combinatorial

and geometric computing.

11

1.4 Our Contributions

The basic goal of my thesis research is to improve the efficiency of EGC and to make

the EGC techniques easily accessible to all programmers.

The cost of the EGC approach is determined by two factors:

1. The root bound that decides the worst-case complexity of exact comparisons (e.g.,

when two expressions being compared are equal);

2. The algorithmic and system cost.

A basic problem in EGC is to find good root bounds. Although the root bound prob-

lem is an old problem in algebra which has been extensively studied with many classical

results produced, most of these classical bounds assume that the (minimal) polynomial

for an algebraic number is known. Unfortunately, computing minimal polynomials

explicitly is very expensive in practice. In our work, we are especially interested in

constructive root bounds which can be efficiently computed from the structure of an

algebraic expression. We present a new constructive root bound [35] for general alge-

braic expressions by bounding the degree, the leading and tail coefficients of minimal

polynomials, and some bounds on the conjugates as well. The basic tool we use is the

resultant calculus in constructive polynomial algebra. We give a set of inductive rules

to compute the root bound. We also improve the well-known degree-measure bound

by exploiting the sharing of common radical sub-expressions. Among the existing con-

structive bounds that have been proposed, there is not a single one that is always better

than others. We conduct some comparative study and experiments on different bounds

and show that our new bound can give significant speedup over previous ones on some

important classes of expressions.

12

From a user’s point of view, an EGC system can be seen as a software data type

library which forms a virtual Real RAM machine in which algebraic arithmetic oper-

ations and comparisons are performed exactly (though not necessarily of unit cost as

in the original Real RAM model). In the implementation of an EGC system, there are

many algorithmic and system problems that need to be addressed.

As a part of our research effort, we develop the Core Library [29, 58, 34, 23],

an object-oriented C++ library for exact numeric and geometric computation. The

Core Library provides a small, easy to use and efficient numerical core (in the form of

a collection of C++ classes) that can meet arbitrary absolute or relative precision spec-

ified by users on numerical computation. In particular, it supports exact comparison

of algebraic expressions. Our implementation embodies the precision-driven approach

to EGC. Our design emphasizes the ease of use and compatibility. The concise API

interface is compatible with that of primitive types. We give a transparent delivering

mechanism to allow users to access different accuracy levels simultaneously according

to their real needs. The library makes it very easy to write new robust codes or to inject

robustness into existing applications. It facilitates rapid development of robust software

by non-specialists since no special knowledge of non-robustness issues is required. In

this thesis, we will use the Core Library as an example and testbed in illustrating various

EGC techniques and applications we have developed.

We propose a probabilistic test of the vanishing of multivariate radical expressions

[55] by extending Schwartz’s well-known probabilistic test [51] on the vanishing of

polynomials. The method chooses random instances from a finite test set with proper

size, and tests the vanishing of an expression on these examples. Here we apply the

Core Library in determining the exact sign in each instance test. Moreover, we apply

13

this zero test in automated proving of elementary geometry theorems about ruler-and-

compass constructions. A probabilistic prover based on the Core Library has been de-

veloped. We note that the zero test of radical expressions is an important problem by

itself and has independent interest in other areas besides theorem proving.

We now summarize the contribution of this thesis:

� Present a new constructive root bound for algebraic expressions which can give

significant improvement over existing bounds in many common computations in-

volving division and root extraction operations. Improve the well-known degree-

measure bound. Some experimental results are given.

� Develop the Core Library, a C++ library for robust numeric and geometric compu-

tation that embodies our precision-driven approach to EGC. Various design and

implementation issues are investigated.

� Present a probabilistic zero test for multivariate radical expressions. In particular,

following our previous work in [55], we give a new definition of rational degrees

which not only simplifies the derivation of an upper bound on the cardinality of

the finite test set, but also leads to a more efficient method to compute this bound.

Moreover, we improve this bound for expressions with divisions. Based on this

zero test of radical expressions, we apply the EGC techniques and the Core Library

to prove elementary geometry theorems about ruler-and-compass constructions.

Acknowledgments The work on new root bounds is joint with Chee Yap [35]. The

Core Library project is a joint research effort with Chee Yap. Some initial work on the

Core Library is a result of our collaboration with Vijay Karamcheti and Igor Pechtchan-

ski [29]. The library is built upon the Real=Expr package developed by Chee Yap,

14

Thomas Dubé and Kouji Ouchi [61, 46]. Our library uses the multi-precision represen-

tations of real numbers provided by Real=Expr. The underlying big integer and rational

numbers are from LiDIA [26] and CLN [22]. The work on the zero testing of radi-

cal expressions and its application in automated theorem proving is a result of a joint

research effort with Daniela Tulone and Chee Yap [55].

15

Chapter 2

Constructive Root Bounds

Computing effective root bounds for constant algebraic expressions is a critical prob-

lem in the Exact Geometric Computation approach to robust geometric computing.

Classical root bounds are often non-constructive. Recently, various bounds [40, 41, 5,

61, 62, 2, 48] that can be computed inductively on the structure of expressions have

been proposed. We call these bounds constructive root bounds. For the important class

of radical expressions, Burnikel et al (BFMS) have provided a constructive root bound

which, in the division-free case, is an improvement over previously known bounds and

is essentially tight. But for general algebraic expressions, there is not any single bound

that is always better than the others.

In this chapter, we present a new constructive root bound [35] that is applicable to a

more general class of algebraic expressions. Our basic idea is to bound the leading and

tail coefficients , and the conjugates of the algebraic expression with the help of resul-

tant calculus. The new bound gives significantly better performance in many important

computations involving divisions and root extractions. We describe the implementation

of this bound in the context of the Core Library, and report some experimental results.

16

We also present an improvement [35] of the degree-measure bound, another con-

structive root bound proposed by Mignotte [40, 41] and Burnikel et al [2], by exploit-

ing the sharing of common sub-expressions. Furthermore, we show that the degree-

measure bound is not generally comparable to our new bound and other previous bounds

and thus this improvement has independent interest.

In Section 2.1, we discuss the constructive root bound problem and its applica-

tion in Exact Geometric Computation. In Section 2.2, we review some previous work.

Section 2.3 formalizes the constructive root bound problem. We present our new con-

structive root bound in Section 2.4, and give an improved degree-measure bound in

Section 2.5. A comparative study of various root bounds is given in Section 2.6. In

Section 2.7, experimental results are reported. We summarize in Section 2.8. Most of

these results have appeared in [35].

2.1 Root Bounds and Exact Geometric Computation

Exact Geometric Computation (EGC) [61] is a general approach to achieve robust ge-

ometric programs. This is the approach in, for instance, the LEDA [4, 25] and CGAL

[21] libraries. A key goal of EGC is to eliminate numerical non-robustness in geometric

predicate evaluations by supporting exact comparison of algebraic expressions. As we

have noted before, this is equivalent to determining the sign of algebraic expressions

correctly.

Exact sign determination A fundamental task in EGC is to determine the exact sign

of a constant algebraic expression E. For example, the following expression arises in

the implementation of Fortune’s sweepline algorithm [13] for the Voronoi diagram of a

17

planar point set:

E =

a+

p

b

d

�

a

0

+

p

b

0

d

0

; (2.1)

where a; a

0

; b; b

0

; d; d

0 are integer constants. In order to determine the exact sign, we

adopt a numerical approach based on algebraic root bounds.

Definition 2.1 (Root bound and root bit-bound). We call a positive number b a root

bound for an algebraic expression (or number) E if the following holds:

if E 6= 0 then jEj � b.

Moreover, we will call (� log

2

b) a root bit-bound for E.

There are some other variants on the definition of root bound. As our choice of ter-

minology suggests, we are mainly interested in bounding roots away from 0. Typically,

the sign determination task reduces to first finding some root bound b for E. With such

a root bound b, we can then determine the sign of E as follows:

Step 1: Compute a numerical approximation eE such that

jE �

e

Ej <

b

2

;

Step 2: Check whether j eEj � b

2

and get the exact sign of E using the following rule:

sign(E) =

8

<

:

sign(

e

E) if j eEj � b

2

0 otherwise.

Precision-sensitive approach In practice [61], the precision required in approximation

can be progressively increased until one of the following two events occurs:

Either (i) the approximation eE satisfies

j

e

Ej > jE �

e

Ej; (2.2)

18

or (ii) the approximation satisfies

jE �

e

Ej <

b

2

: (2.3)

Note that if jEj is large, then condition (i) will usually be reached first, and the root

bound does not play a role in the actual complexity of the sign determination process.

However, if E is really zero (as happens in, say, degenerate cases or some theorem

proving application [55]), then the root bound plays a critical role. In the worst case, it is

the root bit-bound that determines the complexity of our sign determination algorithm.

Constructive root bound The problem of root bounds and, more generally, root loca-

tion, is a very classical one with an extensive literature (e.g., [38] or [41, chap. 2]).

Some classical bounds are highly non-constructive. But many known root bounds are

given in terms of some simple function of P ’s coefficients and degree. For instance,

Landau’s bound says that any non-zero root � of P (x) satisfies j�j � kP (x)k

�1

2

where

P (x) =

P

n

i=0

a

i

x

i and the length kP (x)k

2

=

p

P

n

i=0

ja

i

j

2. Unfortunately, in many

applications, the coefficients of P (x) are not explicitly given. For instance, in the LEDA

and Core libraries, an algebraic number � is presented as a radical expression which is

constructed from integers, and recursively built-up using the four arithmetic operations

(+;�;�;�) and radical extraction k

p

� (here k � 2 is the index of the radical extrac-

tion.). Thus, the notion of “constructive” depends on the presentation of �; we call such

a presentation an expression. If E is a presentation of �, we will write val(E) = �.

However, val(E) may be undefined for some E, e.g., when we divide by 0, or when we

take the square root of a negative number. In the following, we will often write “E” in

place of val(E), if there is no confusion. Furthermore, any assertion about val(E) is

conditioned upon val(E) being well defined.

19

Definition 2.2 (Constructive root bound). Given an algebraic expression E, if a

bound for its value val(E) can be computed inductively from the structure description

of E, we consider it a constructive root bound.

The constructive root bound problem is this: given a set E of expressions (e.g., the

radical expressions), derive a set of inductive rules for computing a root bound for each

expression in E . For example, a set of recursive rules for computing root bound for

radical expressions are given in [62] based on Landau’s bound (see Table 2.1 as well).

It is important to realize that in our discussion, the term “expression” roughly corre-

sponds to a directed acyclic graph (DAG) in which nodes are labeled by the appropriate

constants and operations (as described in Section 2.3).

2.2 Previous Work

A number of constructive root bounds have been proposed. Here we briefly recall some

of them.

Canny’s bound. For a zero-dimensional system � of n polynomial equations with n

unknowns, Canny [5] shows that if (�
1

; : : : ; �

n

) is a solution, then j�
i

j � (3d)

�nd

n

for each non-zero component �
i

. Here (resp., d) is an upper bound on the absolute

value of coefficients (resp., the degree) of any polynomial in the system. An important

proviso in Canny’s bound is that the homogenized system b

� has a non-vanishing U -

resultant. Equivalently, b� has finitely many roots at infinity. Yap [62, p. 350] gives the

treatment for the general case, based on the notion of “generalized U -resultant”. Such

multivariate root bounds are easily translated into a bound on expressions, as discussed

in [2].

20

Table 2.1: Rules for degree-length and degree-height bounds

E d ` h

rational a

b

1
p

a

2

+ b

2

maxfjaj; jbjg

E

1

�E

2

d

1

d

2

`

d

2

1

`

d

1

2

2

d

1

d

2

+minfd

1

;d

2

g

(h

1

2

1+d

1

)

d

2

(h

2

p

1 + d

2

)

d

1

E

1

�E

2

d

1

d

2

`

d

2

1

`

d

1

2

(h

1

p

1 + d

1

)

d

2

(h

2

p

1 + d

2

)

d

1

E

1

�E

2

d

1

d

2

`

d

2

1

`

d

1

2

(h

1

p

1 + d

1

)

d

2

(h

2

p

1 + d

2

)

d

1

k

p

E

1

kd

1

`

1

h

1

Degree-length and degree-height bounds. The degree-length bound [62] is a bound for

general algebraic expressions, based on Landau’s root bound. For an expression E, the

algorithm computes the upper bounds on the degree d and on length (k � k
2

) ` of the

minimal polynomial of E. If E 6= 0, then from Landau’s bound we know jEj � 1

`

. The

extended Hadamard bound on polynomial matrix is used to compute an upper bound of

`. A similar degree-height bound based on Cauchy’s root bound is found in [61]. Here

“length” and “height” refer to the 2-norm and 1-norm of a polynomial, respectively.

Both results are based on the resultant calculus. The bounds are maintained inductively

on the structure of the expression DAG using the recursive rules found in Table 2.1.

Degree-measure bound. Given a polynomial P (x) = a

m

Q

m

i=1

(x � �

i

), with a
m

6= 0,

the measure of P , m(P), is defined as ja
m

j �

Q

m

i=1

maxf1; j�

i

jg. Furthermore, the

measure m(�) of an algebraic number � is defined as the measure of Irr(�). It is

known that if � 6= 0, we have

1

m(�)

� j�j � m(�): (2.4)

21

Let � and � be two nonzero algebraic numbers of degrees m and n respectively. The

following relations on measures are given in [41],

m(� � �) � 2

mn

m(�)

n

m(�)

m (2.5)

m(� � �) � m(�)

n

m(�)

m (2.6)

m(� � �) � m(�)

n

m(�)

m (2.7)

m(�

1=k

) � m(�) (2.8)

m(�

k

) � m(�)

k (2.9)

Based on Mignotte’s work, Burnikel et al [2] develop recursive rules to maintain the

upper bounds for degrees and measures and call it the degree-measure bound. These

rules are given in the last two columns of Table 2.7 where M 0

(E) and D

0

(E) are (re-

spectively) upper bounds on m(E) and deg(E). Similar rules are given in [41]. The

degree-measure bound turns out to be always better than the degree-length bound.

BFMS bound. One of the best constructive root bounds for the class of radical ex-

pressions is from Burnikel et al [2] (hereafter called the “BFMS bound”). This is

the bound that is used in the LEDA and CGAL libraries. The BFMS approach is

based on a well-known transformation of an expression E to eliminate all but one di-

vision, producing two associated division-free expressions U(E) and L(E) such that

val(E) = val(U(E))=val(L(E)). E.g., if E =

a

b

+

d

, then U(E) = ad + b and

L(E) = bd. Note that in this transformation, the number of square roots in U(E) or

L(E) could be potentially doubled. Two parameters u(E) and l(E), the upper bounds

on the absolute value of conjugates of U(E) and L(E), respectively, are maintained by

the recursively rules in Table 2.2.

22

Table 2.2: BFMS rules

E u(E) l(E)

1. integer a jaj 1

2. E

1

�E

2

u(E

1

)l(E

2

) + l(E

1

)u(E

2

) l(E

1

)l(E

2

)

3. E

1

�E

2

u(E

1

)u(E

2

) l(E

1

)l(E

2

)

4. E

1

�E

2

u(E

1

)l(E

2

) l(E

1

)u(E

2

)

5. k

p

E

1

k

p

u(E

1

)

k

p

l(E

1

)

Clearly, if E is division-free, then L(E) = 1 and val(E) is an algebraic integer (i.e.,

a root of some monic integer polynomial).

For an expression E having r radical nodes with indices k
1

; k

2

; : : : ; k

r

, the BFMS

bound is given by

val(E) 6= 0) (u(E)

D(E)

2

�1

l(E))

�1

� jval(E)j � u(E)l(E)

D(E)

2

�1

; (2.10)

where D(E) =

Q

r

i=1

k

i

, and u(E) and l(E) are (respectively) upper bounds on the

absolute values of algebraic conjugates of val(U(E)) and val(L(E)). For division-free

expressions, the BFMS bound improves to

val(E) 6= 0) jval(E)j � (u(E)

D(E)�1

)

�1

: (2.11)

The bound for division-free expressions was shown to be essentially sharp and better

than previous bounds. But in presence of divisions, the BFMS bound is not necessarily

an improvement of the degree-measure bound (see Section 2.6).

Note that the root bit-bound in 2.10 is quadratic in D(E), 1 while in 2.11, it is

linear in D(E). Our experience is that this quadratic factor can be a serious efficiency

1Most recently, Mehlhorn et al [39] give a variation of the BFMS bound which depends onD(E) linearly.

23

issue. Consider a simple example: E = (

p

x +

p

y) �

p

x + y + 2

p

xy where x; y

are L-bit integers (i.e., jxj; jyj < 2

L). Of course, this expression is identically 0 for

any x; y. The BFMS bound yields a root bit-bound of 7:5L + O(1) bits. But in case,

x and y are viewed as rational numbers (with denominator 1), the bit-bound becomes

127:5L+O(1). The example shows that introducing rational numbers at the leaves of

expressions has a major impact on the BFMS bound. In practice, this is an important

and common situation: for instance, it is usual to have floating point numbers as input

constants in an expression. Since these are special cases of rational numbers, the BFMS

bound becomes quite pessimistic.

Scheinerman bound. This adopts an interesting approach based on matrix eigenvalues

[48]. Let �(n; b) denote the set of eigenvalues of n � n matrices with integer entries

with absolute value at most b. It is easy to see that �(n; b) is a finite set of algebraic

integers. Moreover, if � 2 �(n; b) is non-zero then j�j � (nb)

1�n. Scheinerman

gives a constructive root bound for division-free radical expressions E by maintain-

ing two parameters, n(E) and b(E), satisfying the property that the value of E is in

�(n(E); b(E)). These recursive rules are given by Table 2.3.

Note that the rule for
p

d is rather special, but it can be extremely useful. In Rule

6, the polynomial P (x) is given by
P

d

i=0

ja

i

jx

i when P (x) =

P

d

i=0

a

i

x

i. This rule is

not explicitly stated in [48], but can be deduced from an example he gave. An example

given in [48] is to test whether � =

p

2 +

p

5� 2

p

6 �

p

3 is zero. Scheinerman’s

bound requires calculating � to 39 digits while the BFMS bound and our new bound

say 12 digits are enough.

24

Table 2.3: Scheinerman’s rules

E n(E) b(E)

1. integer a 1 jaj

2.
p

d 2 maxfjj; jdjg

3. E

1

�E

2

n

1

n

2

b

1

+ b

2

4. E

1

�E

2

n

1

n

2

b

1

b

2

5. k

p

E

1

kn

1

b

1

6. P (E

1

) n

1

P (n

1

b

1

)

2.3 The General Framework

We formalize the constructive root bound problem as follows. In our discussion here-

after, a “DAG” is an ordered, directed acyclic graph with a unique node that has out-

degree 0, called the root. The DAG is ordered in the sense that the set of incoming edges

to each node u is given a total ordering. Nodes with in-degree 0 are called leaves. Let

 be a set of algebraic operations: each ! 2
 represents a partial function f
!

: C

k

! C

where C are the complex numbers and k = k(!) is called the arity of !. If k(!) = 0

then ! may be identified with an element of C and is called a constant. An expression

over
 (or
-expression) is a DAG where each node u of in-degree k

u

is labeled by

an operation ! 2
 where k(!) equals the in-degree of u. In particular the leaves

are labeled by constants. In case2 the DAG is a tree, then we call it a tree expression.

Each node in an expression induces a natural subexpression. Let E(
) denote the set of

-expressions. The following classes of expressions are the main ones in this paper:

2In some literature, our tree expressions are simply called “expressions” while our expressions are essentially

“straightline programs” or “circuits”.

25

�

0

= f�;�g [Z (where Z are the integers). Thus

0

-expressions are integral

polynomial expressions.

�

1

=

0

[f�g. Thus

1

-expressions are rational expressions.

�

2

=

1

[f

n

p

� : n � 2g. Thus

2

-expressions are radical expressions.

�

3

=

2

[fRoot(P) : P 2 Z[x℄g. Our main root bound applies to

3

-

expressions. We assume the polynomial P is presented by its sequence of n + 1

integer coefficients if deg(P) = n.

We need to clarify the Root(P) operation in

3

above. This is intended to be a constant

referring to some root � of P . In practice, we will need some method for identifying

the root �. For instance, if � is real (as we assume in our applications) and it is the

kth largest real root of P , we could identify � as “Root(P; k)”. Instead of k, we could

also use, say, an isolating interval for �. It turns out that our root bounds do not depend

on the choice of the root of P , and hence, we normally write “Root(P)” instead of

“Root(P; k)”.

For any set E of expressions, there is a partial function val : E ! C that is naturally

defined by applying the appropriate functions f
!

(! 2
) at each node of an expression.

Notice that val(E) is undefined if any of its nodes has an undefined value, for instance,

val(Root(P; k)) is undefined if P (x) has less than k real roots. Having undefined

values is not a new phenomenon, since this already arises when we divide by zero or

take the square-root of a negative number (when values are assumed to be real). All our

statements about val(E) are also conditioned on val(E) being defined. The constructive

root bound problem for a class E of expressions is that of providing a bounding function

B : R

m

! R (R = reals)

26

and a set of “recursive rules” to compute for each E 2 E a set of real parameters

fa

i

(E) : i = 1; : : : ; mg, plus possibly other non-numeric parameters, such that the

following holds:

val(E) 6= 0) jval(E)j � B(a

1

(E); : : : ; a

m

(E)):

The rules are “recursive” in the sense that the parameters for each node in the DAG

can be effectively computed from the parameters of its predecessors. Non-numeric

parameters are needed, for instance, in the BFMS bound, we need to compute the set of

radical nodes in the DAG. In practice, the function B will be non-negative, with both

B and the recursive rules relatively simple to compute. Another desirable property is

that the bound B(a

1

(E); : : : ; a

m

(E)) should be as large as possible. Also, we call m

the order of constructive root bound.

Example: In the original degree-measure bound, we compute two parameters, a
1

(E)

and a

2

(E) where a
1

and a

2

are upper bounds on the degree and measure of E. More-

over, the bounding function B : R

m

! R is given by B(a; b) = 1=b (the first parameter

is ignored by B). So the order of the degree-measure bound is 2.

Example: If there are two constructive root bounds using bounding function

B

1

(x

1

; : : : ; x

m

) andB
2

(y

1

; : : : ; y

n

) then we can have a new composite constructive root

bound using the bounding function

B(x

1

; : : : ; x

m

; y

1

; : : : ; y

n

) = maxfB

1

(x

1

; : : : ; x

m

); B

2

(y

1

; : : : ; y

n

)g

of order at most m+ n. For instance, in the Core Library, we actually choose the maxi-

mum of the BFMS bound, the improved degree-measure bound, and our new bound.

27

2.4 A New Constructive Root Bound

In this section, we develop a constructive root bound for

3

-expressions. For any alge-

braic number �, we will exploit the following relation:

� 6= 0) j�j � (�(�)

deg(�)�1

lead(�))

�1

; (2.12)

where �(�) = maxfj�j : � is a conjugate of �g, deg(�) is the degree of the minimal

polynomial Irr(�) of � and lead(�) is the leading coefficient of Irr(�).

In order to obtain the root bound for an expression E using the relation (2.12), we

need three parameters: deg(E); �(E) and lead(E). The definitions of these parameters

involve the minimal polynomial of E, which is usually expensive to compute. Instead,

we give recursive rules to maintain upper bounds

D(E); �(E); l(E)

on the corresponding parameters.

Degree Bound. First we consider D(E), the upper bound on the degree of E. Suppose

that E has k radical nodes or root-of-polynomial nodes fr
1

; r

2

; : : : ; r

k

g. Assume some

topological sorting r

1

� r

2

� � � � � r

k

of these nodes so that if r
i

is a predecessor of

r

j

(i.e., r
i

is referenced by the sub-expression r
j

) then i < j. The value of E val(E) is

an element in the finite algebraic extension field Q

k

= Q(r

1

; r

2

; : : : ; r

k

) of Q, which is

obtained from a tower of extensions from Q as follows:

Q � Q(r

1

) � Q(r

1

; r

2

) : : : � Q(r

1

; : : : ; r

k

) = Q

k

�

�

Z:

28

For simplicity, we denote Q

i

= Q(r

1

; : : : ; r

i

). We know that the dimension of Q
k

over

Q, denoted as [Q
k

: Q℄, is as follows:

[Q

k

: Q℄ = [Q

k

: Q

k�1

℄[Q

k�1

: Q

k�2

℄ � � � [Q

1

: Q

0

℄

=

k

Y

i=1

d

i

where d
i

is the degree of r
i

over the extension field Q(r

1

; : : : ; r

i�1

). Thus, the degree

of E, an element of Q
k

, over Q is at most
Q

k

i=1

d

i

. Define D(E) =

Q

k

i=1

k

i

where k
i

is either the index of r
i

if r
i

is a radical node, or the degree of the polynomial if r
i

is a

polynomial-root node. Clearly, D(E) is an upper bound on deg(E) since d
i

� k

i

for all

i. Note that the degree bound d(E) used in the degree-measure approach (Table 2.7),

which is actually also used in degree-length and degree-height approaches, is actually

Q

k

i=1

k

i

i

, where

i

� 1 is the number of distinct paths from the radical node r

i

to

the root. It can be easily verified that D(E) is never worse than d(E) and can be

significantly better if there are lots of sharing on subexpressions.

Next, we investigate the methods to bound leading coefficients and conjugates.

Given a non-zero polynomial P (x), we denote its leading coefficient, its tail coefficient

and its constant coefficient (respectively) by lead(P), tail(P), and onst(P). Note that

the tail coefficient tail(P) is defined to be the last non-zero coefficient of P . Hence

tail(P) and lead(P) are non-zero by definition. Also, let m(P) denote the measure of

P . Given an algebraic number �, we define lead(�), tail(�), etc., to be lead(Irr(�)),

tail(Irr(�)), etc.. Actually, tail(�) is the same as onst(Irr(�)) (when � = 0 this

is true by definition). In the following, we will show inductive rules to bound this

parameters. Instead of computing Irr(E) explicitly, we study the defining polynomi-

als P
E

of E constructed from the resultant calculus. As Irr(E) j P

E

, it is clear that

jlead(P

E

)j; jtail(P

E

)j and m(P

E

) are upper bounds of jlead(E)j; jtail(E)j and m(E),

29

respectively.

Bound on the Leading Coefficients and Table 2.4. We now consider l(E), which

is an upper bound on jlead(E)j. The admission of divisions makes it necessary to bound

tail coefficients as well. Moreover, we also need to bound the measure of E to help

bound jtail(E)j (this is only used when E has the form E = E

1

� E

2

). Let t(E) and

M(E) denote upper bounds on jtail(E)j and m(E), respectively. Table 2.4 gives the

recursive rules to maintain l(E); t(E) and M(E).

Table 2.4: Recursive rules for l(E) (and associated t(E) and M(E))

E l(E) t(E) M(E)

1. rational a

b

jbj jaj maxfjaj; jbjg

2. Root(P) jlead(P)j jtail(P)j kPk

2

3. E

1

�E

2

l

D

2

1

l

D

1

2

M

D

2

1

M

D

1

2

2

D(E)

M

D

2

1

M

D

1

2

2

D(E)

4. E

1

�E

2

l

D

2

1

l

D

1

2

t

D

2

1

t

D

1

2

M

D

2

1

M

D

1

2

5. E

1

�E

2

l

D

2

1

t

D

1

2

t

D

2

1

l

D

1

2

M

D

2

1

M

D

1

2

6. k

p

E

1

l

1

t

1

M

1

7. E

k

1

l

k

1

t

k

1

M

k

1

The upper bound M(E) on the measure of E is shown3 in the last column. It can

be shown that, for any expression E, we have

t(E) �M(E) and l(E) �M(E): (2.13)

Note that we introduce a special node for the power operation E = E

k

1

. This is

not just a shortcut for (k � 1) multiplications; it leads to much better bounds too. For

3This information is copied from column 2 in Table 2.7, and is discussed in conjunction with that table.

30

example, in computing l(E) by naively expanding E into (k � 1) multiplications, we

get l(E) = l

kD

k�1

1

1

� l

k

1

. Similar improvements can be shown for t(E) and m(E).

One subtlety arises for expressions of the form E = E

1

�E

2

. In this case, resultant

calculus gives us a polynomial P
E

(x) where val(E) vanishes. Although, we can also

deduce a bound on onst(P

E

), unfortunately, this constant coefficient may vanish and

hence tell us nothing about tail(E). Hence we need to resort to the measure m(E) as a

bound for jtail(E)j.

Justification of Table 2.4. The basic techniques come from resultant calculus. Without

resorting to computing the minimal polynomials, consider the defining polynomials

constructed from resultant calculus instead and we can compute various bounds based

on them. Let � and � be roots of the polynomials A(x) = a

m

Q

m

i=1

(x � �

i

) and

B(x) = b

n

Q

n

j=1

(x��

j

). By the resultant calculus [62], we construct a polynomial P
E

which vanishes at E = �� � (� 2 f+;�;�; =g) as follows:

P

���

= res

y

(A(x� y); B(y)) = �

m

Y

i=1

n

Y

j=1

(x� (�

i

� �

j

)) (2.14)

P

���

= res

y

(y

m

A(x=y); B(y)) = �

m

Y

i=1

n

Y

j=1

(x� (�

i

�

j

)) (2.15)

P

�=�

= res

y

(A(xy); B(y)) = b

m

0

a

n

�

m

Y

i=1

n

Y

j=1

(x� (�

i

=�

j

)); b

0

6= 0; (2.16)

where the constant = (�1)

mn

� a

n

m

b

m

n

and b

0

= B(0). The operator res
y

(�; �) means

taking the resultant of two polynomial arguments with y being the main variable to be

eliminated. Since Irr(E) j P

E

, it is clear that

jlead(E)j � jlead(P

E

)j; jtail(E)j � jtail(P

E

)j; m(E) � m(P

E

); (2.17)

�(P

E

) � �(E); �(P

E

) � �(E) (2.18)

31

where �(E) is defined below. The leading and constant coefficients of P
E

can be easily

deduced from the above equations, and are summarized in Table 2.5 where the constant

terms a
0

= A(0) and b
0

= B(0):

Table 2.5: The polynomial P
E

and its leading and last coefficients

E P

E

(x) lead(P

E

(x)) onst(P

E

(x))

�� � res

y

(A(x� y); B(y)) (�1)

mn

a

n

m

b

m

n

res(A(x); B(x))

�� � res

y

(y

m

A(x=y); B(y)) (�1)

mn

a

n

m

b

m

n

a

n

0

b

m

0

�=� (b

0

6= 0) res

y

(A(xy); B(y)) a

n

m

b

m

0

(�1)

mn

a

n

0

b

m

n

The next lemma justifies the rules for t(E) and l(E):

Lemma 2.3. Let E
1

and E

2

be algebraic expressions with degrees m and n, and the

expression E be any of the expressions is constructed from E

1

and E

2

as in Table 2.3.

Then the jlead(E)j and jtail(E)j (respectively) are bounded by l and t in the table,

where l

i

and t

i

are upper bounds on jlead(E
i

)j and jtail(E
i

)j, respectively.

E l(E) t(E)

E

1

�E

2

l

n

1

l

m

2

m(E)

E

1

�E

2

l

n

1

l

m

2

t

n

1

t

m

2

E

1

�E

2

l

n

1

t

m

2

t

n

1

l

m

2

k

p

E

1

l

1

t

1

E

k

1

l

k

1

t

k

1

Proof. The first three lines of Table 2.3 are essentially justified by Table 2.5 since

the minimal polynomial Irr(E) divides P
E

(x) constructed from the resultant calculus.

32

Thus lead(E) � lead(P

E

) and tail(E) � tail(P

E

). The only exception is the rule for

t(E

1

� E

2

) since the constant term of P
E

1

�E

2

may vanish and tell us nothing about

the tail coefficient. Hence we use the measure of E
1

� E

2

instead, because for any

algebraic number �, we have tail(E) � m(E).

It is easy to see the polynomial A(xk) vanishes at E =

k

p

E

1

with the same leading

and tail coefficients as those in A. Finally, for a power expression E = E

k

1

, E is a root

of the polynomial

R(x) = res

y

(A(y); x� y

k

) = a

k

m

Y

i=1

(x� �

k

i

)

where A(x) = a

m

Q

m

i=1

(x � �

i

) is the minimal polynomial of E. Hence jlead(E)j �

jlead(R)j = ja

m

j

k

� l

k

1

and jtail(E)j � jtail(R)j = jA(0)j

k

� t

k

1

. Q.E.D.

Lemma 2.3 proves the validity of the bounding rules for one step. An argument by

induction then can show that:

Corollary 2.4. The l(E) computed from the recursive rules in Table 2.4 bounds lead(E).

Bound on Conjugates and Table 2.6. Now we consider �(E), which is an upper

bound on the absolute value of all the conjugates of val(E). Because of the admission of

divisions, we also have to maintain �(E), which is a lower bound on the absolute value

of all the conjugates of val(E) whenever val(E) 6= 0. The recursive rules to maintain

these two bounds are given in Table 2.6. The most noteworthy entry in Table 2.6 is the

bound for �(E) when E = E

1

� E

2

. In this case, we cannot obtain a lower bound

on �(E) based on �(E

1

) and �(E

2

) due to potential cancellation. Instead, we can use

either relation 2.12 or 2.4. As we will see in Section 2.6, neither bound is strictly better

than the other. Hence, we take the maximum of the two bounds for �(E
1

� E

2

). More

generally, we could use 2.4 in all the entries of 2.6 if they give better bounds. We

33

also note that our bounds on �(Root(P)) and �(Root(P)) are based on Cauchy’s root

bound [62, p. 148]. Recall that we assume that the polynomial P = P (x) =

P

n

i=0

a

i

x

i

is explicitly given in terms of its coefficients. Hence a more precise bound can be used,

ja

0

j

ja

0

j+maxfja

1

j; : : : ; ja

n

jg

� Root(P) � 1 +

maxfja

0

j; : : : ; ja

n�1

jg

ja

n

j

:

Of course, any of the classical root bounds can be used as convenient here.

Table 2.6: Recursive rules for bounds on conjugates

E �(E) �(E)

1. rational a

b

j

a

b

j j

a

b

j

2. Root(P) 1 + kPk

1

(1 + kPk

1

)

�1

3. E

1

�E

2

�(E

1

) + �(E

2

) maxfM(E)

�1

; (�(E)

D(E)�1

l(E))

�1

g

4. E

1

�E

2

�(E

1

)�(E

2

) �(E

1

)�(E

2

)

5. E

1

�E

2

�(E

1

)=�(E

2

) �(E

1

)=�(E

2

)

6. k

p

E

1

k

p

�(E

1

)

k

p

�(E

1

)

7. E

k

1

�(E

1

)

k

�(E

1

)

k

The following lemma justifies the rules in Table 2.6.

Lemma 2.5. Let � and � be two non-zero algebraic numbers and be defined as

below (in column 1). Then �() � �() and �() � �() where �() (or �()) are the

maximum (or minimum) absolute value of all the conjugates of ,and �() and �()

are defined as follows:

34

 �() �()

�� � �(�) + �(�) (�()

deg()�1

l())

�1

�� � �(�)�(�) �(�)�(�)

� � � �(�)�(�) �(�)�(�)

k

p

�

k

p

�(�)

k

p

�(�)

�

k

�(�)

k

�(�)

k

Proof. Let f�
1

; : : : ; �

m

g and f�
1

; : : : ; �

n

g be the conjugates of � and � respectively.

For the four basic arithmetic operations f+;�;�; =g, let R(x) be the polynomial P
���

defined by resultant calculus (2.14) – (2.16). The roots of R have the format �
i

� �

j

.

We also know that for root extraction operations, we can choose R(x) to be Irr(�)(xk)

with the roots k

p

�

i

� !

j (i 2 [1; deg(�)℄; j 2 [1; k℄ and ! is k-th unit root of unity). For

power operations, we can choose R(x) = res

y

(Irr(�)(y); x� y

k

) which has the roots

in the forms of �k
i

. In all these cases, by the inequalities in 2.18, it is sufficient to bound

the roots for the polynomial R since Irr()jR. It can be easily verified that �() and

�() are upper and lower bounds for the zeros of R, respectively. The exception is the

bound �(�� �), which is based on a direct argument about the minimal polynomial of

�� �. Therefore, �() and �() are the upper and lower bounds on the absolute value

of the conjugates of . Q.E.D.

By induction on the structure of expressions, we have

Corollary 2.6. Let E be an algebraic expression represented as a DAG. For all the

conjugates � of E, j�j � �(E) where �(E) is the bound computed inductively using the

rules in Table 2.6.

Finally, we obtain the new root bound in the following theorem:

35

Theorem 2.7. Given an

3

-expression E, if E 6= 0, then

jEj � (�(E)

(D(E)�1)

l(E))

�1

: (2.19)

2.5 Improved Degree-Measure Bound

Recall that if an algebraic number � 6= 0, we have

1

m(�)

� j�j � m(�);

where m(�) is the measure of �.

Let E be a

3

-expression. As explained in Section 2.2, M 0

(E) and D

0

(E) in Ta-

ble 2.7 are the original degree-measure bound [40, 41, 2]. Recall the definition of D(E)

in Section 2.4 which gives an upper bound on deg(E). It is clear that D(E) is never

larger thanD0

(E). In this section, we give an improved upper bound (denoted byM(E)

in Table 2.7) on measures by exploiting the sharing of common sub-expressions.

Table 2.7: The original and our improved degree-measure bounds

E M(E) (new) M

0

(E) (old) D

0

(E) (old)

1. rational a

b

maxfjaj; jbjg maxfjaj; jbjg 1

2. Root(P) kPk

2

– –

3. E

1

�E

2

M

D

2

1

M

D

1

2

2

D(E)

M

0

1

D

0

2

M

0

2

D

0

1

2

D

0

1

D

0

2

D

0

1

D

0

2

4. E

1

�E

2

M

D

2

1

M

D

1

2

M

0

1

D

0

2

M

0

2

D

0

1

D

0

1

D

0

2

5. E

1

�E

2

M

D

2

1

M

D

1

2

M

0

1

D

0

2

M

0

2

D

0

1

D

0

1

D

0

2

6. k

p

E

1

M

1

M

0

1

kD

0

1

7. E

k

1

M

k

1

M

0

1

k

–

36

When E = Root(P) for some polynomial P , we use kPk
2

as the upper bound

M(E) because kPk
2

� m(P). Besides the introduction of the new operations of

Root(P) and power (Ek

1

) in Table 2.7, we give a slightly improved rule for the measure

ofE
1

�E

2

. Basically, we can replace the factor of 2D
0

1

D

0

2 by 2

D. Here is the justification:

Lemma 2.8. If � and � are algebraic numbers with degrees m;n, respectively, then

the measure of �� � is bounded by 2

d

m(�)

n

m(�)

m where d = deg(�� �).

Proof. Assume Irr(�) = A(x) = a

Q

m

i=1

(x��

i

) and Irr(�) = B(x) = b

Q

n

j=1

(x�

�

j

). From resultant calculus, we know that = �� � is a root of the polynomial

P (x) = res

y

(B(y); A(x� y)) = a

n

b

m

�

m

Y

i=1

n

Y

j=1

(x� (�

i

� �

j

))

Let Irr() =

Q

d

k=1

(x�

k

). Since Irr() j P (x) we can assume that
k

= �

f(k)

��

g(k)

for some function f and g. Moreover, it is clear that jjjjajnjbjm. Thus,

m() = jj

d

Y

k=1

maxf1; j�

f(k)

� �

g(k)

jg

� jaj

n

jbj

m

d

Y

k=1

(2maxf1; j�

f(k)

jgmaxf1; j�

g(k)

jg)

= 2

d

(jaj

n

jbj

m

d

Y

k=1

(maxf1; j�

f(k)

jgmaxf1; j�

g(k)

jg)

� 2

d

(jaj

n

jbj

m

m

Y

i=1

n

Y

j=1

(maxf1; j�

i

jgmaxf1; j�

j

jg)

= 2

d

m(�)

n

m(�)

m

The first inequality utilizes the relation that given two numbers � and �, we have

maxf1; j�� �jg � 2maxf1; j�jgmaxf1; j�jg:

The last inequality is true because for each �
i

, it can only appears at most n times in the

decomposition of conjugates of (since it only appears in n roots of the polynomial of

37

P

E

and all the conjugates of is a root of P
E

too.). Similarly, each �
j

appears at most

m times.

Q.E.D.

The improvement can be significant when there is sharing of subexpressions. For

example, consider

E = ((

p

x +

p

y)� 2

q

x + y + 2

p

x

p

y) � ((

p

x +

p

y) + 2

q

x+ y + 2

p

x

p

y)

where x and y are L-bit integers. The original degree-measure bound for E is m(E) �

2

3584L+7148. But when all the common subexpressions of E are merged, our new bound

gives 2896L+1408.

2.6 Comparison of the Root Bounds

We compare the various root bounds discussed in this chapter. Because these bounds

are rather different in recursive form, a direct comparison is sometimes not possible.

Hence we compare their behavior on interesting classes C of expressions. For the ith

constructive root bound (i=BFMS, degree-measure, etc) and expression E 2 C, let

B

i

(E) denote the root bit-bound for E. Let C(L) denote the expressions in C whose

input parameters are L-bit integers (or rational numbers, as the case may be). We want

to study functions �
i

(L)

�

i

(L) = maxfB

i

(E) : E 2 C(L)g:

We use the root bit-bounds in comparison because it directly determines the number of

bits we have to compute in exact sign determination. Note that even if �
i

(L) � �

j

(L)

for all L, it does not necessarily mean that B
i

(E) � B

j

(E) for all E 2 C. Sometimes

such a stronger relation can be asserted.

38

1. By an examination of our tables, we can assert the following:

Lemma 2.9. For any division-free radical expression E, our new bound is exactly the

same as the BFMS bound.

2. Consider the well-known problem of sum of square roots. SupposeE =

P

n

i=1

i

p

a

i

where a
i

> 0 areL-bit integers and
i

areL0-bits. Then the degree-measure bound gives

jEj �M(E)

�1

� 2

�(L+2L

0

+2n�2)2

n�1

: (2.20)

or, in terms of root bit bound,

� log

2

jEj � (L=2 + L

0

+ n� 1)2

n

: (2.21)

The BFMS bound is

� log

2

jEj � (log

2

n+ (L=2) + L

0

)(2

n

� 1): (2.22)

The Scheinerman bound gives

� log

2

jEj � (log

2

n+ n + L+ L

0

)(2

n

� 1): (2.23)

In 2.23, L0 can be improved to minfL

0

;maxf0; 2L

0

� Lgg if we exploit rule 2 in Ta-

ble 2.3. Lemma 2.9 says that for such division-free radical expressions, our new bound

is the same as BFMS. It is shown [2] that in division-free cases, the BFMS bound is

never worse than the degree-measure bound. From 2.22 and 2.23, we can see that the

BFMS bound is at least as tight as Scheinerman’s bound. But the next lemma strength-

ens this conclusion in two ways: to a broader class of expressions, and to state the

comparison for each individual expression in the class.

In [2], it’s shown that for division-free radical expressions, the BFMS bound is

better than the degree-measure bound and Canny’s bound. Here we strengthen this

39

conclusion in showing that for this class of expressions, the BFMS bound is never

worse than the Scheinerman bound.

Lemma 2.10. For every division-free constant radical expression E, the BFMS bound

for E is at least as tight as the Scheinerman bound.

3. Next consider the sum of square roots of rational numbers. Suppose E =

P

n

i=1

(�

p

a

i

) where a

i

are L-bit rational numbers. Then the degree-measure root

bit-bound is 2

n�1

(n(L+2)� 2). The BFMS bound is 2

2n�1

(2 log

2

n+nL)� log

2

n.

Our bound gives 2

n�1

(2 log

2

n+ (n+ 1)L)� (log

2

n+ L=2). It may be verified that

both the degree-measure bound and our bound are better than the BFMS bound. The

difference between our root bound and degree-measure bound in terms of bit-bound is

� = 2

n

(log

2

n+ (L=2)� n+ 1)� (log

2

n+ L=2):

Note that � can be positive or negative, depending on the relative sizes of n and L.

Thus our new bound is incomparable with the degree-measure bound.

4. Consider the expression E =

a+b

2

�r

�

d+e

2

�r

f

with 2r (r � 1) square roots.

This is a generalization of the Fortune’s predicate in 2.1. Also, we now assume that

a; b; ; d; e and f are all L-bit integers. The BFMS root bit-bound is (5L + 1) � 2

4r

�

(L+2). The degree-measure root bit-bound is (2L+3) �2

2r

+L �2

r+1. Our new bound

gives (2L+ 3) � 2

2r

� 3 which is the best.

5. Consider the continued fraction expression:

E

n

= a

n

+

1

a

n�1

+

1

a

n�2

+���

= [a

n

; a

n�1

; a

n�2

; : : :℄;

where the a
i

’s are L-bit integers. Our new bound for E
n

is (n � 1)L + (n� 2). The

degree-measure bound gives (n + 1)L � 1. And the best bound for this example is

40

given by the BFMS approach as (n� 1)L� n + 3. This is close to the best possible

bound (n � 2)L � n. Note that the degree of E
n

is 1. Now we modify E

n

to get an

expression E 0

n

with degree up to 2

n by replacing the integers a
i

with square roots
p

a

i

,

E

0

n

= [

p

a

n

;

p

a

n�1

;

p

a

n�2

; : : :℄:

Then our new bound for E 0

n

is 2

2n�1

((n � 1)L + 2n � 3). The BFMS bound gives

 � 2

2n

nL, for some constant � 1. Here the degree-measure approach gives the best

bound 2

n�1

(nL+ 2n� 2)

6. Next, we compare our new bound with the BFMS bound for a restricted class of

radical expressions.

Proposition 2.11. Given a radical expression E with rational values as the leaves but

no division operations in the internal nodes, we have

�(E)l(E) = u(E) (2.24)

where �(E) is as defined in our new bound, and u(E); l(E) are defined as in the BFMS

bound. Furthermore, if there are no shared radical nodes in E, then

l(E) � l(E)

D(E)

: (2.25)

Proof. Proof by induction on the structure of the DAG, It is easy to verify the base

case when E is a constant rational number. There are four kinds of internal nodes

f+;�;�;

k

p

�g.

First we prove the Equation 2.24 inductively with the following cases:

1. E = E

1

� E

2

,

�(E)l(E) = (�(E

1

) + �(E

2

))l(E

1

)l(E

2

) = u(E):

41

2. E = E

1

� E

2

,

�(E)l(E) = (�(E

1

) � �(E

2

))l(E

1

)l(E

2

) = u(E):

3. E =

k

p

E

1

.

�(E)l(E) =

k

p

�(E

1

)

k

p

l(E

1

) = u(E):

Secondly, we prove the inequality relation 2.25. If E = E

1

� E

2

or E = E

1

� E

2

,

l(E) = l(E

1

)

D

2

l(E

2

)

D

1

� l(E

1

)

D

1

D

2

l(E

2

)

D

2

D

1

� l(E)

D(E)

:

Note that by definition D(E) = D

1

D

2

when there are no shared radical or polynomial

root nodes in E. When E =

k

p

E

1

, we have

l(E) = l(E

1

) � l(E

1

)

D

1

� l(E)

D

:

Q.E.D.

Lemma 2.12. Given a radical expression E with rational values at the leaves, if E has

no divisions and shared radical nodes, our new root bound for E is never worse than

the BFMS bound.

Proof.

From Proposition 2.11, we have

(�(E)

D(E)�1

lE)

�1

= ((

u(E)

l(E)

)

D(E)�1

l(E)

D(E)

)

�1

= (u(E)

D(E)�1

l(E))

�1

� (u(E)

D(E)

2

�1

l(E))

�1

:

42

Q.E.D.

It can be shown that our bound is strictly better than BFMS for expressions in

this class whenever u(E) > 1 and D(E) > 1. If shared radical nodes are permitted,

our bound can be proved to be better than the BFMS bound if (D0

� D) log

2

l(E) <

D(D � 1) log

2

u(E), where D

0

(E) is a degree bound of E with the value
Q

k

i=1

k

i

i

,

i

� 1 is the number of different paths from the root to the radical node r

i

. Note

that the proof of Lemma 2.12 implies that the quadratic exponent D(E)

2 in the BFMS

bound is unnecessary for the class of expressions discussed in that lemma. Just D(E)

is enough.

2.7 Experimental Results

The new constructive root bound has been implemented in our Core Library [23]. In

implementation, we maintain an upper bound on the root bit-bound, instead of the root

bounds themselves. The logarithms are represented and manipulated as objects of the

class extLong, which is basically a wrapper around the standard long number type,

together with facilities to handle overflows. Such a class may be used to support “level

arithmetic” in which for any integer x, we maintain the ceiling of lg(i) x where lg

(i)

denotes i iterations of log
2

(�), i is the smallest natural number such that
l

lg

(i)

x

m

fits in

built-in integer types. Therefore, the integer x is represented by a pair (
l

lg

(i)

x

m

; i).

Our experiments, based on Version 1.3 of the Core Library, will compare the perfor-

mance of our new bound with the BFMS and degree-measure bounds. All the tests are

performed on a Sun UltraSPARC with a 440 MHz CPU and 512MB main memory. All

timings are in seconds.

1. Recall the critical test in Fortune’s sweepline algorithm is to determine the sign

43

of the expression E =

a+

p

b

d

�

a

0

+

p

b

0

d

0

in 2.1 where a’s, b’s and d’s are 3L-, 6L- and

2L-bit integers, respectively. The BFMS bound requires (79L+30) bits and the degree-

measure (D-M) bound needs (64L+12) bits. Our root bit-bound improves the bound to

(19L+ 9) bits. We generate some random inputs with different L values which always

make E = 0, and put the timings of the tests in Table 2.8. We also converted the

Table 2.8: Timings for Fortune’s expression in 2.1

L 10 20 50 100 200

NEW 0.01 0.03 0.12 0.69 3.90

BFMS 0.03 0.24 1.63 11.69 79.43

D-M 0.03 0.22 1.62 10.99 84.54

Fortune’s implementation of this algorithm to use the Core Library. We ran the program

on two kinds of inputs: (1) First we test on a non-degenerate data set (100 random points

provided in Fortune’s code distribution). The time for our new bound is 3.62 seconds

while the BFMS and D-M bounds take 3.75 and 3.64 seconds, respectively. This is not

unexpected, since as explained in Section 2.1, our Core Library exploits the progressive

evaluation technique, and the signs of Fortune’s predicate on non-degenerate inputs can

be determined using the inequality 2.2. Thus the inequality 2.3 based on root bounds

has no effect on the complexity. (2) We used highly degenerate inputs comprising

points on a (32� 32) uniform grid with coordinates being L bits long. The timings are

reported in Table 2.9.

2. The second test is to verify an expression which is identically zero. Let x =

a

b

and y =

d

(a; b; ; d are L-bit integers), and E = (

p

x +

p

y) �

p

x+ y + 2

p

xy.

Our new bound requires computing (40L + 38) bits, while the BFMS and the degree-

measure (D-M) bounds require (640L + 510) and (80L + 56) bits, respectively. The

44

Table 2.9: Timings for Fortune’s algorithm on degenerate inputs

L 10 20 30 50

NEW 35.2 41.7 47.5 112.3

BFMS 86.1 1014.1 1218.1 5892.2

D-M 418.5 1681.6 1874.4 > 2 hrs

timings are in Table 2.10.

Table 2.10: Timings for Example 2

L 5 10 30 50

NEW 0.08 0.09 1.77 55.43

BFMS 88.16 91.03 3071.21 > 2 hrs

D-M 1.71 1.79 89.72 531.25

In comparing the timings, it is the relative speedup that should be stressed. We

expect similar relative improvements to show up if the comparisons were made in other

systems such as LEDA.

2.8 Summary

We have described a new constructive root bound for a large class of algebraic expres-

sions. In this new approach, we need to maintain, among other things, upper bounds

on the leading as well as tail coefficients of the minimal polynomial of the algebraic

number E.

Our work also addresses two issues raised by the BFMS bound. First, is the quadratic

factor D(E)

2 in the root bit-bound of E essential for radical expressions? We show

that for many expressions it is not: D(E) is sufficient. The second issue is whether the

45

BFMS technique can be extended to more general algebraic expressions. For instance,

suppose we introduce a new kind of leaves into our expressions denoted by Root(P (x))

where P (x) is an integer polynomial. The framework of BFMS cannot handle this ex-

tension since there is no analogue of the E 7! (U(E); L(E)) transformation. But our

new approach can be applied to any algebraic expression.

For radical expressions without divisions, our new bound turns out to be exactly

same as the BFMS bound and is never worse than previous constructive bounds. But

for those with divisions, a comparative performance study of the BFMS bound, the

degree-measure bound and our new bound shows that they are generally incomparable.

So in practice, it may be worthwhile maintaining all of them simultaneously to choose

the best.

We implemented the new bound in our Core Library and experiments show that

it can achieve remarkable speedup over previous bounds in the presence of division.

Although we have described our bounds for the class of

3

-expressions, it should be

clear that our methods extend to more general expressions.

46

Chapter 3

The Core Library: Design and

Implementation

The Core Library [29, 34, 58] provides a collection of C++ classes to support numeri-

cal computation of algebraic expressions to arbitrary relative or absolute precision. In

particular, it provides a base for the Exact Geometric Computation (EGC) approach to

robust geometric computing. Our implementation of the library embodies the precision-

driven design.

In contrast to exact integer or rational arithmetic approaches based on big number

packages, the Core Library supports a broader class of radical expressions which are

constructed from the integers and closed under a finite number of additions, subtrac-

tions, multiplications, divisions, and root extractions. The library can determine the

exact sign of such radical expressions and hence is able to perform exact comparisons.

A basic goal in the design of the Core Library is to make EGC techniques transparent

and easily accessible to non-specialist programmers. Built upon the Real=Expr package

of Yap, Dubé and Ouchi [61, 46], our library facilitates the rapid development of robust

47

geometric applications.

The Core Library employs an object-oriented design. Written in C++, the library

has a concise but complete interface which is fully compatible with that of built-in

types such as double. As the name of this library suggests, the heart of our library is

indeed a numerical core. Because of its unique numerical capabilities and the precision

sensitive nature, the library has other applications beyond the EGC, where guaranteeing

the numerical precision is critical.

The Core Library has been publicly released and can be freely downloaded from our

project homepage at

http://cs.nyu.edu/exact/core.

The library has been developed and tested on the Sun UltraSPARC and Intel/Linux

platforms, and ported to SGI Irix and MS Windows systems.

Overview of this chapter In this chapter, we discuss the design and implementation of

the Core Library. In Section 3.1, we introduce the important features of this library. In

Section 3.2, we discuss the concepts of precision and error in our library, and present a

new method to propagate precision requirements in an expression DAG. The design and

implementation of the library is detailed in Section 3.3, with special emphasis put on

the top level of the library for exact geometric computation. And in Section 3.4, we give

a preliminary study of some optimization techniques. We summarize in Section 3.5.

3.1 Introduction

The most interesting part of the Core Library is its notion of expressions, embodied in

the class Expr. Instances of the class Expr can be thought of as algebraic expressions

48

built up from instances of constant rational numbers via repeated application of the

four basic arithmetic operations +;�;�;� and the square root operation
p

. A simple

example of such radical expressions is

E = 8721

p

3� 10681

p

2�

1

8721

p

3 + 10681

p

2

; (3.1)

whose value happens to be identically zero. An expression is represented as a directed

acyclic graph (DAG) internally. We assume the constants at leaves are error-free.

A distinctive feature in our library is that it can compute the numerical approxima-

tion of an expression to arbitrary relative or absolute precision. Suppose an expression

E also has a value val(E) which is exact. Unfortunately, the value val(E) is in the

mathematical realm (here we limit our discussion to the real number field R) and not

always directly accessible. Instead, we associate with E two other quantities: a preci-

sion bound �

E

and an approximation eE. The library guarantees that given a precision

bound �

E

, it can compute an approximate value eE such that the distance between e

E

and val(E) is within the bound �

E

. For instance, if we were using absolute precision,

we can specify �
E

by a non-negative number �
E

and this would mean that the approxi-

mation value eE computed by the system would satisfy j eE � val(E)j � �

E

.

What is important is that �
E

can be freely set by the user, and the approximation

e

E is automatically computed by the system to meet this precision. In particular, if we

increase the precision �
E

, then the approximation eE will be automatically updated.

Exact comparison The Core Library supports exact comparison among real algebraic

expressions. While we can generate arbitrarily accurate approximations to an expres-

sion, this does not in itself allow us to do exact comparisons. Without root bounds,

when we compare two numbers that happen to be equal, generating increasingly accu-

49

rate approximations can only increase our confidence that they are equal, but cannot tell

us whether they must be equal. For example, in Maple, when evaluating the expression

(3.1) with a decimal precision 1000, it outputs 1:046985018� 10

�995 and gives a neg-

ative answer on the query “E = 0?”. Our Core Library can verify it positively within

0.005 seconds on a Sun UltraSPARC workstation. In order to separate an algebraic

number away from zero, we need some elementary theory of algebraic root bounds

[62, 35]. As we have discussed in Chapter 2, this is the basis of the Exact Geometric

Computation (EGC) approach. We use a simple example to illustrate the importance of

exact comparison in predicate evaluation within geometric programs:

Example 3.1. We construct a plane P in E

3 with the equation x + y + z = 1 and

intersect P with lines L
ij

(i; j = 1; 2; : : : ; 50) though the origin (0; 0; 0) and the point

(i; j; 1). We then test if the intersection point P
ij

= L

ij

\ P lies on the plane P . When

implemented using the Expr class in our library, the answer is positive in all the 2500

cases. But with the machine’s built-in floating-point numbers, the answer is correct

only in 1538 cases (62.5%).

Ease of use Our library is easy to use. It provides a number of “exact” data types

whose syntax and semantics are compatible with those of primitive types, such as

double in C++. It requires little extra effort for users to implement new robust geometric

applications using our library. Typically, an existing geometric program can be made

robust simply by inserting a preamble to redefine the number types used in the program

to our “exact” data types. In our current distribution of the library, there are a num-

ber of demo programs which are simply taken from some standard implementations.

For example, we converted O’Rourke’s implementations [45] of Graham’s algorithm

for 2D convex hull, the incremental algorithms for 3D convex hull and 2D Delaunay

50

triangulation. For these examples, the major modifications made are the conversion of

the printf statements with double arguments to the stream I/O operations in C++,

because numbers in our library are C++ objects and cannot use the built-in printf

statements. Steven Fortune’s C implementation of his sweepline algorithm [13] for the

Voronoi diagram of a planar point set has also been converted. Generally, in converting

unfamiliar existing programs, we find the most difficult part is to locate the critical data

and predicates that need to be promoted for exact computation. Moreover, a number

of language issues (such as the printf problem, etc.) should also be addressed. We

refer interested readers to our tutorial on the library [34] for more details.

Precision-driven computation and active error tracking The evaluation of expressions

is driven by the precisions explicitly specified or implicitly needed. The system first

propagates the precision requirements down the DAG in a way that guarantees the ap-

proximation values computed from bottom-up in a later step must satisfy the precision

bound �
E

at each node E.

Along with the approximation of an expression, we also compute an error bound

Err
e

E

of the approximation such that it is guaranteed that j eE � val(E)j � Err
e

E

. This

bound is obtained through forward error analysis on the approximation process, based

on some standard interval arithmetic techniques. For instance, if eE =

f

E

1

+

f

E

2

then the

error bound in eE is essentially 1 determined by the error bounds Err
f

E

1

and Err
f

E

2

. In

this sense, we say that error bounds are á posteriori values while precision bounds are

á priori values.

Usually the error bound provides us with a more accurate estimate on the absolute

1In operations such as division or square roots, if the operands have no error, then we rely on some global

parameter to bound the error in the result.

51

error of the current approximation than the precision bound does. Thus, before we

re-evaluate an expression to higher precision, we always check the new precision re-

quirement against the current error bound to see whether the existing approximation has

already satisfied the new precision. If not, the re-evaluation will proceed. Otherwise,

we just return the current approximate value.

Precision sensitive approach The Core Library follows the precision sensitive approach

[61] to EGC. In exact sign determination, instead of computing to the precision inferred

by root bounds directly, we increase the precision of approximation incrementally step

by step, until the sign comes out for sure, or we hit the root bound.

Numerical I/O The expressions in our library support stream I/O in C++. Our system

can read arbitrarily long numbers, in either positional or scientific notation, from input

streams into expressions. Alternatively, there is an expression constructor from strings.

In general, a decimal number such as 1:23 cannot be exactly represented in the binary

format. Thus the system allows users to specify a precision for reading input numbers,

or to choose to read them in exactly as rational numbers.

As for the output of expressions, the library does not output the structure of expres-

sions. Instead, it prints out a numerical approximation of expressions. Note that this

might result in the loss of the exact value of an expression. The numerical approxima-

tion can be printed in both positional and scientific notations. In both formats, users can

specify the number of digits to be printed, provided there are that many correct digits

in the approximation. In general, all the output digits are correct except that the last

digit may be off by �1. Note that an output of 19.99 is considered correct for the value

20.00, according to this convention. Of course, the approximate value of an expression

52

can be improved to as many correct significant digits as we want (but the user will have

to force a re-evaluation before output).

COREX extensions The Core Library is an open system which incorporates a design

idea that a light-weight general-purpose numerical core should be complemented by

various extensions (called COREXs) that include a collection of robust implementations

of frequently-used APIs. Various domain specific knowledge can be embedded into

separate extension package. In our distribution, we include two simple COREX’s, for

linear algebra and for geometry, respectively.

Comparison with big number packages The Core Library is built upon the big number

packages. Nevertheless, there are some fundamental differences between our library

and big number packages. First, our library employs some elementary algebra knowl-

edge about root bounds and hence is able to support exact computation of radical ex-

pressions. The traditional big number packages can only support rational computation.

When root extractions are introduced, no single big number package alone can handle

the exact comparison problem. Secondly, our library employs a novel precision-driven

approach, while big number packages are usually precision insensitive and always com-

pute to full accuracy up front regardless of whether this is really necessary.

3.2 Numerical Precision

It is important to understand the concepts of precision and error as used in our system.

In this section, we give their definitions and discuss their roles and interaction in our

system.

53

3.2.1 Definitions

We now use a notation from [61] to specify the nature of the precision bound �
E

.

Given a real number X , and “extended” integer numbers (i.e., Z[�1) a and r, we

say that a real number eX is an approximation of X to the (composite) precision [r; a℄,

denoted

e

X ' X [r; a℄ ;

provided either

�

�

�

e

X �X

�

�

�

� 2

�r

jXj or

�

�

�

e

X �X

�

�

�

� 2

�a

:

Intuitively, r and a bound the number of “bits” of relative and absolute error (respec-

tively) when eX is used to approximate X . Note that we use the “or” semantics (either

the absolute “or” relative error has the indicated bound). In the above notation, we

view the combination “X[r; a℄” as the given data (although the number X is really a

black-box which might not be able to be explicitly represented) from which our system

is able to generate an approximation eX. For any given data X[r; a℄, we are either in the

“absolute regime” (if 2�a � 2

�r

jXj) or in the “relative regime” (if 2�a � 2

�r

jXj).

To force a relative precision of r, we can specify a = 1. Thus X[r;1℄ denotes

any e

X which satisfies

�

�

�

e

X �X

�

�

�

� 2

�r

jXj. Likewise, if eX ' X[1; a℄ then e

X is an

approximation of X to the absolute precision a, j eX �Xj � 2

�a.

In implementation, r and a are extLong values. We use two default global variables

to specify the global composite precision:

[defRelPrec;defAbsPrec℄:

It has the default value [35;1℄. The user can change these values at run time.

54

Sometimes, we want to control this precision for individual variables. If e is an Expr

object, the user can compute an approximation within the composite precision [rel,

abs] by invoking the member function e.approx(rel, abs). The function re-

turns a Real instance that satisfies this requested precision. If e.approx is called with-

out any arguments, it will use the global precision settings [defRelPrec;defAbsPrec℄.

3.2.2 Bounds on the Magnitude of Expressions

We need to know the magnitude of the value (i.e., jEj, or for simplicity lg(jEj)) of an

expression E in order to transform a relative error bound to an absolute one (e.g., in

deciding which component in a composite precision bound is the weaker one that we

shall follow). Such information is also needed in propagating precision bounds (see

Section 3.2.3 below).

Intuitively, the logarithm form lg(jEj) tells us about the location of the first signif-

icant bit. Hereafter we simply call blg(jEj) the Most Significant Bit (or MSB) of an

expression. By definition, the MSB of 0 is �1.

In general, lg(jEj) can be computed to arbitrary precision. But doing so at each

node is quite expensive and is not always necessary. In practice, we compute an interval

�

�

�

E

; �

+

E

�

that contains lg(jEj). Table 3.1 gives the basic rules to compute such an

interval inductively. Here, ��
E

and �+
E

are lower and upper bounds on lg(jEj). Usually

(e.g., in our Core Library), for simplicity and efficiency, the end-points of this interval

are chosen to be integers. For example, in the first row, lg(a
b

) may be replaced by

�

lg(

a

b

)

�

and
�

lg(

a

b

)

�

, respectively. We omit further implementation details here.

Note that because there is potential cancellation in additions or subtractions, we

cannot derive the lower bounds for these two operations in terms of bounds about E
1

55

Table 3.1: Rules for upper and lower bounds on lg(jEj)

E �

+

E

�

�

E

rational a

b

lg(

a

b

) lg(

a

b

)

E

1

�E

2

maxf�

+

E

1

; �

+

E

2

g+ 1 blg(E)

E

1

�E

2

�

+

E

1

+ �

+

E

2

�

�

E

1

+ �

�

E

2

E

1

�E

2

�

+

E

1

� �

�

E

2

�

�

E

1

� �

+

E

2

k

p

E

1

�

+

E

1

=k �

�

E

2

=k

and E
2

only. If this happens, we approximate E to the first significant bit (i.e., with the

relative error 0.5) to get the the largest integral value not greater than lg(jEj). Here root

bounds determine the worst case complexity in this computation. However, when there

is no cancellation (e.g., two operands in an addition having the same sign), we can use

a simpler rule for this lower bound: ��
E

1

�E

2

= maxf�

�

E

1

; �

�

E

2

g.

3.2.3 Propagation of Precision Requirements

Suppose E is an expression represented as a DAG. Given a composite precision re-

quirement

�

E

= [r

E

; a

E

℄

on E, the system will propagate this precision requirement down the DAG.

First, it needs to determine which part (either r
E

or a
E

) in the composite precision

is the dominant one in our convention, and to translate the effective component bound

into a bound �
E

on the maximum absolute error allowed. The following rule computes

56

�

E

from �

E

and val(E):

�

E

=

8

>

>

>

>

<

>

>

>

>

:

2

�a

E if r
E

= +1;

2

�r

E

jval(E)j if a
E

= +1;

maxf2

�r

E

jval(E)j; 2

�a

E

g otherwise.

Note that actually the last rule alone suffices. But in practice, it is more efficient to

detect the specific cases r
E

= +1 or a
E

= +1 first. Moreover, we shall note that the

above transformation depends on the value of E. In Section 3.2.2, we have shown how

to bound this value.

Next, we can propagate these (absolute) precision bounds in a top-down fashion

using the rules presented in Table 3.2, where �
E

means the absolute precision require-

ment imposed on the node E. For simplicity, we denote �
E

i

as �
i

. The notation (E)

p

means to evaluate the expression E within the maximum absolute error p. Note that for

addition, subtraction and multiplication operations, the computation of eE is performed

exactly. But for division and square root operations, our rules allow an absolute error

up to �

E

2

.

Justification of precision propagation rules in Table 3.2

Lemma 3.1. Let E be a node in an expression DAG. Assume that the precision bounds

are assigned to operand(s) according to the rules in Table 3.2, and the approximate

value of each operand(s) satisfies these precision bounds. Then the approximation eE

at each node E (see the third column of that table) satisfies that

jE �

e

Ej � �

E

;

where �
E

is the precision bound required on the node E.

57

Table 3.2: Syntax-guide propagation of precision bounds

E Rules e

E

E

1

�E

2

�

1

= �

2

=

1

2

�

E

e

E = (

f

E

1

�

f

E

2

)

0

E

1

�E

2

If �
E

� 8jEj then

�

1

= �

E

=(4jE

2

j), �
2

= �

E

=(4jE

1

j)

else

 =

j

p

�

E

=jEj+ 1

k

� 1, and

�

1

= � jE

2

j, �
2

= � jE

1

j

e

E = (

f

E

1

�

f

E

2

)

0

E

1

�E

2

�

1

= �

E

jE

2

j=4, �
2

=

�

E

jE

2

j

2

4(jE

1

j+�

1

)+�

E

jE

2

j

e

E = (

f

E

1

�

f

E

2

)

�

E

2

k

p

E

1

�

1

= �

E

p

E

1

=2

e

E = (

℄

q

f

E

1

)

�

E

2

Proof.

Proof by induction on the structure of the DAG representation of the expression E.

In the base case E =

a

b

, it is known that we can approximate a rational constant to

arbitrary precision.

The intermediate node E can be any of a number of possible types as follows. By

the induction hypothesis, we know that this lemma is true for every children of E.

1. E = E

1

�E

2

. The approximate value eE =

f

E

1

�

f

E

2

. Note that here we assume that

the additions and subtractions of two approximate operands are handled exactly.

Thus,

jE �

e

Ej = j(E

1

� E

2

)� (

f

E

1

�

f

E

2

)j

� jE

1

�

f

E

1

j+ jE

2

�

f

E

2

j

� �

1

+ �

2

58

2. E = E

1

� E

2

. The multiplication in computing eE =

f

E

1

�

f

E

2

is exact. Thus,

when �
E

� 8jEj, we have

jE �

e

Ej � jE

1

j�

2

+ jE

2

j�

1

+ �

1

�

2

�

�

E

4

+

�

E

4

+

�

2

E

16jE

1

E

2

j

� �

E

If �
E

> 8jEj,

jE �

e

Ej � jE

1

j�

2

+ jE

2

j�

1

+ �

1

�

2

� (2+

2

)jEj

� �

E

=jEj � jEj = �

E

3. E = E

1

� E

2

. The division in computing eE =

f

E

1

�

f

E

2

might not be exact and

can has an error at most �
E

=2. Moreover, it is easy to verify that �
2

� jE

2

j.

Therefore,

jE �

e

Ej � j

E

1

E

2

�

f

E

1

f

E

2

j+ j

f

E

1

f

E

2

�

f

f

E

1

f

E

2

j

�

j

f

E

1

j�

2

+ j

f

E

2

j�

1

jE

2

f

E

2

j

+

�

E

2

�

j

f

E

1

j�

2

jE

2

f

E

2

j

+

3�

E

4

�

�

2

(jE

1

j+ �

1

)

jE

2

j(jE

2

j � �

2

)

+

3�

E

4

�

�

E

jE

2

j

2

4(jE

1

j+ �

1

) + �

E

E

2

�

(jE

1

j+ �

1

)

jE

2

j

�

1

jE

2

j �

�

E

jE

2

j

2

4(jE

1

j+�

1

)+�

E

E

2

+

3�

E

4

� �

E

59

The implicit restriction that �
2

� jE

2

j is necessary in divisions, because basically

this means that the divisor fE
2

cannot be zero. Otherwise, since the error depends

on 1

j

f

E

2

j

, it might be potentially unbounded.

4. E =

p

E

1

. Assume the square root operation in computing e

E =

℄

q

f

E

1

has a

precision of �
E

=2. Thus,

jE �

e

Ej � jE �

q

f

E

1

j+ j

q

f

E

1

�

℄

q

f

E

1

j

�

jE

1

�

f

E

1

j

p

E

1

+

q

f

E

1

+

�

E

2

�

�

E

1

p

E

1

+

�

E

2

� �

E

Q.E.D.

3.3 Design of the Library

The library features an object-oriented design and is implemented in C++. From a

user’s point of view, the library is a collection of “exact” numerical data types (in the

form of C++ classes) which can be used in the same way as built-in primitive types

such as int or double. Our library supports exact computation of algebraic expressions.

3.3.1 Overview of the Core Library Architecture

There are four main subsystems in the Core Library: expression (Expr), real numbers

(Real), big floating-point numbers (BigFloat) and big integer/rational numbers. They

are built up in a layered structure (see Figure 3.1). The Expr package at the top level

60

provides the basic functionalities of exact geometric computation. Generally this con-

sists the only interface that users need to program with. But experienced users can also

access the unique numerical capabilities of underlying number classes directly.

Figure 3.1: Overview of the system architecture.

Overview of the Core Library Architecture

Real

Big Float

Expression

-- The main class in CORE.

-- Represents algebraic expressions as DAGs.

-- Encodes the EGC techniques.

-- Supports arbitrary numerical precision.

-- Precision driven.

-- Represents real numbers.

-- Unifies different number types.

-- Exact and approximate representations.

-- A generalizaion of floating-point numbers.

-- Interval representation of real numbers.

-- Automatic error tracking.

«uses»

«uses»

Big Numbers -- Multiple precision integer and rational arithmetic.

-- Software implementation.

«uses»

61

Here is a brief summary of these sub-systems and their interactions:

Expr is the most important class of the library and provides the mechanism for exact

geometric computation. It represents expressions that are constructed from ra-

tional constants by repeated application of the four basic arithmetic operations

f+;�; �; =g and square root. Internally, expressions are represented as directed

acyclic graphs. The constants at leaves are instances of the Real class and are

assumed error-free in our system. We can approximate an expression to arbi-

trary precision. The approximate value, along with its associated error, if any, is

represented as a Real object.

Real is a “heterogeneous” number system that currently incorporates the following six

subtypes: int, long, double, Integer, Rational, and BigFloat. The first three are

standard machine primitive types with fixed precision while the latter three are

multiple precision number types which are built upon some big number packages.

Especially, BigFloat is an interval representation of real numbers. The role of

Real is to integrate these different types and to provide a unified interface for real

number arithmetic.

BigFloat is an arbitrary precision floating point number representation that we built on

top of Integer. A BigFloat is represented by the triple hm; "; ei where m is the

mantissa of type Integer, " is the error bound and e is the exponent. It represents

the interval [(m� ")Be

; (m+ ")B

e

℄ where B = 2

14. These intervals are automat-

ically maintained when performing arithmetic with BigFloat’s. The BigFloat is

used by our library to represent approximate values and the associated numerical

errors in computation.

62

BigNumbers This sub-system includes the implementation of multiple precision inte-

ger Integer and rational number Rational. The arithmetic among them is exactly

handled, but not precision sensitive. There are a number of big number packages

available. In Version 1.3 of the library, we incorporate the LiDIA’s extendible

interface, and use CLN’s Integer and Rational as the kernel.

3.3.2 Expressions

This package captures a class of algebraic expressions in general geometric computa-

tion.

Definitions In our system, expressions refer to those which can be constructed from

rational constants by a finite number of repeated application of the four basic arithmetic

operations f+;�; �; =g and square root. The value of an expression is a real algebraic

number in �

Z. We assume the constants at leaves are error free. Given an arbitrary rela-

tive or absolute precision bound, the system can approximate the value of an expression

within the specified precision bound.

An instance of the class Expr E is formally a triple

E = (T; P; A)

where T is an expression tree, P is a composite precision, and A is some real number

or " (undefined value). The internal nodes of T are labeled with one of those operators

+;�;�;�;

p

�; (3.2)

and the leaves of T are labeled by Real values or is ". P = [r; a℄ is a pair of extLongs.

If all the leaves of T are labeled by Real values and the operations at each decedent

63

node is well defined, then there is a real number V that is the value of the expression

T ; otherwise, V =". Finally, the value A satisfies the relation

A ' V [r; a℄:

This notation was explained in Section 3.2. This is interpreted to mean either V =

A =" or A approximates V to precision P . In the current implementation, leaves must

hold exact values. Moreover, the value A is always a RealBigFloat, a subtype of Real

and a wrapper around BigFloat.

Value semantics Expr, the main class in this package, provides basic functionalities of

creating and manipulating expressions. The Expr adopts the standard value semantics.

That is, after an assignment s
1

= s

2

, the two Exprs s
1

and s

2

are fully distinct and

subsequent changes to the one have no effect on the other. An alternative is “pointer

semantics”, which was used in the Real=Expr package. That would let changes to s

2

after the assignment s
1

= s

2

also affect the value of s
1

.

Representation Expressions are represented internally as directed acyclic graphs which

record the history of computation in constructing them in client programs.

For the value semantics to be affordable, an Expr is implemented as a handle to

its representation and the representation is copied only when necessary (e.g. copy-on-

write). This is realized by introducing a representation class ExprRep which forms the

core of this package. As we will see, the expression DAG and most functionalities at

each nodes are actually implemented in ExprRep first and then simply wrapped under

the interface of Expr.

The nodes in expression trees are instances of the class ExprRep. More precisely,

each instance of Expr has a member rep that points to an instance of ExprRep. Each

64

instance of ExprRep is allocated on the heap and has a type, which is either one of the

operations in 3.2 or type “constant”. Depending on its type, each instance of ExprRep

has zero, one or two pointers to other ExprRep(s). For instance, a constant ExprRep,

a
p

�-ExprRep and a +-ExprRep has zero, one and two pointers, respectively. The col-

lection of all ExprReps together with their pointers constitute a directed acyclic graph

(DAG). Every node N of this DAG defines a sub-expression tree E(N) in the natural

way.

The separation of an expression object and its value representation allows multiple

objects with the same value to share a single representation of that value. For example,

considering an assignment statement (see Figure 3.3)

s

2

= s

1

;

instead of giving s

2

a copy of s
1

’s value, we have s
2

share s
1

’s value. This not only

saves space, but also leads to faster-running programs, because there’s no need to con-

struct and destruct redundant copies of the same value. All we have to do is a little

bookkeeping so we know who’s sharing what, and in return we save the cost of a call to

new and the expense of copying anything. The fact that the objects s
1

and s
2

are shar-

ing a data structure is transparent to clients. In fact, the only time the sharing of values

makes a difference is when one or the other objects is modified; then it’s important that

only one object is changed, not the others which are sharing the same value with it. In

this case, if there is sharing, we usually create a separate copy of that value and then

make changes on this new instance. The reference count will help us in deciding which

case applies, and more important, can simplify the bookkeeping work surrounding heap

objects.

65

Class Hierarchy The expression DAG is implemented through the abstract class ExprRep.

Each instance of ExprRep represents a node in the DAG. We can categorize the node

types into three classes based on the number of operands: constants, unary operations

and binary operations. Three subtypes of ExprRep can be defined accordingly:

ConstRep represents constants in an expression. They always appear in the leaves.

The value of an instance of ConstRep is stored in the data member value of the

type Real. We assume the value is an error-free rational number (e.g., fixed preci-

sion floating-point numbers are also rational) and hence can be approximated to

arbitrary precision.

UnaryOpRep is an abstraction of unary operators including negation and square root.

It holds a single pointer to its only child (operand). The two classes NegRep and

SqrtRep implement this abstract interface.

BinOpRep is an abstraction of binary arithmetic operators, including addition, sub-

traction, multiplication and division. These four basic arithmetic operations are

implemented in the four derived classes of BinOpRep: AddRep, SubRep, MultRep

and division DivRep, respectively.

We show the class hierarchy diagram in Figure 3.2.

Construction and arithmetic of expressions An expression can be constructed starting

from constants. The constructors in the Expr class can build an Expr object from num-

bers of primitive data type (such as int, double, etc.), big integer or rational numbers,

error-free BigFloat and Real objects, and other Expr instances.

The basic arithmetic operators (minus, +;�;�;�) and the square root function

66

have been overloaded. In this way, expressions are recursively constructed as the natu-

ral result of arithmetic operations.

Basically, in a user application, the class Expr can be programmed in the same way

as it is a primitive data type. As an example, the code to verify the identity of the

expression E in (3.1) is as follows:

#define Level 3

#include "CORE.h"

int main() f

double x = 2;

double y = 3;

double sx = sqrt(x);

double sy = sqrt(y);

double e = 8721 * sy - 10681 * sx

- 1 / (8721 * sy + 10681 * sx);

cout << ((e == 0) ? "yes (CORRECT)" :

"no (INCORRECT)") << endl;

g

In the beginning of this program, we define a flag to specify the accuracy level in

our library. In the level 3, all the doubles are redefined to be Expr objects that support

exact computation.

We shall note that in our implementation of arithmetic operators, no numerical com-

67

putation is actually performed. Instead, we employ the strategy of lazy expression eval-

uation. In the above example, no actual computation is done at the initial assignment

of the object e. The real computation is postponed until the comparison embedded in

the cout statement. In general, when an arithmetic operation such as s
1

+ s

2

is ex-

ecuted, it creates a temporary Expr object for storing the result. This object contains

only a pointer to a newly created data structure of the type AddRep, with its two chil-

dren pointers directed to s

1

and s

2

, which indicates that its value is the sum of these

two children. In this strategy, we defer the real numerical evaluation of expressions

until the result is really needed. Moreover, our evaluation is designed to be precision

driven. That is, we only compute an expression to the precision that is required in a

computation.

We compute the bounding interval for lg(jval(E)j) at each node E at the construc-

tion time using the rules specified by Table 3.1 in Section 3.2.3. Note that because of

possible cancellations, we might need to make a number of iterations before we can

determine the lower bound of the interval at addition and subtraction nodes.

Evaluation of expressions The evaluation of an expression to specified precision gen-

erally includes two steps:

1. A top-down propagation of precision bounds in the expression DAG using the

rules we present in Section 3.2.

2. Computation of the numerical approximation and error bound at each node in a

bottom-up fashion. The error shall not exceed the precision bounds specified for

that same node.

68

The approximate value is represented as a Real object. When computing approxi-

mate values, we also track the maximum possible error of an approximation. In Step

2, it is unnecessary to proceed below a node if the error of its current approximation

already satisfies the precision bound required on it.

3.3.3 The Real Package

Built upon the Real=Expr library, the Real package integrates six data types:

int, long, double, Integer , Rational, and BigFloat.

The class Real encapsulates implementation details and presents a uniform interface to

these different representations of real numbers. There is a natural type coercion relation

among these types as one would expect. It is as follows:

int � long � double � BigFloat � Rational ,

int � long � Integer � Rational .

The BigFloat in this coercion is assumed to be error-free. But in general, BigFloat is an

interval representation of real numbers. Besides BigFloat, all the other data types are

considered as “exact” in the sense that they unambiguously correspond to some unique

real number. Clearly, any “exact” representation can be converted to a BigFloat with

errors.

The Real class implements the usual value semantics. However, unlike the Expr

class, it does not keep a tree structure. In arithmetic operations, the corresponding

numerical computation is performed immediately and then the result is put in another

Real object.

69

In the Core Library the class Real is used as the carrying vehicle of approximate

values and error estimates, and as the tool to manipulate the approximate values in a

unified and predictable manner.

3.3.4 The BigFloat Class

A BigFloat number x is given as a triple hm; err; expi where m is the mantissa, the

error-bound err 2 f0; 1; : : : ; B � 1g and exp is the exponent. Here the base B is equal

to 2

14. For efficiency reasons, we use the normalized notation.

The “number” x really represent the interval

[(m� err)B

exp

; (m+ err)B

exp

℄ (3.3)

We say that a real number X belongs to x if X is contained in this interval. We in-

herit the BigFloat class from the Real=Expr package [46]. In our implementation, m is

Integer, err is unsigned long, and exp is long for efficiency. Version 1.3 uses

the LiDIA/CLN as the big number kernel.

If err = 0 then we say theBigFloat x is error-free. When we perform the operations

+;�; �; = and
p

on BigFloat numbers, the error-bound is automatically maintained

subject in the following sense: if X belongs to BigFloat x and Y belongs to BigFloat y,

and we compute BigFloat z = x Æ y (where Æ 2 f+;�;�;�g) then X Æ Y belongs to

z. A similar condition holds for the unary operations. In other words, the error-bound

in the result z must be “large enough” to contain all the possible results.

There is leeway in the choice of the error-bound in z. Basically, our algorithm tries

to minimize the error-bound in z subject to efficiency and algorithmic simplicity. This

usually means that the error-bound in z is within a small constant factor of the optimum

error-bound (see Koji’s thesis [46] for more details). But this may be impossible if both

70

x and y are error-free: in this case, the optimum error-bound is 0 and yet the result

z may not be representable exactly as a BigFloat. This is the case for the operations

of � and
p

�. In this case, our algorithm ensures that the error in z is within some

default precision (the value of global variable defAbsPrec), or within some precision

specified.

A practical consideration in the design of the class BigFloat is that we insist that

the error-bound err is at most B. To achieve this, we may have to truncate the number

of significant bits in the mantissa m and modify the exponent exp appropriately at the

same time.

3.4 System Optimization

The Core Library effectively addresses the robustness concerns in geometric computing.

However, this often comes at the cost of efficiency. In this section, we discuss some

system and compilation techniques to improve the efficiency [29].

Because of the need to store dependencies between values; to maintain data struc-

tures that can store values, dependencies; and to overload operators like assignment,

copying, and arithmetic, expression evaluation in Core Library requires a lot of soft-

ware work and is considerably slower than that of those primitive data types, such as

double, which are widely supported in current computer hardware.

Expression evaluation involves a recursive traversal of the expression DAG and

iterated traversals may be necessary because of the precision-sensitive nature of our

Core Library. Maintaining the explicit expression DAG guarantees robustness, but it re-

duces execution efficiency on current-day pipelined computer systems with deep mem-

ory hierarchies. Here we use the Gaussian elimination method for matrix determinants

71

as an example. A frequently-used expression in this algorithm is

A(i; j) � = A(j; i) � A(i; k)=A(i; i):

We can exploit the fact that the three operations in this expression are fixed and known,

and encode the type information into a new node type just for such composite mul-div-

sub operations. In this way, we reduce the complexity of type inference and get rid

of some runtime cost such as maintaining runtime type information, virtual function

resolution, dynamic memory management to the compilation stage.

Moreover, some code specification techniques such as inlining and cloning are used

to increase the effectiveness of traditional sequential optimizations. We also implement

our own customized memory management routines which significantly reduces the cost

of dynamic memory management based on the default generic allocator and delocator.

We conducted some pilot studies [29] which have shown these system techniques

can speed up the overall performance by a factor of 2.

3.5 Summary

In this chapter, we present the Core Library, a library for exact numeric and geometry

computation. The main features of this library include:

� Users can use our library in developing robust software which is free from in-

tractable numerical errors in ordinary floating-point arithmetic.

� The library supports numerical computation of algebraic expressions to arbitrary

relative or absolute precision. The running time is precision sensitive.

� In contrast to traditional exact integer or rational arithmetic approaches based

on big number software packages, our library provides better, precision-sensitive

72

performance behavior. Moreover, our library support a broader class of algebraic

expressions.

� It is very easy to use our library in development. Our design of the library features

a nearly transparent integration with the conventional C++ programming style.

In most cases, it simply amounts to substituting the imprecise primitive number

types with the “exact” data types provided by the Core Library. No special knowl-

edge regarding numerical analysis and non-robustness problems is needed. There

is also no need to modify the underlying program logic.

� The library is of compact size and can be easily extended.

A challenge for future work is to further improve the efficiency of the Core Library.

A number of topics to be explored include incremental computation, compilation and

partial evaluation of expressions.

73

Figure 3.2: Class hierarchy in the Expr package.

Class Hierarchy for Expressions

+approx(in relPrec : extLong = defRelPrec, in absPrec : extLong = defAbsPrec) : Real
+exact comparisons() : bool

-rep : ExprRep*

Expr

+getAppValue(in relPrec : extLong, in absPrec : extLong) : Real
+getSign() : int

#refCount : unsigned int = 0
#appValue : Real = 0
#appPrec : extLong = - infty
#parameters for root bounds

ExprRep

Real

#computeAppValue()
#computeExactFlags()

-value : Real

ConstRep

#child : ExprRep*

UnaryOpRep

#first : ExprRep*
#second : ExprRep*

BinOpRep

#computeAppValue()
#computeExactFlags()

NegRep

#computeAppValue()
#computeExactFlags()

SqrtRep

#computeAppValue()
#computeExactFlags()

AddRep

#computeAppValue()
#computeExactFlags()

SubRep

#computeAppValue()
#computeExactFlags()

MultRep

#computeAppValue()
#computeExactFLags()

DivRep

Exact comparison functions

«friend»

74

Figure 3.3: Reference counting.

After the assignment s2 = s1

Before the assignment s2 = s1

rep : ExprRep* = rep1

s1 : Expr

rep : ExprRep* = rep1

s2 : Expr

refCount : unsigned int = 2

appValue

appPrec

parameters for root bounds

rep1 : ExprRep

refCount : unsigned int = 1

appValue

appPrec

parameters for root bounds

rep1 : ExprRep
rep : ExprRep* = rep1

s1 : Expr

rep : ExprRep* = ...

s2 : Expr

75

Chapter 4

Randomized Zero Testing of Radical

Expressions and Geometry Theorem

Proving

Although focused on geometric computation, our CORE library can also be used in

other areas where numerical computations require arbitrary absolute or relative pre-

cision. In this chapter, we discuss the application of our Core Library in testing the

vanishing of multi-variate radical expressions, and in automated theorem proving [55].

We devise a novel probabilistic approach for the zero testing of multi-variate radical

expressions with square roots (see Section 4.1). Our method is an extension of the well-

known Schwartz’s probabilistic test on the vanishing of polynomials. As in Schwartz’s

test, our method tests the vanishing of radical expressions on examples chosen from

some finite test set with appropriate cardinality. Because of numerical errors, a chal-

lenge in practice is to guarantee the correctness of tests on these examples. Here we

employ our Core Library, which is able to determine the sign of algebraic expressions

76

exactly. As we have discussed, the cost of exact computation depends on the bit-length

of inputs. Thus, for better efficiency, we want the size of test set to be as small as

possible.

In [55], Yap proposed a novel method to bound this size based on the preparation

of Straight Line Programs. The basic idea is to implicitly construct a polynomial which

contains all the zeros of a radical expression and then bound the degree of this poly-

nomial. After that, we can apply Schwartz’s Lemma regarding the relation of error

probability and the cardinality of the test set. In Section 4.1, we give a new simpli-

fied approach to derive this bound and this also leads more efficient computation of the

bound.

Based on the zero test, we present a probabilistic approach in Section 4.2 to prove el-

ementary geometry theorems about ruler-and-compass constructions by randomly cho-

sen examples. A probabilistic theorem prover based on this approach was implemented

by Tulone, using the Core Library. The prover can prove conjectures with an arbitrarily

small failure probability, by testing the validity of a theorem on random examples. We

report some experimental results at the end of this chapter. Most of the results of this

chapter have been published in [55].

4.1 A Randomized Zero Test for Multivariate Radical Expressions

with Square Roots

Suppose E is a multi-variate radical expression which is constructed from constants

and m input variables u = fu

1

; u

2

; : : : ; u

m

g through repeated application of four ba-

sic arithmetic operations f+;�;�;�g and square root
p

�. The expression E can be

viewed as a DAG (directed acyclic graph). We allow the sharing of common sub-

77

expressions in the DAG. In this section, we present a probabilistic method to test the

vanishing of E by extending the well-known Schwartz’s test for polynomials. Below is

a simple form of Schwartz’s lemma:

Lemma 4.1 (Schwartz, 1980). Suppose that P (u) is a polynomial in the variables of

u = fu

1

; u

2

; : : : ; u

m

g with the degree deg(P) and that P (u) is not identically zero. Let

S be any finite set of elements in the domain or field F of the coefficients of P with the

cardinality jSj. If each instance a
i

(i = 1; : : : ; m) is randomly chosen from S, then the

probability that P (a

1

; : : : ; a

m

) = 0 is at most
deg(P)

jSj

.

Note that polynomials can be multivariate and in that case, the degree D is the total

degree.

In order to apply the Schwartz Lemma in zero testing of radical expressions, our

major task is that given a multivariate radical expression E(u), find an appropriate

upper bound of degreeD such that there exists a non-zero polynomialP with the degree

at most D and

zero(E) � zero(P):

The basic idea is to construct such a polynomial by keeping eliminating the outer-most

square root operations in E, step by step. Note this construction is implicit and we do

not compute this polynomial explicitly. Instead, we give a method to bound its degree,

because it is the degree that determines the cardinality of test set.

4.1.1 Straight Line Program and Rational Degree

In the following analysis, we will use the Straight Line Program (SLP) to represent rad-

ical expressions, in order to take advantage of the sharing of common subexpressions

to derive a tight degree bound.

78

Straight Line Program A SLP � is defined as a sequence of steps where each step is

an assignment to a new programming variable. In our particular settings, the i-th step

has one of the forms

z

i

 x

i

� y

i

; (� 2 f+;�;�;�g); or (4.1)

z

i

p

x

i

(4.2)

where z
i

is the newly introduced programming variable at this step, x
i

and y
i

are either

rational constants, input variables u
i

2 u = fu

1

; u

2

; : : : ; u

m

g for some m, or program-

ming variables z
k

(1 � k � i) introduced in previous steps. The variables x
i

and y
i

are

said to be used in the i-th step. The last introduced variable is called the main variable

of the SLP and is never used.

A SLP as defined above can be mapped to an expression DAG E in the natural way:

the constants and input variables are leaves, and the programming variables introduced

are the intermediate nodes labeled by arithmetic operators. For example, the variable

z

i

which is shown above is mapped to a node which has outgoing edges pointing to

the operand node(s) (x
i

and y

i

in 4.1 and x

i

only in 4.2) appearing in the right side of

the assignment statement. If (u; v) is an edge, we say u is the predecessor of v and v

is the successor of u. The only node with the in-degree 0 is called the root which is

corresponding to the main variable. Those nodes having no out-edges are called leaves

which are corresponding to the constants and input variables in a SLP. For a node p in

the DAG, its induced DAG (i.e., the sub-DAG formed by all the nodes reachable from

p and the edges induced by them) represents a sub-expression. Given a SLP �, let the

set Used be the set of all the variables used in �. Similarly we can define the induced

SLP �

v

of a programming variable v in a SLP � as the subsequence of � formed by all

79

the steps contained in the least fixed point (LFP) S as follows:

S :=fsjLHS (s) = v; s 2 �g [fsjLHS (p) 2 Used(S); s 2 �; p 2 �g;

where the operator LHS takes the left-hand variable (the target) of a step. Sub-expressions

can be shared. So there may be multiple paths between the root and a node below it.

For a radical node r, we define its radical depth as the number of square root nodes in

the path from r (inclusive) to the root. If there are more than one paths, by definition,

we choose the one which has more square roots on it than any other such paths.

Let E be a radical expression in the variables fu
1

; u

2

; : : : ; u

m

g. We denote Q

0

as

the extension Q(u

1

; u

2

; : : : ; u

m

). Suppose there are r square roots in E, listed in the

partial order of the dependency relation as follows:

RAD = f

p

x

l

1

;

p

x

l

2

; : : : ;

p

x

l

r

g;

where x
l

k

are intermediate subexpressions. Clearly there are at most k radical nodes in

the induced DAG of x
l

k

, and these radical nodes are elements in f
p

x

l

1

;

p

x

l

2

; : : : ;

p

x

l

k

g.

We define a tower of r extensions by adjunction of square roots starting from Q

0

as fol-

lows:

Q

0

� Q

1

� Q

2

� : : : � Q

r

;

where Q

i

= Q

i�1

(

p

x

l

i

), x
l

i

2 Q

i�1

and i = 1; 2; : : : ; r. For each variable intermediate

z in the SLP �(E) for E, we can define its value to be an appropriate element in certain

extension Q

k

over Q
0

where k is the number of distinct square roots in the induced

SLP of z. Note here we use the concepts variables and nodes interchangeably. This is

justified by the fact that there is an injective mapping from a SLP to a DAG. Especially,

the value of E is in the extension field Q

r

.

80

Table 4.1: Inductive definition of rational degrees

z udeg(z) ldeg(z)

constant 0 0

parameter 1 0

x� y udeg(x) + udeg(y) ldeg(x) + ldeg(y)

x� y udeg(x) + ldeg(y) ldeg(x) + udeg(y)

x� y maxfudeg(x) + ldeg(y); ldeg(x) + udeg(y)g ldeg(x) + ldeg(y)

p

x

udeg(x)
2

ldeg(x)
2

Rational degree Let x be a variable in a SLP �. We inductively define its “upper” and

“lower” degrees, denoted as udeg(x) and ldeg(x) respectively, in the Table 4.1. We

define the rational degree rdeg(x) of x as a pair of numbers and

rdeg(x) = udeg(x) : ldeg(x) :

The rational degree of the SLP � is defined to be udeg(z
�

) : ldeg(z
�

) where z
�

is

the main variable of �.

An important feature about rational degrees is that they are preserved in many equiv-

alent transformations (with restrictions) of expression SLPs and give us a useful tool in

bounding the final degree of the polynomial we implicitly constructed.

In [55] we gave an alternative definition rational degrees where all the values are

natural numbers. The alternative definition is given in Table 4.2 (assume rdeg
2

(x) =

a

x

: b

x

and rdeg
2

(y) = a

y

: b

y

). This alternative definition of rational degrees need

some auxiliary notions: for any node or variable x, letRAD(x) denote the set of radical

nodes in the sub-DAG of � rooted at x. Write RAD(x; y) for RAD(x) n RAD(y) (set

81

Table 4.2: An alternative definition of rational degrees

z udeg
2

(z) ldeg
2

(z)

constant 0 0

parameter 1 0

x� y a

x

2

�(y;x)

+ a

y

2

�(x;y)

b

x

2

�(y;x)

+ b

y

2

�(x;y)

x� y a

x

2

�(y;x)

+ b

y

2

�(x;y)

b

x

2

�(y;x)

+ a

y

2

�(x;y)

x� y maxf(a

x

2

�(y;x)

+ b

y

2

�(x;y)

; b

x

2

�(y;x)

+ a

y

2

�(x;y)

)g b

x

2

�(y;x)

+ b

y

2

�(x;y)

p

x a

x

b

x

difference). Also let �(x) := jRAD(x)j and �(x; y) := jRAD(x; y)j.

The following lemma establishes the connection between the two definitions of ra-

tional degree.

Lemma 4.2. For any variable z in a SLP, we have

udeg
2

(z) = 2

�(z) udeg(z); ldeg
2

(z) = 2

�(z) ldeg(z);

where �(z) is the number of square roots in the induced SLP of z in �.

Proof. We use induction on the structure of the sub-DAG rooted at z. If z is a

constant, then udeg
2

(z) = ldeg
2

(z) = 0. If z is a parameter, then udeg
2

(z) = 1 and

ldeg
2

(z) = 0. The lemma is clearly true in these base cases.

82

If z = x� y then

udeg
2

(z) = maxf2

�(y;x) udeg
2

(x) + 2

�(x;y) ldeg
2

(y);

2

�(y;x) ldeg
2

(x) + 2

�(x;y) udeg
2

(y)g

= maxf2

�(z)��(x) udeg
2

(x) + 2

�(z)��(y) ldeg
2

(y);

2

�(z)��(x) ldeg
2

(x) + 2

�(z)��(y) udeg
2

(y)g

= 2

�(z)

maxfudeg(x)+ ldeg(y); ldeg(x)+ udeg(y)g

= 2

�(z) udeg(z);

ldeg
2

(z) = 2

�(y;x) ldeg
2

(x) + 2

�(x;y) ldeg
2

(y)

= 2

�(z)��(x) ldeg
2

(x) + 2

�(z)��(y) ldeg
2

(y)

= 2

�(z)

(ldeg(x)+ ldeg(y))

= 2

�(z) ldeg(z) :

If z = x� y then

udeg
2

(z) = 2

�(y;x) udeg
2

(x) + 2

�(x;y) udeg
2

(y)

= 2

(�(z)��(x)) udeg
2

(x) + 2

(�(z)��(y)) udeg
2

(y)

= 2

�(z)

(udeg(x)+ udeg(y))

= 2

�(z) udeg(z);

ldeg
2

(z) = 2

�(y;x) ldeg
2

(x) + 2

�(x;y) ldeg
2

(y)

= 2

(�(z)��(x)) ldeg
2

(x) + 2

(�(z)��(y)) ldeg
2

(y)

= 2

�(z)

(ldeg(x)+ ldeg(y))

= 2

�(z) ldeg(z) :

If z = x=y, then we have

83

udeg
2

(z) = 2

�(y;x) udeg
2

(x) + 2

�(x;y) ldeg
2

(y)

= 2

(�(z)��(x)) udeg
2

(x) + 2

(�(z)��(y)) ldeg
2

(y)

= 2

�(z)

(udeg(x)+ ldeg(y))

= 2

�(z) udeg(z);

ldeg
2

(z) = 2

�(y;x) ldeg
2

(x) + 2

�(x;y) udeg
2

(y)

= 2

(�(z)��(x)) ldeg
2

(x) + 2

(�(z)��(y)) udeg
2

(y)

= 2

�(z)

(ldeg(x)+ udeg(y))

= 2

�(z) ldeg(z) :

If z =

p

x then �(z) = �(x) + 1 since a new square root is introduced in this step. And

we have

udeg
2

(z) = udeg
2

(x)

= 2

�(z)�1��(x) udeg
2

(x)

= 2

�(z) udeg(z);

ldeg
2

(z) = ldeg
2

(x)

= 2

�(z)�1��(x) ldeg
2

(x)

= 2

�(z) ldeg(z) :

Q.E.D.

In the above lemma, we have shown that the alternative definition in Table 4.2 can

be computed from the original definition by multiplying a factor 2

�(z). In practice,

computing RAD(x; y) could be an expensive process. Thus, it is more efficient to

84

compute rational degrees defined by Table 4.1. In the following derivation, we adopt

the first definition because it often gives more succinct proofs.

4.1.2 Equivalent Transformations

In Straight Line Program, two variables x and y are said to be equivalent, denoted as

x � y, if they have the same value. Transformations of a SLP which preserve its value

are called equivalent transformation. Note that some equivalent transformations may

change rational degrees we have defined above. For instance, by the distributive law,

we have the equivalent transform:

(x+ y)z � xz + yz: (4.3)

It can be easily verified that the rational degree of the LHS (left-hand side) is at most

that of RHS, but can be less. However, the next lemma shows the rational degree in this

transformation preserved if z is free of divisions:

Lemma 4.3. The induced SLP of the variable z in � is division-free, then the equivalent

transformation 4.3 (in both directions) preserves rational degrees. In particular,

rdeg(z(x + y)) = rdeg(zx + zy) :

85

Proof. If z is division-free, ldeg(z) = 0. Then we have

udeg(z(x + y)) = udeg(z)+ udeg(x+ y)

= udeg(z)+maxfudeg(x)+ ldeg(y);

ldeg(x)+ udeg(y)g

= maxfudeg(z)+ udeg(x)+ ldeg(z) + ldeg(y);

ldeg(z)+ ldeg(x)+ udeg(z)+ udeg(y)g

= udeg(zx + zy)

ldeg(z(x + y)) = ldeg(x+ y)

= ldeg(x)+ ldeg(y)

= ldeg(zx + zy)

Q.E.D.

Next, we show that equivalent transformations based on the associative law and

commutative law of multiplication and addition do not change rational degrees.

Lemma 4.4.

rdeg(x� y) = rdeg(y � x)

rdeg(x� y) = rdeg(y � x)

rdeg((x� y)� z) = rdeg(x� (y � z))

rdeg((xy)z) = rdeg(x(yz))

Proof. The equalities can be easily verified by the first definition of rational degrees.

We omit the details of proof here. Q.E.D.

86

In the next two lemmas, we generalize the commutative and associative transforma-

tions.

Lemma 4.5.

rdeg(

k

Y

i=1

x

i

) =

k

X

i=1

rdeg(x
i

)

Proof. This lemma can be proved by induction on the number of operands. We omit

the details here. Q.E.D.

Lemma 4.6.

udeg(

k

X

i=1

x

i

) =

k

max

i=1

fudeg(x
i

)+

k

X

j=1;j 6=i

ldeg(x
j

)g

ldeg(

k

X

i=1

x

i

) =

k

X

i=1

ldeg(x
i

)

Proof. This lemma can be proved by induction on the number of operands. We omit

the details here. Q.E.D.

The above two lemmas allow us to introduce two well-defined nodes: “sum” or

P

-node, and “product” or
Q

-node. They generalize the ordinary binary addition and

multiplication operations by taking an arbitrary number of arguments. A SLP with

such extensions is called a generalized SLP. A path in a generalized SLP DAG is said

to be alternating if along the path, no two consecutive nodes are
P

-nodes and no two

consecutive nodes are
Q

-nodes. The SLP is alternating if every path is alternating.

From Lemmas 4.5 and 4.6, we know that any SLP can be made alternating without

changing its rational degree.

87

4.1.3 Preparation

A SLP � is said to be prepared (or in prepared form) if either there are no radical

operations in it, or the last three steps of it have the form

� � �

x

p

w

C

y x� w

B

z y + w

A

:

Here w
A

; w

B

; w

C

are variables or constants. Thus z is the main variable with the value

A + B

p

C, where A;B and C are the values of w
A

; w

B

; w

C

, respectively. Clearly x is

the last radical variable to be introduced and its radical depth is 1. We call the variable

x the main prepared variable of the SLP �. Intuitively, the main prepared variable has

been brought up as close to the root of the SLP as possible so that this square root can

be removed by the transformation we will introduce below. Similarly, we can extend

this concept to arbitrary variable in a SLP and say a variable v in a SLP � is prepared if

the induced SLP of v in � is prepared.

Now let us investigate how a SLP can be transformed into an equivalent prepared

form.

Let A
i

; B

i

be expressions for i = 1; : : : ; n and n > 0. We can define an expression

E

n

inductively:

E

n

=

8

<

:

A

0

� B

0

when n = 0;

(E

n�1

+ A

n

)� B

n

otherwise.

To highlight the dependency relation, we also write E
n

as

E

n

(A

0

; B

0

; A

1

; B

1

; : : : ; A

n

; B

n

):

88

Viewed as a tree, the path between A
0

and the root E
n

is essentially an alternating path

(see the left tree in Figure 4.1). The following lemma shows that through equivalent

transformation, we can get a new expression E 0

n

in which the innermost expression A
0

of E
n

becomes prepared.

B

0 A

1

�

+

A

2

B

1

B

2

+

�

�

B

1

B

2

�

�

A

0

A

0

B

0

A

1

A

2

B

1

B

2

+

�

�

+

�

Figure 4.1: The transformation E
2

7! E

0

2

(from [55]).

Lemma 4.7. For n � 1, the expression E

n

(A

0

; B

0

; : : : ; A

n

; B

n

) is equivalent to the

expression

E

0

n

:=(A
0

�B

(n)

) + E

n�1

(A

1

; B

1

; : : : ; A

n

; B

n

);

where B
(n)

:=
Q

n

j=0

B

j

. Moreover, if all the subexpressions B
i

s are division-free, then

rdeg(E
n

) = rdeg(E 0

n

).

Proof.

Proof by induction,

When n = 1,

E

n

= (A

0

�B

0

) + A

1

)�B

1

= (A

0

�B

0

� B

1

) + A

1

� B

1

89

Assume that this lemma is held for n � k, then for n = k + 1,

E

k+1

= (E

k

+ A

k+1

)� B

k+1

= ((A

0

� B

(k)

) + E

k�1

(A

1

; B

1

; : : : ; A

k

; B

k

) + A

k+1

)� B

k+1

= (A

0

� B

(k+1)

) + E

k

(A

1

; B

1

; : : : ; A

k+1

; B

k+1

):

Thus we know the equivalence of this transformation is held for any n 2 N.

In both cases, we only apply the distributive and associative laws. Thus from

Lemma 4.3 and Lemma 4.4, if all B
i

’s are division-free then rdeg(E
n

) = rdeg(E 0

n

).

Q.E.D.

Especially ifA
0

is a radical node with a radical depth 1, the the above transformation

effectively prepares the SLP with A
0

being the main prepared variable.

Note that the above lemma can be extended to generalized SLPs too, in which A
i

’s

and B

i

’s need not be distinct, and the addition and multiplication operators can be

replaced by multi-nary
P

- and
Q

- operators.

Theorem 4.8. Suppose � is a division-free SLP and u is a radical node in � with radical

depth of 1. Then we can transform � into an equivalent SLP �

0 which is prepared and

satisfies udeg(�) = udeg(�0). Moreover, the prepared variable u0 of �0 is the unique

variable in �0 with value val
�

(u).

Proof. Without loss of generality, we can assume that � is a generalized, alternating

SLP. Let us consider the corresponding DAG representation of �. Fix any path p from

u to the root and we may assume that this alternative sum-product path has the same

form as the path from A

0

to the root of E
n

. We then apply Lemma 4.7 in which u now

plays the role of the node A
0

in E
n

. This collapses the path p to length 2. The resulting

90

DAG has the form E

0

= u�A+B. We can repeat this process for the subexpressions

A and/or B, if they contain references to the node u as well. There are two cases:

1. u is used in A, then A is transformed to A

0

= u � A

1

+ B

1

and E

0

= u �

B

1

+ (A

1

u

2

+ B). Remember that u is a square root and thus the expression u

2

effectively eliminates the square root operation here;

2. u is used in B, then B is transformed to B0

= u� A

2

+ B

2

and E 0

= u� (A +

A

2

) +B

2

.

In both cases, we can see that E 0 is still in a prepared form. We keep this process until

there is no use of u except the one that is in the prepared position and has a unique path

to the root with length 2. Since there must be a finite number of uses of u, this iterative

process will eventually terminate. At that point, the resulting SLP �

0 has the desired

form: �0 is prepared and u is the main prepared variable. It is also clear that if there

are other nodes with the same value as u, they can also be merged with u by the same

process. Hence, u will be the unique node with value val
�

(u).

Note that we apply the commutative, associative and distributive laws in these trans-

formations. The commutative and associative transformations do not change the ratio-

nal degree. Since � is division free, Lemma 4.3 tells us that the distributive transforma-

tion preserves the rational degree too. Therefore, the preparation transformation does

not change the rational degree of �.

Q.E.D.

91

4.1.4 Probabilistic Zero Test

Let � be a SLP whose value is V = V (u) 2 Q

r

. We define an associated real function

f

V

: R

m

! R

where f
V

(a

1

; : : : ; a

m

) is the value that is obtained when we evaluate the function V at

(a

1

; : : : ; a

m

) 2 R

m . We denote the the zero set of V by

zero(V) := f�1
V

(0):

Theorem 4.9. Suppose V = V (u) is the non-zero value of a rooted division-free SLP

�. Then there exists a non-zero polynomial P (u) such that zero(V) � zero(P) with

deg(P (u)) � 2

r udeg(�), where r is the number of distinct square roots in �.

Proof.

Proof by induction on the number of square roots in �.

For r = 0, V is already a polynomial. By examining the definition of rational

degrees (Table 4.1), it can be easily verified that the (total) degree of the multivariate

polynomial V is rdeg(�).

Suppose this theorem is true for all r < k (k > 0), next we will prove it is also true

when r = k. Let u =

p

C be a radical node in � with radical depth 1. We prepare the

SLP � with u being the prepared variable and obtain an equivalent SLP �

0 which, by

the definition of equivalent transformation, has the same zero set. And moreover, by

Theorem 4.8, this transformation preserves the rational degree. Thus, we can write the

value V in the form V = A+B

p

C, where A;B and C belong to the extension Q

r�1

.

If B = 0, then V = A 2 Q

r�1

. If A� B

p

C = 0, then V = 2 � A 2 Q

r�1

. In both

cases, V 2 Q

r�1

(i.e., having at most (r� 1) square roots). Thus the theorem is true by

the induction assumption.

92

Now let us consider the more interesting case where B 6= 0 and A � B

p

C 6= 0.

We transform the SLP �

0 to �� whose value is

V

0

= (A+B

p

C)(A�B

p

C) = A

2

� B

2

C: (4.4)

Note this is not necessarily an equivalent transformation, but we have zero(V) �

zero(V

0

). By definition we know V = A + B

p

C 6= 0 and by assumption we have

A�B

p

C 6= 0, then V 0

6= 0. Clearly the SLP �

� has at most (r� 1) square roots since

the square root
p

C has been eliminated and no new square roots are introduced in the

transformation. From the induction assumption, there must exist a non-zero polynomial

P with degree deg(P) � 2

r�1 udeg(��) such that zero(V) � zero(V

0

) � zero(P). It

remains to show that udeg(��) � 2 udeg(�):

udeg(��) = maxf2 udeg(A)+2 ldeg(B)+ ldeg(C);

2 ldeg(A)+2 udeg(B)+ udeg(C)g

= 2maxfudeg(A)+ ldeg(B)+

1

2

ldeg(C);

ldeg(A)+ udeg(B)+

1

2

udeg(C)g

= 2 udeg(�)

Therefore, the polynomial P is the polynomial we want to find and its degree is at most

2

r udeg(�).

Q.E.D.

With the degree bound given by Theorem 4.9, now we can extend the Schwartz

lemma (see Lemma 4.1) to test the vanishing of radical expressions.

Theorem 4.10. Let � be a non-zero, division-free SLP with r square roots. V = V (u)

is the value of �. If each instance a
i

(i = 1; : : : ; m) is randomly chosen from a finite set

S � R, then the probability that V (a

1

; a

2

; : : : ; a

i

) = 0 is at most
2

r udeg(�)
jSj

.

93

Proof. By Theorem 4.9, there exists a non-zero polynomialP (u) such that zero(V) �

zero(P) and the degree deg(P) � 2

r udeg(�). Thus

ProbfV (a) = 0g � ProbfP (a) = 0g � 2

r udeg(�) =jSj:

The last inequality relation is from a direct application of the Schwartz Lemma.

Q.E.D.

Presence of Divisions Theorem 4.10 presents a probabilistic approach to test the van-

ishing of division-free radical expressions. What if the SLP is not division-free? In this

case, there is a well known transformation to move all divisions towards the root and

merge them as we go. An instance of this transformation is

A

B

+

A

0

B

0

)

AB

0

+ A

0

B

BB

0

:

We should note that during this transformation, the number of square roots might be

doubled because if we move a division operator past a radical node, we split it into two

radical nodes:
r

A

B

)

p

A

p

B

:

Hence we give two versions of this transformation in the following lemma: in version

(i) we do not move any division node past a radical node, and in version (ii) we remove

all but at most one division node.

Lemma 4.11. Suppose a; b; ; d are variables in a SLP � and their induced SLPs have

no divisions, then the rational degrees are preserved in the following transformations:

94

rdeg(
a

b

�

d

) = rdeg(
a

bd

)

rdeg(
a

b

�

d

) = rdeg(
ad

b

)

rdeg(
a

b

�

d

) = rdeg(
ad� b

bd

)

Lemma 4.12. Suppose x; y and z are variables in a SLP � and z =

p

x=y, we can ex-

tract the division operator through an equivalent transformation z 7! z

0

=

p

jxj=

p

jyj

without changing the rational degree, i.e., rdeg(z) = rdeg(z0).

Proof.

udeg(z) =
1

2

(udeg(x)+ ldeg(y))

=

1

2

udeg(x)+
1

2

ldeg(y)

= udeg(z0)

ldeg(z) =
1

2

(ldeg(x)+ udeg(y))

=

ldeg(x)

2

+

udeg(y)

2

= ldeg(z0)

Q.E.D.

By Lemma 4.11 and Lemma 4.12, we know that we can transform a radical expres-

sion into one without divisions except in the root. This transformation does not change

the rational degree of the original SLP. But note that the number of square roots can be

potentially doubled as a result of this transformation.

95

Lemma 4.13 (Elimination of Divisions). Let � be a rooted SLP with r square roots.

(i) There is an equivalent SLP �

0 in which each division node is either the root of � or

the child of a radical node. Moreover, rdeg(�0) = rdeg(�) and �0 has the same number

of radical nodes as �.

(ii) There is an equivalent SLP �

00 with only one division node which is also the root. In

this case rdeg(�00) = rdeg(�). But the number of square roots in �00 can be at most 2r.

In the next lemma, we prove the existence of a non-zero polynomial which vanishes

as all the zeros of a given radical expression, and give a bound on its degree too.

Lemma 4.14. Suppose a SLP � represents a radical expression with divisions, then

there exists a non-zero polynomialP (u) such that zero(�) � zero(P)with deg(P (u)) �

2

2r udeg(�) where r is the number of square roots in �.

Proof.

First, we transform the SLP � to a SLP �

0 which does not have any division op-

erators except in the root. Then we examine the numerator part of the �

0 which is

division-free. All the zeros of � must be zeros of this numerator as well. There are at

most 2r square roots in this part. From Theorem 4.10, there exists a polynomial P with

deg(P (u)) � 2

2r udeg(�). This P is the polynomial we want. It has all the zeros of �.

Q.E.D.

From the proof of Lemma 4.14, we can see that the degree of P has an extra factor

of 2r due to the splitting of square root nodes. Inspired by a recent work in [39], we

can apply two other equivalent transformations on the square root nodes. They are

r

x

y

7!

p

xy

y

; (4.5)

r

x

y

7!

x

p

xy

: (4.6)

96

Unlike the case in Lemma 4.12, the rational degrees may be increased as a result of

these transformations. If x and y are both division-free, the following lemma bounds

the potential increase.

Lemma 4.15. Let z =

q

x

y

be an expression SLP where x and y are division free. An

equivalent transformation is defined as follows:

z

0

=

8

<

:

p

xy

y

if udeg(x) � udeg(y)

x

p

xy

if udeg(x) < udeg(y) :

(4.7)

Then we have udeg(z0) � 2 udeg(z) and ldeg(z0) � 2 ldeg(z).

Proof.

Since x and y are division free, we know that ldeg(x) = ldeg(y) = 0.

When udeg(x) � udeg(y),

udeg(z0) =

1

2

(udeg(x)+ udeg(y)) + ldeg(y)

� udeg(x)+ ldeg(y)

= 2 udeg(z)

ldeg(z0) =

1

2

(ldeg(x)+ ldeg(y)) + udeg(y)

� 2 ldeg(z) :

97

When udeg(x) < udeg(y),

udeg(z0) = udeg(x)+
1

2

(ldeg(x)+ ldeg(y))

� 2 udeg(z)

ldeg(z0) = ldeg(x)+
1

2

(udeg(x)+ udeg(y))

< 2 ldeg(z)

Thus, we can see the the rational degrees can be at most doubled after the equivalent

transformation (4.7).

Q.E.D.

By applying the equivalent transformations discussed in Lemma 4.11 and Lemma 4.15,

we can transform an expression z to a division of two expressions in a bottom-up traver-

sal of the DAG:

z 7!

U(z)

L(z)

;

where the expressions U(z) and L(z) are division free. Moreover, the number of square

roots does no increase in the transformation. We do not have to constructed the U(z)

and L(z) explicitly at each node. Instead, we only need to compute the udeg(U(z))

and udeg(L(z)). The rules to compute these two degrees are listed in Table 4.3. For

simplicity, we denote u
z

= udeg(U(z)) and l
z

= udeg(L(z)). Note that ldeg(U(E)) =

ldeg(L(E)) = 0 because these two expressions are division free. The next lemma gives

us an alternative to Lemma 4.14.

Lemma 4.16. Suppose a SLP � represents a non-zero radical expression E
�

with divi-

sions. Let u
�

be the rational degree computed by Table 4.3. Then there exists a non-zero

98

Table 4.3: Rules for rational degrees of transformed SLP

z u

z

l

z

constant 0 0

parameter 1 0

x� y u

x

+ u

y

l

x

+ l

y

x� y u

x

+ l

y

l

x

+ u

y

x� y maxfu

x

+ l

y

; l

x

+ u

y

g l

x

+ l

y

p

x

1

2

(u

x

+ l

x

); (u

x

� l

x

);

u

x

; (u

x

< l

x

):

l

x

; (u

x

� l

x

);

1

2

(u

x

+ l

x

); (u

x

< l

x

):

polynomial P (u) such that zero(�) � zero(P) with deg(P (u)) � 2

r

u

�

where r is the

number of square roots in �.

Proof.

The equivalent transformations in Lemma 4.11 and Lemma 4.15 can be applied to

transform E

�

into a form of
U(E

�

)

L(E

�

)

, where U(E
�

) and L(E
�

) are division free. It can be

easily verified that the udeg(U(E
�

)) and udeg(L(E
�

)) are computed by Table 4.3 and

in particular udeg(U(E
�

)) = u

�

. Clearly, all the zeros of � are the zeros of U(E
�

) as

well. Note that in the equivalent transformation, we do not introduce any more square

roots. Thus the expression U(E

�

) has at most r square roots. From Theorem 4.10,

there exists a polynomial P with deg(P (u)) � 2

r

u

�

such that

zero(P) � zero(U(E

�

)) � zero(�):

Q.E.D.

Next, we will show that the degree bound given in Lemma 4.16 is never worse than

99

that given by Lemma 4.14. In fact, in most cases, it is much sharper.

Lemma 4.17. Suppose a SLP � represents a radical expression E

�

with divisions, let

u

�

be the rational degree computed by Table 4.3, and udeg(�) be the rational degree of

the original SLP �. Then

2

r

u

�

� 2

2r udeg(�); 2rl
�

� 2

2r ldeg(�);

where r is the number of square roots in �.

Proof.

Proof by induction on the depth of the expression DAG corresponding to the SLP

�. It is trivial to verify the this lemma is true for constant and parameter leaves.

Given an node z in the DAG, by the induction hypothesis, we know that the lemma

is true for all its children.

If z is an addition node and z = x+y, then by definition u
z

= maxfu

x

+l

y

; l

x

+u

y

g.

Suppose there are r
x

(and r
y

) square roots in the subexpression x (and y, respectively).

Clearly, r
x

; r

y

� r

z

where r
z

is the number of square roots in z. From the induction

assumption,

2

r

z

u

x

� 2

r

z

+r

x udeg(x) � 2

2r

z udeg(x) :

The same relation can be verified for l
x

; u

y

and l
y

as well. Hence,

2

r

z

u

z

� 2

2r

z

maxfudeg(x)+ ldeg(y); ldeg(x)+ udeg(y)g

= 2

2r udeg(z)

2

r

z

l

z

� 2

2r

z

(ldeg(x)+ ldeg(y))

= 2

2r

z ldeg(z)

100

We omit the proofs for subtraction, multiplication and division operations, because

they are similar to the proof for the addition case.

If z =

p

x is a square root node, by Lemma 4.15, we know that

u

z

� u

x

� 2

r

x udeg(x)

= 2

r

z udeg(z)

l

z

� l

x

� 2

r

x ldeg(x)

= 2

r

z ldeg(z)

Therefore, from the induction argument, we have 2

r

u

�

� 2

2r udeg(�) and 2

r

l

�

�

2

2r ldeg(�).

Q.E.D.

Now we have obtained two degree bounds for radical expressions with division. By

applying the Schwartz Lemma, we extend the probabilistic zero test to these class of

expressions as follows:

Theorem 4.18. Let � be a non-zero SLP with r square roots. Let V = V (u) be the

value of �. If each instance a

i

(i = 1; : : : ; m) is randomly chosen from a finite set

S � R, then the probability that V (a

1

; a

2

; : : : ; a

i

) = 0 is at most 2

r

u

�

jSj

, where u
�

is the

degree inductively computed in Table 4.3.

REMARK: The zero-test approach discussed above assumes the radical expressions

concerned are well defined (i.e., no exceptions such as divisions by zeros, etc).

101

In practice, we choose the test set S to be a set of integers. Thus, to achieve the fail-

ure probability 2

� for some natural number , the maximum possible bit length of each

parameter instance is (r+lg(u

�

)+), while in division-free cases, (r+lg(udeg(�))+)

is enough. When exact arithmetic is deployed, the bit-length of inputs usually deter-

mines the running cost.

4.2 Probabilistic Proving of Elementary Geometry Theorems

4.2.1 Background

Proving geometry theorems mechanically has attracted a great deal of attention since

the 1960s. Various methods following a number of directions have been pursued. The

earlier work based on mathematical logic achieved only limited success in terms of

effectiveness of provers and the range of theorems they can prove.

It has been well known that geometry theorem proving can be considered as an

application of Taski’s decision procedure for real closed fields. Collins [11] gave a

more efficient decision procedure for Taski geometry. But algebraic methods based on

these work were not so successful due to the high double-exponential complexity.

A major achievement to date in automated theorem proving is due to Wu Wen-tsün

[56], who pioneered in proving geometry theorems using constructive methods in com-

puter algebra. For geometry problems involving incidence, congruence and parallelism

relations (but no ordering relation, e.g. a point is between the other two, etc.), Wu’s

method based on characteristic sets is practically efficient and has drastically enhanced

the scope of what is computationally tractable in automated theorem proving. Chou’s

implementation of Wu’s method and its variations was able to efficiently generate fully

automatic proofs of hundreds of theorems of Euclidean geometry, including theorems

102

that humans find difficult to prove such as Simson’s theorem. Another important

method is based on the Gröbner basis, developed by Kapur [28], Chou and Schelter

[8], and Kutzler and Stifter [32]. Also, J. W. Hong introduced the “proof-by-example”

technique based on a gap theorem.

Closer to the approach we will discuss here is the work by Carrá et al [6]. They

applied the Schwartz’s probabilistic test to check the vanishing of pseudo-remainders

in Wu’s method. The cardinality of the test set S depends on the degree estimate D

of the final pseudo-remainder. To prove a generic truth (as we noted, most theorems

in ordinary geometry are in this class), they show D = 2

O(C

3

)

C

O(C

2

) where C is the

number of constructions. This bound on D is so high that they admit that the actual

computational cost, when using exact arithmetic, could make this method practically

infeasible.

In this section, we present a probabilistic approach to prove elementary geometry

theorems by random examples.

4.2.2 Algebraic Formulation

The first step in proving geometry theorems algebraically is to transform the statement

of theorem into the form of a polynomial system, under some proper coordinate system.

Given a conjecture whose hypotheses can be expressed as a set of polynomial equations

H and whose thesis can be represented as a polynomial equation T , the conjecture is

true if the

Var(H) � Var(T);

where the operator Var means the algebraic variety defined by one or more polynomi-

als.

103

Our work is focused on proving elementary geometry theorems with ruler-and-

compass constructions only. After fixing some appropriate coordinate system, the al-

gebraic analogue of a geometric construction of an object O amounts to introduce a

pair of variables (x; y) and the corresponding polynomial equations h
i

(x; y; : : :) which

must be satisfied if (x; y) lies on O. Here “: : :” refers to the variables that have already

been introduced, if any. We classify all the variables into two categories: independent

variables (or parameters), and dependent variables. Intuitively, independent variables

refer to “free” parameters in a statement, while dependent variables are constrained

by some polynomial conditions imposed by geometric constructions. Let us use the

Simson’s theorem as an example (from [10]) in illustrating this:

Example 4.1. (Simson’s theorem) Let D be a point on the circumscribed circle O of

triangle ABC . From D three perpendiculars are drawn to the three sides BC ;CA and

AB of 4ABC . Let E, F and G be the three feet respectively. Show that E, F and G

are collinear (see Figure 4.2).

A B

C

E

F

G

O

D

Figure 4.2: Simson’s theorem.

104

Let A = (0; 0), B = (1; 0), C = (u

1

; u

2

), O = (x

1

; x

2

), D = (x

3

; u

3

), E =

(x

4

; x

5

), F = (x

6

; x

7

) and G = (x3; 0). Here u
1

; u

2

and u

3

are independent variables

whose value can be freely assigned. For instance, the location of the three initial points

A, B and C can be freely chosen (subject to the non-degenerate condition that they are

not co-linear). Note that in this example, we put the point A at the origin and put B on

the x-axis and is of a unit distance way from A. Such choices can simplify the algebraic

formulation of this theorem and they are justified by the fact that a theorem in Euclidean

space is true regardless of the translation, rotation and scaling of the underlying coor-

dinate system. The variable x
1

; x

2

; : : : ; x

7

’s are dependent variables. Their values must

satisfy certain polynomial constraints. For example, the center of their circumscribed

circle O is fully determined (note that both of its x and y coordinates are dependent

variables which are constrained by the locations of A;B and C). The location of the

point D has the freedom in one dimension and at the same time is constrained by the

requirement that it must lie on the circle O.

The incremental constructions are translated into new variables and new constraint

polynomial equations on these variables. Since we are only concerned about ruler-and-

compass constructions, these constraint polynomials are at most quadratic. Table 4.4

gives the polynomial equations for the hypotheses in Simson’s theorem.

The conclusion that E, F and G are collinear can be translated to the following

polynomial equation:

g = x

5

x

6

+ (�x

4

+ x

3

)x

7

� x

3

x

5

= 0:

Now we can formalize the problem of automated geometry theorem proving alge-

braically. For now, we only consider metric geometry only. Given a set H of ` polyno-

mial equations (hypothesis) in R[u

1

; : : : ; u

m

; x

1

; : : : ; x

n

℄ where u = fu

1

; u

2

; : : : ; u

m

g

105

Table 4.4: Polynomial equations for the hypotheses in Simson’s theorem

Equation Geometry Remark

h

1

: 2x

1

� 1 = 0 [OA � OB℄ Introduces x
1

h

2

: 2u

1

x

1

+ 2u

2

x

2

� u

2

2

� u

2

1

= 0 [OA � OC℄ Introduces x
1

; x

2

h

3

: �x

2

3

+ 2x

1

x

3

+ 2u

3

x

2

� u

2

3

= 0 [OA � OD℄ Introduces x
3

h

4

: u

2

x

4

+ (�u

1

+ 1)x

5

� u

2

= 0 [E 2 BC℄ Introduces x
4

; x

5

h

5

: (u

1

� 1)x

4

+ u

2

x

5

+ (�u

1

+ 1)x

3

� u

2

u

3

= 0 [DE?BC℄ Introduces x
4

; x

5

h

6

: u

2

x

6

� u

1

x

7

= 0 [F 2 AC℄ Introduces x
6

; x

7

h

7

: u

1

x

6

+ u

2

x

7

� u

1

x

3

� u

2

u

3

= 0 [DF?AC℄ Introduces x
6

; x

7

are m independent variables (parameters) and x = fx

1

; x

2

; : : : ; x

n

g are n dependent

variables:

h

1

(u

1

; : : : ; u

m

; x

1

; : : : ; x

n

) = 0

h

2

(u

1

; : : : ; u

m

; x

1

; : : : ; x

n

) = 0

...

h

n

(u

1

; : : : ; u

m

; x

1

; : : : ; x

n

) = 0

and a polynomial equation (thesis) g(u
1

; : : : ; u

m

; x

1

; : : : ; x

n

) also in R[u; x℄, decide

whether the following statement is true:

(8u

1

; : : : ; u

m

; x

1

; : : : ; x

n

) [(h

1

= 0) ^ (h

2

= 0) ^ � � � ^ (h

`

= 0)) g = 0℄: (4.8)

Generic truth. The theorems in the form of (4.8) is called universal truth. They are

valid in every point in the parameter space R

m . But many theorems in elementary

geometry have implicit degenerate conditions. A theorem is either not true or not valid

106

at all in degenerate cases. For example, the non-degeneracy condition for the Simson’s

theorem is that the three initial points A;B and C are not co-linear. Wu proposed

the notion of generic truth. A statement is generically true relative to a set of non-

degenerate conditions f�
1

; : : : ;�

k

g if

(8u;x)[(�

1

;�

2

; : : : ;�

k

; (h

1

= 0) ^ � � � ^ (h

`

= 0))) g = 0℄: (4.9)

In this definition, the theorem is considered trivially generically true in the degenerate

cases.

The non-degeneracy conditions �
i

’s are predicates on the variables in the system.

The theorems proved by Wu’s method are about unordered geometry in an algebraically

closed field (such as metric geometry in C). For these theorems, the non-degeneracy

condition usually has the form

� : Æ(u;x) 6= 0 (4.10)

where Æ is a polynomial on the independent and dependent variables. We call this non-

degeneracy condition of the first type. Non-degeneracy conditions for theorems in a

real closed field (such as R) often have the form of general inequalities:

� : Æ(u;x) � 0; � 2 f<;�; >;�g; (4.11)

which are defined as the second type non-degeneracy conditions.

Ordered geometry Introducing order relation into the underlying geometry would

make the automated theorem proving problem considerably more complicated. Ba-

sically this has to admit inequalities and inequations into the algebraic system. The

associated field of every ordered geometry is an ordered field. In this part, we mainly

focus on the ordinary Euclidean Geometry, the associated field of which is just the usual

real field R.

107

Admission of inequality relations It is well known [56] that the satisfiability problem

regarding inequality relations among numbers in a real closed field (e.g., R) can be

transformed to the solvability problem of some equations in the same field. For exam-

ple, suppose e is an element in R,

e > 0 () 9z 2 R; ez

2

= 1

e � 0 () 9z 2 R; z

2

� e = 0

e < 0 () 9z 2 R; ez

2

= �1

e � 0 () 9z 2 R; e + z

2

= 0:

With these relations, the algebraic formulation discussed above can be extended to

accommodate inequality relations which appear in the hypotheses and non-degenerate

conditions. For these cases, we can transform the inequalities by applying the equiv-

alent relations above. Suppose there are k inequalities, we need to introduce k new

variables fz
1

; z

2

; : : : ; z

k

g and k new polynomials f
1

; f

2

; : : : ; f

k

. Then, an equivalent

form of the theorem statement is as follows:

(8u;x)[(h

1

= 0)^ � � � ^ (h

`

= 0)^ (9z

1

; : : : ; z

k

(f

1

= 0)^ � � � ^ (f

k

= 0))) g = 0℄:

(4.12)

Recall that in the first-order predicate logic, we know that if x is not free in q then

` ((Qx p)! q)$ (Q

�

x) (p! q);

where Q is a universal or existential quantifier and Q� is its dual. Because for all the

new variables z0
i

s under existential quantifiers do not appear in the right-hand side g

(i.e., are not free in the conclusion), we know that the statement 4.12 is equivalent to

the following:

(8u;x; z) [((h

1

= 0)^� � �^(h

`

= 0)^(f

1

= 0)^� � �^(f

k

= 0))) g = 0℄: (4.13)

108

Thus the problem has been reduced to a polynomial inference problem again.

If the right-hand side is an inequality, that is more complicated. Although we can

move the existential quantifier to the outside scope, unfortunately, it remains existential.

The resulting problem is beyond the capacity of pure polynomial inference. Of course,

such cases can still be solved by Taski’s decision procedure based on algebraic cell

decomposition.

4.2.3 Probabilistic Proving by Random Examples

We apply our randomized zero testing of radical expressions (see Theorems 4.10 and

4.18) in probabilistic proving of elementary geometry theorems with ruler-and-compass

constructions. What we mean by “probabilistic theorem proving” is this: if a conjecture

is true, our prover can always verify it positively; otherwise, the probability that the

conjecture is false but we fail to detect it (the failure probability) can be made less than

an arbitrarily small number �.

Reduction to Radical Expressions For theorems with ruler-and-compass constructions

only, each polynomial in H can be at most quadratic. Thus, we can solve each depen-

dent variable explicitly as a radical expression step by step. Clearly, each dependent

variable x can eventually be represented as a radical expression x(u
1

; : : : ; u

m

) over the

initial parameters u
1

; : : : ; u

m

. Let G = G(u

1

; : : : ; u

m

) be the radical expression corre-

sponding to the thesis g after substituting each appearance of x
i

in g with the solution

x

i

(u

1

; : : : ; u

m

). Thus, proving a theorem amounts to show that G = 0 for all valid pa-

rameter configurations. Note that when solving quadratic equations about a dependent

variable x, we obtain two solutions, up to a sign flip of square roots contained in G.

Suppose there are r square roots in G, then we should test simultaneous vanishing of

109

all the 2r cases, i.e.:

G

1

= G

2

= � � � = G

2

r

= 0;

where G
i

is obtained from different sign combinations of the r square roots. If a single

function G

� is desired, we can use G

�

=

P

2

r

i=1

G

2

i

. Sometimes, we can reduce the

number of test cases by exploiting symmetry of the different configurations.

In our implementation, radical expressions are represented as DAGs. Let �(u) be

the natural SLP which computes G�

(u). We compute udeg(U(G�

)) and udeg(L(G�

))

inductively on the structure of the DAG using the rules presented in Table 4.3.

By Theorem 4.18, we can then prove the vanishing ofG� probabilistically by testing

its vanishing on some random examples in which the values of parameters fu
1

; : : : ; u

m

g

are chosen from a test set S with appropriate size. Let D = 2

2r udeg(�) be the degree

bound, the failure probability of each single test is given by

 = D=jSj: (4.14)

When the cardinality of the test set S is greater than 2

2r udeg(�), the failure rate < 1.

Moreover, if we run the prover with n independent examples on the same conjecture,

the failure probability becomes n.

It is clear that the size of S depends on the rational degree and the number of square

roots in G

�. When implemented using exact arithmetic, the bit-length of input pa-

rameters affects the complexity of verification of vanishing of an instantiated radical

expression. In order to achieve certain failure probability �, we can have a trade-off

between the size of test set jSj and the number of runs n as long as n � �. For sim-

plicity, we assume � = 2

�p and jSj = 2

k

D (i.e., the maximum bit-length of inputs are

(k+lgD).) for some natural numbers p and k, and hence = 2

�k. Thus the parameters

110

k and n must satisfy that

n � k � p:

Let M
G

�

(L) be the asymptotic complexity for testing whether an instance of the radical

expressionG� is zero or not using the exact sign determination techniques we discussed

in Chapter 2. Here L is the bit length of input parameters in an instance. Then the total

cost of proving a theorem with a failure probability � is

n �M

G

�

(k + lgD):

The function M

G

� depends on the structure of a radical expression and its root bound.

An examination of the rules for various root bounds can reveal that usually the root

bound is linear to the bit length L of inputs. In practice, fine tuning is necessary to find

the optimal combination of the two parameters n and k.

An alternative to testing G�

(u) = 0 is to view the problem as testing the simultane-

ous vanishing of a set of polynomial G :=fG
1

(u); : : : ; G

2

r

(u)g. Although we must test

2

r radical expressions, for each test the complexity is reduced in two ways:

� The root bound (which determines the precision necessary to numerically deter-

mine the sign of radical expressions in the Core Library) is smaller.

� The size of the test set S is smaller.

Handling of non-degeneracy conditions In presence of non-degeneracy conditions, there

are two natural models of what it means to have a failure probability �: (A) The “strict

model” says that our sample space is now restricted to Sm

nfa : a is degenerate.g. (B)

Alternatively, we can say that the sample space is still Sm but the theorem is trivially

true at Sm

\ fa : a is degenerate.g.

111

In the current implementation of our prover, we discard the degenerate sample con-

figurations. Hence, the failure probability is relative to the model A. Suppose there

are k type 1 non-degenerate conditions, which are at most quadratic. We can write the

non-degeneracy conditions as Æ� := Æ
1

Æ

2

� � � Æ

k

6= 0. The degree of Æ� is thus at most 2k

and forms a surface in the parameter domain R

m . Moreover, Æ� can be seen as a radical

expression in the parameter u. Given a finite test set S, the possible zeros (degenerate

configurations) in Sm is at most 22r udeg(Æ�) jSjm�1. To guarantee certain failure prob-

ability, we can make the test set S large enough so that the probability that degenerate

cases are chosen (i.e., 22r udeg(Æ�) =jSj) is arbitrarily small.

Next, we consider the complexity of this approach. In [55], the following lemma is

shown:

Lemma 4.19. Let the thesis polynomial be g(u;x) with t terms and deg(g) = d, and

G(u) be any of the 2

r radical expressions derived from g(u;x) by eliminating depen-

dent variables. Then rdeg(�(G)) � td

k where k is the number of construction stages

and is some constant.

Proof.

First let us prove the bound on the rational degrees of programming variables, by

induction on the steps of construction.

There are a limited number of geometry statements of constructive type. Chou’s

book [10] gives a complete list of them. Since there are only limited number of pos-

sible constructions, The depth of these radical expressions must be bounded by some

constants.

Let us consider the new variables (x
i

; y

i

) introduced in the i-th stage. The coordi-

nates x
i

and y

i

can be represented as radical expressions built upon the programming

112

variables previously introduced in the first (i� 1) stages. These variables appear in the

leaves of these radical expressions. By the induction hypothesis, the rational degrees of

all these variable are bounded by some number b
i�1

. Through examining the definition

of rational degrees, we can see that since the radical expressions are of constant depths,

the ration degrees of x
i

and y
i

are bounded by b
i�1

for some constant c. This constant

only depends on the structure of various radical expressions for the finite constructions.

Thus, we have b
k

= O(

k

).

Therefore, from Lemmas 4.5 and 4.6, we can see that for the final thesis radical

expression �(G), we have rdeg(�(G)) � td

k.

Q.E.D.

Note that in [55], the constant = 8 was indicated.

Corollary 4.20. Let the thesis polynomial be g(u;x) with t terms and deg(g) = d,

and G(u) be any of the 2

r radical expressions derived from g(u;x) by eliminating

dependent variables. Then u

�(G)

� 2

r

td

k where k is the number of construction

stages and is some constant.

Proof. This is a direct result of Lemma 4.17 and Lemma 4.19. Q.E.D.

The following theorem gives the complexity of our prover.

Theorem 4.21. Suppose T is a conjecture about ruler & compass constructions with

m independent variables, n dependent variables, r quadratic equations and type 1

non-degenerate conditions, and its thesis polynomial g(u;x) has t terms and the de-

gree d. Then T can be verified with failure probability � 2

�k in time polynomial in

the parameters m;n; t; d; k and exponential on r. Specifically, the time complexity is

O(pM(pL2

2r

)) where p isO(m+ n+ t+ d), L is O(r+ k+m+ n+ lg t+ lg d) and

113

M(n) denotes the complexity of multiplying two n-bit integers.

Proof. The parameter p is a bound on the number of operations in the radical

expression G

�

(a). Thus, the cost to construct the thesis expressions G

�

(a) is also

O(m + n + t + d). Next, let us consider the complexity in verifying G

�

(a) for some

sample configuration a = (a

1

; a

2

; : : : a

m

) randomly chosen from a finite test set S with

a cardinality of 2

2r+k

td

(m+n). By Theorem 4.18 and Corollary 4.20, we know that

the failure probability of this test is at most 2�k. Note that the number of construction

stages are at most (m + n). Moreover, this means the maximum bit length of input

parameters L = lg(jSj) can be bounded by a polynomial on r, k, m, n, lg(t) and lg(d).

By examining the entries in Tables 2.4 and 2.6, we can see that the logarithms of l(G�

)

and �(G

�

) depend on L linearly. So the root bit-bound at the top is O(L22r). At the

root node, we need to compute an approximation up to the precision specified by the

root bound. The computation in the intermediate nodes might require higher absolute

precision (e.g., in a multiplication operation. See Section 3.2.3). But the increment on

precision at each step depends linearly on the MSB of its operands. An upper bound

on the value of each node is given by the Equation (2.10), and hence an upper bound

on the MSBs of all the nodes is O(L22r). Therefore, the number of bits that need to be

computed at each nodes is bounded O(pL22r). The arithmetic operation taken at each

node costs O(M(pL2

2r

)) where M(n) = O(n lg(n) lg lg(n)) denotes the complexity

to multiply two n-bit integers. There are at most p operations. Thus, the total cost in

verifying a conjecture T with a failure probability no more than 2

�k is O(pM(pL2

2r

))

where p is O(m+ n+ t + d) and L is O(r + k +m+ n + lg t + lg d).

Q.E.D.

114

Experiments We implement a probabilistic prover using the Core Library, which can

test the vanishing of constant radical expressions correctly. The library is directly mod-

ified so that we can utilize the expression DAG structure in computing the exact rational

degrees of the expressions (rather than use the estimates of the Lemma 4.19).

We prove some theorems from Chou [10]. The timings are for two values of k

(this means the probability of error is at most 2�k). We also arbitrarily “perturb” the

hypothesis of each theorem by randomly changing one coefficient of one of the input

polynomials, and report their timings as well. These are all false theorems, naturally.

Our tests were performed on a Sun UltraSPARC-IIi (440 MHz, 512 MB). The times are

all in seconds, and represent the average of 6 runs each. The final column in the table

gives the page number in Chou’s book [10].

NO. THEOREM k = 10 k = 20 PERTURBED PAGE

1 Pappus 0.020 0.020 0.007 100

2 Pappus Point 0.152 0.147 0.025 100

3 Pappus-dual 0.017 0.023 0.008 111

4 Nehring 4.380 5.870 0.102 115

5 Chou-46 0.059 0.083 0.022 124

6 Ceva 0.027 0.033 0.010 264

7 Simson 70.318 39.000 0.017 240

8 Pascal 1715.8 2991.6 0.037 103

Let r be the number of square roots in the radical expression representing a theorem.

If r = 0, we say the theorem is linear. A large part1 of the 512 theorems in Chou’s book

are linear. Only the last two theorems (Simson and Pascal) in the above list are non-

1The theorems in Chou’s book include an original list of 366 theorems from [9], of which 219 are reported to be

linear [10, p. 12].

115

linear, with r = 1 and r = 5, respectively. In [55], we compared our timing with

those based on Wu’s method and Gröbner basis which shows that our approach is very

effective on linear cases, but non-linear theorems still represent a challenge for our

current system.

It is interesting to note that we have never observed a single wrong conclusion from

our probabilistic tests – all the theorems are reported as true, and all perturbed theorems

are reported as false. In some sense, that is not surprising because the probabilistic

bounds based on Schwartz’s lemma seem overly conservative in all real situations.

The running times for linear theorems are pretty consistent across different runs.

However, for the non-linear theorems, the timing can show much more variation. This

is not unexpected since the running time depends on the bit size of the random example.

A more prominent behavior comes from the clustering of times around certain values.

For instance, for Simson (k = 20), the times cluster around 10 seconds and around 70

seconds. This “multimodal” behavior of the timings are again seen in Pascal. This can

be attributed to the random choice of signs for the radicals in nonlinear theorems. This

may also account for the curious relative times for Simson k = 10 and k = 20.

Our method is extremely effective for discarding wrong or perturbed conjectures.

In rejecting false conjectures, Wu’s method would take the same procedure and time as

for the true theorems. The ability to quickly reject false theorems is extremely useful in

applications where the user has many conjectures to check but most of the conjectures

are likely to be false.

116

4.3 Summary

In this chapter, we have developed a generalization of Schwartz’s randomized zero test

to check the vanishing of radical expressions. Our Core Library is exploited for exact

sign determination. We shall note that the zero test of multivariate radical expressions is

an important problem by itself and has independent interest beyond automated theorem

proving. We expect this new method to have many applications as radical expressions

are quite common.

We apply the zero test method in proving elementary geometry theorems about

ruler-and-compass constructions. We develop an probabilistic approach and implement

a prover using the Core Library. Some features of our prover include:

� It is probabilistic and allows trade-off between speed and failure probability.

� It rejects wrong conjectures very quickly.

� It exploits the special nature of ruler-and-compass constructions.

� It is very effective for linear theorems.

� We need to gain much more empirical data.

117

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, we investigate the theory and some applications of the Exact Geo-

metric Computation (EGC) approach to robust geometric computation.

We study the problem of exact comparison of algebraic expressions. Our work

show that numerical approximation together with constructive root bounds is a useful

and efficient way other than the usual symbolic computation approaches in determining

the exact sign of algebraic numbers. The worst-case complexity of our approach is

determined by algebraic root bounds. In Chapter 2, we presented a new constructive

root bound [35] for general algebraic expressions that can provide significant speed-

up over previously known bounds in many common computations involving divisions

and radical roots. This new bound can be computed inductively on the structure of

an expression DAG using the rules in Tables 2.4 and 2.6. These rules are derived

from resultant calculus. Moreover, we improved the well-known degree-measure bound

[40, 41, 2] by exploiting the sharing of common sub-expressions.

118

As a part of our work, We developed the Core Library [23, 29, 58, 35], a compact,

easy to use and efficient C++ library for exact numeric and geometric computation

which incorporates the precision-driven EGC paradigm. It is very easy for users to use

our library to implement new robust geometric applications or make existing programs

robust. In Chapter 3, we discussed the design and implementation of the Core Library,

with the focus on its top layer (i.e., the Expr package) which is the most interesting

part in our library and the core for precision-driven exact computation. The current

implementation supports radical expressions with square roots. The library can find

applications in many areas where it is critical to guarantee the numerical precision.

In Chapter 4, we generalized Schwartz’s well-known probabilistic verification of

polynomial identities, and devised a probabilistic method to test the vanishing of mul-

tivariate radical expressions. We test the vanishing of a radical expression on sample

instances which are randomly chosen from a finite test set. These sample tests are per-

formed using the Core Library, and the size of the finite test set affects the running time.

Following our previous work in [55], in this thesis we gave a simplified definition of

rational degrees which can leads to more efficient computation of upper bounds on the

cardinality of the finite test set. Moreover, we sharpened this upper bound for radical

expressions with divisions, and hence improved the performance when exact computa-

tion is employed. Based on this randomized test for radical expressions, we proposed

a probabilistic approach [55] to prove elementary geometry theorems with ruler-and-

compass constructions only. Our approach can reject false conjectures very quickly.

An automated theorem prover based on this method has been implemented using our

Core Library. The experiments show that it is very effective for theorems with linear

constructions.

119

5.2 Future Work

On root bounds and sign determination The performance of EGC is still constrained

by conservative root bounds. More research is needed in sharpening our new root bound

and in searching for other better root bounds.

Finding better ways of bounding the tail coefficient t(E) for addition and subtrac-

tion nodes in our new root bound is a challenge for future work. The current bound

based on polynomial measures is conservative for expressions with complex structure

and large depth. Also, it may be possible to improve our current lower bound on con-

jugates �(E
1

� E

2

).

Many existing bounds are obtained through bounding some properties regarding

minimal polynomials of algebraic expressions. We have ongoing research on a novel

idea to compute root bounds in extension fields. Instead of bounding minimal poly-

nomials in Z[x℄, we bound representation polynomials of elements in some algebraic

extensions Q() for some algebraic number . As the computation goes on, the exten-

sion fields may be further extended (e.g., when new radical nodes are introduced.). Be-

sides bounding the representation polynomials, we also need to maintain some bounds

about the “primitive” element of each extension. Note that if there are no new radical

or polynomial root nodes introduced at a step, then the result of that step is still in the

same extension field as its operands’. An observation is that in many computations, the

extension of fields does not happen very frequently. An advantage of this new approach

is that if the current field is not extended as a consequence of an operation, then we can

obtain the representation polynomial of the result simply by a direct polynomial opera-

tion (addition, subtraction or multiplication, etc.) on the representation polynomials of

its operands in the same field. In this way, we can bound the desired properties (say,

120

polynomial norms) of this resulting polynomial representation tightly. For example,

given two algebraic numbers � and � with the degrees m and n respectively, the poly-

nomial for �� � constructed through resultant calculus has a degree m � n. But if they

are in the same extension field Q() and can be represented in polynomials of with

the degrees m0 and n

0, then the result can be represented as a polynomial of with a

degree at most m0

+ n

0.

Another important topic is to compare different root bound theoretically and ex-

perimentally. This is of special significance considering that many of the current root

bounds are generally incomparable. We want to compare their behavior on more gen-

eral and interesting classes of expressions. We also need to observe their performance

in more experiments.

Many conditional tests in computational geometry programs are equality tests (e.g.

detection of degeneracy). In these cases, we do not have to know the exact sign of

the difference of two expressions being compared. What we need is just to determine

whether it is zero or not. This seems to be an easier problem and perhaps could be bet-

ter handled by other methods (e.g. symbolic or semi-numerical approaches) than the

root bound based approaches commonly adopted in EGC. The reason for separating

zero test with sign determination is that because conservative root bounds could force

expensive numerical computation when the sign is really zero (recall that in such cases

the absolute precision of approximation has to reach the root bound.). Besides address-

ing equality tests, zero test can also be used as a filter in general computation to avoid

the expensive sign determination when an expression is exactly zero. Moreover, if we

know an expression is non-zero, we can decide its sign through progressive approxi-

mation until a definite sign comes out (note that root bounds are not used here). More

121

study on the algorithms and complexity of zero test is an interesting topic for future

exploration.

On the development of Core Library We need to further improve the efficiency of our

Core Library, at both the algorithmic level and the system level.

An interesting topic is partial evaluation of expressions. Although persistent struc-

ture reflects the usual arithmetic semantics supported by most programming languages,

a dynamic expression DAG in which the leaves can be variables instead of constants

could be useful in certain applications, such as interactive editing. Moreover, in many

cases, a large part of one predicate expression may be relatively fixed during consecu-

tive evaluations. So it could speed up the performance if the fixed part in an expression

can be partially evaluated beforehand. For example, in the simple O(n4) algorithm to

compute Delaunay triangulation of a set of points in a plane, each in-circle test (com-

puting the sign of a 4� 4 determinant) would be applied to (n� 3) points. Therefore,

if we partially evaluate the fixed part (in this case, that could be four 3�3 minors) first,

then in every test thereafter, we can just plug in the new parameters and the evaluation

would avoid repetitive computation of the invariant subexpressions every time.

We plan to extend our library to support more general algebraic expressions that

contain the roots of polynomials with algebraic numbers as coefficients.

Another important future work is to apply the EGC techniques that we have devel-

oped to other areas of computation where guaranteeing the absolute or relative preci-

sion is critical. In particular, we want to deploy our Core Library to a wider range of

applications, such as linear programming and optimization.

122

Bibliography

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computation. Academic

Press, New York, 1983.

[2] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily com-

putable separation bound for arithmetic expressions involving radicals. Algorith-

mica, 27:87–99, 2000.

[3] Christoph Burnikel, Stefan Funke, and Michael Seel. Exact geometric predicates

using cascaded computation. Proceedings of the 14th Annual Symposium on Com-

putational Geometry, pages 175–183, 1998.

[4] Christoph Burnikel, Jochen Könnemann, Kurt Mehlhorn, Stefan Näher, Stefan

Schirra, and Christian Uhrig. Exact geometric computation in LEDA. In Proc.

11th ACM Symp. Computational Geom., 1995.

[5] John Francis Canny. The complexity of robot motion planning. ACM Doctoral

Dissertation Award Series. The MIT Press, 1988. PhD thesis, M.I.T.

[6] G. Carrà-Ferro, G. Gallo, and R. Gennaro. Probabilistic verification of elementary

geometry statements. In Proceedings of the International Workshop on Automated

Deduction in Geometry (ADG’96), volume 1360 of LNAI, pages 87–101, 1997.

123

[7] B. Chazelle et al. Application challenges to computational geometry. In Advances

in Discrete and Computational Geometry, volume 223 of Contemporary Mathe-

matics, pages 407–463. AMS, 1999. The Computational Geometry Impact Task

Force Report (1996).

[8] S.-C. Chou and W. F. Schelter. Proving geometry theorems with rewrite rules. J.

of Automated Reasoning, 2(3):253–273, 1986.

[9] Shang-Ching Chou. Proving geometry theorems using Wu’s method: A collection

of geometry theorems proved mechanically. Technical Report 50, Institute for

Computing Science, University of Texas, Austin, July 1986.

[10] Shang-Ching Chou. Mechanical Geometry Theorem Proving. D. Reidel Publish-

ing Company, 1988.

[11] G. E. Collins. Quantifier elimination for the elementary theory of real closed fields

by cylindrical algebraic decomposition. In H. Brakhage, editor, Automata Theory

and Formal Languages, Lecture Notes in Computer Science, No. 33, pages 134–

183. Springer-Verlag, Berlin, 1975.

[12] R. Dentzer. libI: Eine lange ganzzahlige Arithmetik, 1991.

[13] Steven J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica,

2:153–174, 1987.

[14] Steven J. Fortune. Stable maintenance of point-set triangulations in two dimen-

sions. IEEE Foundations of Computer Science, 30:494–499, 1989.

[15] Steven J. Fortune and Christopher J. van Wyk. Static analysis yields efficient exact

124

integer arithmetic for computational geometry. ACM Transactions on Graphics,

15(3):223–248, 1996.

[16] David Goldberg. What every computer scientist should know about floating-point

arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[17] D. H. Greene and F. F. Yao. Finite-resolution computational geometry. IEEE

Foundations of Computer Science, 27:143–152, 1986.

[18] L. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: building robust algorithms

from imprecise computations. ACM Symp. on Computational Geometry, 5:208–

217, 1989.

[19] C. M. Hoffmann, J. E. Hopcroft, and M. T. Karasick. Robust set operations on

polyhedral solids. IEEE Comput. Graph. Appl., 9(2):50–59, 1989.

[20] Christoff M. Hoffmann. The problems of accuracy and robustness in geometric

computation. IEEE Computer, 22(3), March 1989.

[21] The CGAL Homepage. Computational Geometry Algorithms Library (CGAL)

Project. URL http://www.cs.uu.nl/CGAL/.

[22] CLN – Class Library for Numbers Homepage. URL

http://clisp.cons.org/˜haible/packages-cln.html.

[23] The CORE Project Homepage. URL http://www.cs.nyu.edu/exact/.

[24] The GNU MP Homepage. URL http://www.swox.com/gmp/.

[25] The LEDA Homepage. URL http://www.mpi-sb.mpg.de/LEDA/.

125

[26] LiDIA Homepage, 1998. LiDIA: an efficient multiprecision number pack-

age for computational number theory. URL http://www.informatik.th-

darmstadt.de/TI/LiDIA/.

[27] IEEE. IEEE standard 754-1985 for binary floating-point arithmetic, 1985.

Reprinted in SIGPLAN 22(2) pp. 9-25.

[28] D. Kapur. Geometry theorem proving using Hilbert’s Nullstellensatz. In Proceed-

ings of 1986 Symposium on Symbolic and Algebraic Computation (SYMSAC 86),

pages 202–208, 1986.

[29] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core Library for robust

numeric and geometric computation. In Proceedings of the Fifteenth ACM Sym-

posium on Computational Geometry (SoCG 1999), pages 351–359, June 1999.

[30] M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulation

using rational arithmetic. ACM Trans. on Graphics, 10:71–91, 1991.

[31] Donald Ervin Knuth. The Art of Computer Programming, volume 2. Addison

Wesley, 3 edition, 1997.

[32] B. Kutzler and S. Stifter. Automated geometry theorem proving using Buch-

berger’s algorithm. In Proceedings of 1986 Symposium on Symbolic and Alge-

braic Computation (SYMSAC 86), pages 209–214, 1986.

[33] Arjen Lenstra. lip: long integer package, 1989.

[34] Chen Li and Chee Yap. Tutorial for CORE Library: A Library for Robust Geo-

metric Computation. Courant Institute of Mathematical Sciences, 251 Mercer St.,

New York, NY 10012, USA, 1.3 edition, September 1999.

126

[35] Chen Li and Chee Yap. A new constructive root bound for algebraic expres-

sions. In Proceedings of the Twelfth ACM-SIAM Symposium on Discrete Algo-

rithms (SODA 2001), pages 496–505, January 2001.

[36] Ming C. Lin and Dinesh Manocha, editors. Proceedings of the First ACM Work-

shop on Applied Computational Geometry, 1996.

[37] G. Liotta, F. Preparata, and R. Tamassia. An illustration of degree-driven algo-

rithm design. Proc. 13th Annual ACM Symp. on Computational Geometry, pages

156–165, 1997.

[38] Morris Marden. The geometry of the zeros of a polynomial in a complex variable.

American Mathematical Society, 1949.

[39] K. Mehlhorn and S. Schirra. A generalized and improved constructive separation

bound for real algebraic expressions. Technical report, Max-Planck-Institut für

Informatik, November 2000.

[40] M. Mignotte. Identification of algebraic numbers. Journal of Algorithms, 3(3),

1982.

[41] Maurice Mignotte and Doru Ştefănescu. Polynomials: An Algorithmic Approach.

Springer, 1999.

[42] V. J. Milenkovic. Verifiable implementations of geometric algorithms using finite

precision arithmetic. Artificial Intelligence, 37:377–401, 1988. An earlier version

appeared in Proceedings, Oxford Workshop on Geometric Reasoning, (eds. Brady,

Hopcroft, Mundy).

[43] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

127

[44] R. E. Moore. Methods and Applications of Interval Analysis. SIAM, 1979.

[45] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press,

1998. Source codes can be downloaded at ftp://cs.smith.edu/pub/compgeom.

[46] Kouji Ouchi. Real/Expr: Implementation of an exact computation package. Mas-

ter’s thesis, New York University, Department of Computer Science, Courant In-

stitute, January 1997.

[47] Victor Y. Pan and Yanqiang Yu. Certification of numerical computation of the

sign of the determinant of a matrix. To appear in Algorithmica.

[48] Edward R. Scheinerman. When close enough is close enough. American Mathe-

matical Monthly, 107:489–499, 2000.

[49] Stefan Schirra. Robustness and precision issues in geometric computation. Re-

search Report MPI-I-98-1-004, Max-Planck-Institut für Informatik, Saarbrücken,

Germany, January 1996.

[50] A. Schönhage and V. Strassen. Schnelle Multiplikation Grosser Zahlen. Comput-

ing, 7:281–292, 1971.

[51] J. T. Schwartz. Probabilistic verification of polynomial identities. Journal of the

ACM, 27(4):701–717, October 1980.

[52] Jonathan Richard Shewchuk. Robust adaptive floating-point geometric predicates.

In Proc. 12th ACM Symp. on Computational Geom., pages 141–150, May 1996.

[53] Kokichi Sugihara, Masao Iri, Hiroshi Inagaki, and Toshiyuki Imai. Topology-

oriented implementation—an approach to robust geometric algorithms. Algorith-

mica, 27:5–20, 2000.

128

[54] Roberta Tamassia et al. Strategic directions in computational geometry. ACM

Computing Surveys, 28(4), December 1996.

[55] Daniela Tulone, Chee Yap, and Chen Li. Randomized zero testing of radical

expressions and elementary geometry theorem proving. In Proceedings of the

Third International Workshop on Automated Deduction in Geometry (ADG 2000),

pages 121–136, September 2000. Final version to appear in LNAI series.

[56] Wen-tsün Wu. Mechanical Geometry Theorem Proving in Geometries. Springer-

Verlag, 1994. Originally published as Basic Principles of Mechanical Theorem

Proving in Geometries (in Chinese) by Science Press, Beijing, 1984.

[57] C. K. Yap. Robust geometric computation. In Jacob E. Goodman and Joseph

O’Rourke, editors, Handbook of Discrete and Computational Geometry, chap-

ter 35, pages 653–668. CRC Press LLC, 1997.

[58] Chee Yap and Chen Li. Recent developments in Core Library. In 10th Annual

Fall Workshop on Computational Geometry (WCG 2000), October 2000. Stony

Brook, New York.

[59] Chee K. Yap. Towards exact geometric computation. In Fifth Canadian Confer-

ence on Computational Geometry, pages 405–419, Waterloo, Canada, August 5–9

1993. Invited Lecture.

[60] Chee K. Yap. Towards exact geometric computation. Computational Geome-

try: Theory and Applications, 7:3–23, 1997. Invited talk, Proceed. 5th Canadian

Conference on Comp. Geometry, Waterloo, Aug 5–9, 1993.

[61] Chee K. Yap and Thomas Dubé. The exact computation paradigm. In D.-Z. Du

129

and F. K. Hwang, editors, Computing in Euclidean Geometry, pages 452–486.

World Scientific Press, 1995. 2nd edition.

[62] Chee Keng Yap. Fundamental Problems in Algorithmic Algebra. Oxford Univ.

Press, December 1999.

130

