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Abstract

We describe a new numerical core that can serve as the basis for robust numerical and geometric li-
braries. A novel feature of core is its hierarchy of numerical accuracies which can be accessed simultaneously
by a conventional C/C++ program.

We propose to build a core library (Core) of critical geometric and numerical primitives around
this numerical core. This library will be portable, efficient, robust and easy-to-use. The portability and
efficiency are based on a state-of-the-art compiler technology (Trimaran) that can produce optimized
code for a wide range of hardware architectures, particularly the new EPIC (explicitly parallel instruction
computing) technology heralded by the Intel Merced chip. Numerical robustness is based on a scientifically
sound approach called exact geometric computation. Ease-of-use is based on the possibility of using
Core with minimal change in programmer’s behavior. Our library will, for the first time, make very
powerful robustness techniques widely accessible to general users.

This talk describes current work on this library (with Professor Krishna Palem) and outline the practical
as well as theoretical issues.

1 NONROBUSTNESS and GEOMETRIC EXACTNESS

Numerical nonrobustness is a widely known problem in all areas of numerical computing: computational
sciences, simulation, engineering, modeling and manufacturing. In simple terms, nonrobustness is the property
of a system which causes it crash for “mysterious reasons”. We distinguish two kinds of numerical errors.
Quantitative errors are usually the benign kind that are inevitable when we approximate numbers. But
nonrobustness is symptomatic of a deeper phenomenon which we call qualitative errors. Such errors causes
fundamental inconsistencies in the programming logic, leading to catastrophic errors.

Numerical analysts have much to teach us about good numerical computing practices. Their response to
the nonrobustness is to suggest (1) the use of numerically stable algorithms and (2) to avoid of ill-conditioned
inputs. “Stable” algorithms1 is clearly useful in practice. But such algorithms only reduce the frequency
of catastrophic errors but cannot eliminate it completely. Similarly, numerical analysts are right in pointing
that catastrophic errors occur only for ill-conditioned problems. Unfortunately, in geometric computation,
some inputs are deliberately ill-conditioned: collinearity of three points and parallel lines are perfectly normal
occurrences in engineering designs.

Most attempts to treat nonrobustness begin with the assumption that a solution can be found within the
fixed-precision computation (which is the main computational paradigm in current scientific computation).
For a variety of reasons, these solutions have not been satisfactory. The basis of our approach is the Exact

Geometric Computation (EGC). See [10] for a survey. EGC can, in principle, eliminate qualitative errors
in the class of “algebraic” problems. The main challenge is to make EGC solutions efficient, or, “efficient
enough”, so that a user would prefer robust EGC solutions over a fast but nonrobust one. Recent papers

∗Abstract of Invited Talk at 3rd CGC Workshop on Computational Geometry, Brown University, October 11-12, 1998.
1This concept is often informal, but see recent book of Trefethen and Bau [9] for a definition
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have strongly suggested that EGC is practical for many basic problems in computational geometry. Nonlinear
geometry remains a significant challenge. Current research is pushing the envelope of what can be made
practical within the EGC approach. A number of effective tools and techniques (floating point filters, low
degree predicates, precision-driven techniques, etc) are being developed for this purpose.

What is critically needed is an infrastructure in which such techniques can be (a) brought together together
and (b) made easily accessible to all programmers, not just to experts in this research area. Today, a floating
point package is a sine qua non for numerical applications. Similarly, we believe that a new numerical “core”
is needed to support the EGC approach. This talk describes such a proposal.

We should note related efforts to construct major libraries of efficient and robust (EGC) geometric al-
gorithms and data structures in the European community: LEDA [1] and CGAL [2]. Our goals are somewhat
orthogonal to these, as we emphasize our library service in terms of facilities in support of EGC computing.

2 CORE LEVELS OF ACCURACY

A key feature of our Core its ability to deliver very powerful techniques in robust computation, literally at a
flip of a switch. From a “user view” this capability is encapsulated in four levels of accuracy:

I. Machine Accuracy. This is the conventional IEEE-standard [7].

II. Arbitrary Accuracy. No overflow or underflow occurs until some specified accuracy (say 128 bits) is
exceeded.

III. Guaranteed Accuracy. The computed value of variable is guaranteed to some user-specified accuracy.
The default accuracy is one bit of relative precision2, which guarantees the correct sign of computed
quantities.

IV. Mixed Accuracy. Each numerical quantity will have one of the previous three levels of accuracy. Level
IV allows these 3 levels of accuracy to occur simultaneously in a computation, and serves as a tool for
efficient control of accuracy.

A major design goal is to allow users to access these Core capabilities with almost no change in programming
behavior. These levels are “simultaneously” available to any program in the supported conventional languages
(currently, C/C++). Users only have to add a simple preamble to their program. The simplest preamble is:

#define AccuracyLevel N /* N=1,2,3 or 4 */

#include "CORE.h"

The only system which currently support level III accuracy for a class of non-rational expressions is our
Real/Expr package [4, 6]. The supported expressions involve +,−,×,÷,

√
·. As a proof-of-concept, we3 have

already constructed a wrapper around the Real/Expr package so that level I, II and III accuracies can already
be accessed by any C/C++ program.

Although level III guarantees geometric exactness, for many applications, level II suffices. Even for the
speed-conscious user, Level III can play a very useful role: it can validate the logic of their code. Level III
accuracy is the key innovation of Core. Its distinction from level II may not be obvious. In any computer
algebra system (e.g, Maple), one can get level II accuracy. However, specifying “500 bits of accuracy” does
not mean that all the 500 bits in a quantity are significant. On the other hand, guaranteeing 10 bits at level
III may entail computing intermediate quantities to arbitrarily high precision.

3 EFFICIENCY ISSUES

We address efficiency and portability issues of this library development at three levels: (1) algorithm design
level, (2) their realization as high-level language code, and (3) the eventual object code. While levels (1) and

2The user could also specify absolute precision bounds, or a combination of both.
3Thanks to our student Igor Pechtchanski. Among other things, the wrapper needed to remove all traces of non-conventional

semantics in Real/Expr.
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(2) can give asymptotic speedups, level (3) optimization can be critical in many applications. To appreciate
our level (3) optimization effort, one needs to understand current developments in microprocessor technology.

The power of optimizing compilers has advanced by leaps and bounds in the last decade, spurred on by
advances in instruction level parallel (ILP) microprocessors4 that can execute multiple instructions in one
cycle. The recently announced Intel IA64 (code name MERCED) takes this idea to a new plateau: Intel
Corporation uses the term explicitly parallel instruction computers (EPIC) to describe such a CPU
mode wherein the compiler controls the hardware resources and their allocation to instructions. To uncover
the inherent instruction level parallelism in a C or C++ program and to exploit it on an EPIC processor requires
the full-blown and aggressive application of state-of-the-art optimizing compilers.

Our library work will exploit the Trimaran system, a comprehensive infrastructure for research in EPIC
style processors and their optimizing compilers. Based on over 100 person-years of innovation, it is a collab-
orative effort between Hewlett-Packard laboratories, The University of Illinois’s IMPACT project and NYU’s
React-ILP project [5]. The consortium officially released the Trimaran system into the public domain
this summer. The main assets of the Trimaran system include a mechanism for describing microprocessors
via a language called HMDES [3], a detailed simulation environment that is automatically produced for any
HMDES-described machine, and a complete suite of optimizations that are also driven by the machine descrip-
tion. Users can add optimization modules to Trimaran – we can add EGC or Core-specific optimizers, for
instance.

4 FINAL REMARKS

We briefly mention some issues and current work.
We know how to deliver level III accuracy for algebraic computations. Extensions to elementary functions

is completely open. For instance, just adding the function sin(x) and the constant π leads to problems that
are closely related to undecidable problems [8]. In view of this, we define a level II.5, in which the system
produces certified accuracies whenever possible.

Our library automatically deploys various EGC techniques (floating point filters, adaptive precisions com-
putation, etc). We are exploring implementations that combine these with compiler-based techniques such as
multi-threading and cache management.

We plan to define several core library extensions (Corex’s) in which domain specific knowledge are
used. Actual applications will be built on top of such Corex’s. In this context, EGC opens up the new class
of geometric rounding problems that are critical in applications: given a (consistent) geometric structure,
to round this to some lower precision (still consistent) geometric structure.

To conclusion, our core library represents a new delivery system for bringing powerful techniques to bear on
the non-robustness problem. In contrast to other work, we have chosen to focus on the numerical core which
supports EGC. Another distinguishing mark is our attempt to achieve efficiency, not only at the algorithmic
level, but also at the compiler front- and back-ends.
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