
A Basis for Implementing Exact Geometric

Algorithms

(Extended Abstract)

Thomas Dub�e

�

The College of the Holy Cross

Worcester, Massachusetts

Chee-Keng Yap

y

Courant Institute, NYU

New York, New York

October 15, 1993

Abstract

Our ultimate goal is to develop exact geometric computation as an viable alternative

to the usual computing paradigm based on �xed-precision arithmetic. Use of exact com-

putation has numerous advantages; in particular, it will abolish the non-robustness issues

that has so far de�ed satisfactory solution. In this paper we describe two computational

tools which can be a basis for exact geometric computing:

� bigFloat: a multi-precision oating-point number system with automatic error-

handling.

� bigExpression: an expressions package based on a precision-driven mechanism.

This package is built on top of bigFloat.

We discuss the rationale for the design of these packages. Experimental results are re-

ported. The major contributions of our work are:

� We demonstrated for the �rst time that, because of the existence of root bounds, ap-

proximate values (say, represented in bigFloat) are useful in exact computation. In

fact, we use the example to Fortune's algorithm to show that this is more attractive

than the usual approach of reduction to exact integer computation.

� We introduced the concept of precision-driven computation through our design of

bigExpression. This is a general paradigm and should be contrasted with the

so-called lazy-evaluation appraoch.

1 Introduction

There is a growing interest among computational geometers in implementation issues. This

ranges from general computing environments (e.g., [16, 17, 13, 14]) to the study of individual

algorithms (e.g., [15, 9, 20]). Not surprisingly, this interest is accompanied by concerns about

non-robustness in geometric algorithms. These issues are essentially a byproduct of computing

in �xed-precision arithmetic, which is invariably some oating-point package. This is a well-

known and widespread concern, touching practically every community of scienti�c computing.

To underscore this, the 1989 Turing award is a recognition of Kahan's contribution towards

�

Part of this work is done while this author was visiting the Courant Institute.

y

This author is supported by NSF grant #CCR-9002819.

1



a rational design for oating-point architecture. Yet we should keep in perspective that this

contribution, important as it is, can (i) at best delay the onset of non-robustness problems and

(ii) only makes the inevitable failures more predictable and machine-independent! In stark

contrast, non-robustness issues are non-existent if we compute \exactly". At least in the

context of geometric algorithms, this concept of exact computation is clari�ed and expanded

in our companion paper [21]. Our fundamental thesis there is that

� Exact geometric computation appears feasible for a large class of problems.

� If robustness is a serious issue for an application, then exact computation (in one of its

forms) is perhaps the only reliable general solution.

� Exact computation involves a rich body of computational tactics { it certainly goes

beyond the naive notion that each numerical operation must be computed exactly.

� These tactics must be embodied in software packages built on top of suitable number

packages (which itself must go beyond the traditional large number packages).

We hasten to add, non-robustness is tolerable in many applications. But there is a growing

number of applications for which it no longer makes sense to compute in the �xed-precision

mode. Furthermore, it is no surprise that exact computation comes with a computational

cost. Ultimately, it is the user who must consider the tradeo�s between the cost of non-

robustness against the the cost of exact computation. One of our goals is a practical one: to

reduce the cost of exact computation as much as possible (to reach the theoretical limit, as

it were). We believe that at present, the cost of exact computation is nowhere near what it

should be (cf. the \anecdotes" in [21]).

In conclusion, we believe that exact computation represents an emerging new computa-

tional paradigm [23]. The present paper is a contribution towards this paradigm. In particu-

lar, we describe the design of two software packages that could be the \basis" of e�cient and

convenient exact geometric computation. Our implementation is based on C++.

2 Related Work

One of the most well-known multiprecision number packages is from Brent [4]. More recent

work includes Serpette, Vuillemin and Herve [19], and Bailey [2, 1]. The latter is written in

Fortran and is notable in that it is written with vector supercomputers and RISC oating

point architecture in mind. Both Brent's and Bailey's system uses oating-point numbers and

are Fortran-based. Serpette et al's system is C-based with a special assembly coded kernel

for some machines. For a general survey of multi-precision packages, see [23].

2



The expression compiler of Fortune and Van Wyk [10, 11] has much of the same moti-

vation as our bigExpression package. Some fundamental di�erences are their stronger use

of compiler techniques and their use of static error bounds. Chang and Milenkovic described

their experience with the system of Fortune and Van Wyk in [6].

Benouamer, Jaillon, Michelucci and Moreau [3] described a C/C++ package for lazy evalu-

ation of expression. Their approach is similar to ours in the use of run-time techniques, but

with a fundamental di�erences: while theirs is a \lazy approach", we call our more active ap-

proach \precision-driven". They approximate values using intervals with rational endpoints,

in contrast to our use of big oats. With the Bentley-Ottmann algorithm, they reported that

the machine oating-point arithmetic is 4{10 times faster than the lazy version. In turn the

lazy version is (for example) 75 times faster than the use of exact arithmetic arithmetic to

relative precision 10

�9

.

Recently, Burnikel, Mehlhorn and Schirra [5] reported on the implementation of an exact

Voronoi diagram algorithm for line segments. As in our paper, they analyzed the precision

necessary for exact comparisons using big oats, and contrast that with the usual approach

of repeated-squaring. Their experimental results seems to suggest a tie between these two

approaches. This is in contrast to our analysis for a related problem (see below).

3 Background Considerations

Floating-Point Numbers and bigFloat. We said that exact computation does not al-

ways require exact intermediate results. This remark may not obvious because it is often

implied in the past that exact computation is synonymous with exact numerical computa-

tion. Below we will show the theoretical basis for using approximate values. In any case, if we

are to use approximate values, what form shall they take? As the last 40 years of numerical

computing have testi�ed, they seem best embodied in the concept of oating-point numbers.

To describe such numbers, �x some integer B > 1 as the base. Usually B equals 10 or a power

of 2. For any non-zero integer f , de�ne its base-B normalization to be

hfi

B

:= f �B

�dlog

B

jf je

:

We omit the subscript B in hfi

B

when it is not ambiguous. Thus 1 > jhfij � 1=B, and it

is tantamount to viewing f as a B-ary number and placing a B-ary point just before the

most signi�cant digit of f . Thus, h123i

10

= 0:123. Then oating-point (f.p.) numbers, to

base B are real numbers of the form B

e

� hfi

B

; where e; f are arbitrary integers. Briey,

oating-point numbers are useful because they decouple the precision of the approximation

(the number of digits in f) from the magnitude represented by e. Actually, this idea can

3



be carried to an extreme using level-index arithmetic (see [7]). In analogy to the familiar

bigInteger packages, we call our computer realization of such numbers bigFloat.

Error bounds and bigFloat. The system of base-B oating-point numbers are intended

to be approximations for real numbers. If we implement a oating-point package without

automatic tracking of error, then in the context of exact computation, we expect the user

would explicitly keep track of some error bounds. To improve the usefulness of our package, we

automatically carry with each f.p. number an error bound. Thus the triple (f; e; d) represents

the \oating-point number with error" or oating-point range,

hf � di �B

e

:

oating-point range. When we perform arithmetic operations on two such ranges, it is easy

to automatically propagate the error bounds. But for e�ciency reasons, we will usually

normalize the error so that 0 � d < B. Of course, we can trade-o� e�ciency against accuracy

of the error bound by using a larger range of values for d. But simple examples show that

our choice (with B = 2

15

) is quite e�ective in giving useful error bounds.

Expressions and Precision-bounds. There is another related notion of error bound:

there are situations where we want to specify an \error bound" a variable e, and even vary

these bounds in the course of a computation. This seems to contradict the previous view of

error bounds; the apparent contradiction comes from our tendency to confuse the concept

of an expression with its value (which is a number). For instance, a variable e may really

represent the expression ad � bc. But e also has a value, provided the variables a; b; c; d all

have values. Once we make this distinction, we can ask for the value of e to within any \error

bound". To distinguish this user-speci�ed notion of error bound from the one in bigFloat,

we call this the precision-bound. A precision-bounds is given by a pair of integers, [a; r], where

a bounds the absolute error and r the relative error. The precise semantics will be explained

below. In our treatment, an Expr variable e is associated with three data items:

� A numerical expression E. We implement only the operations +;�;�;�;

p

, and so E

may be called a rational radical expression.

� A precision-bound [a; r].

� An approximate value �. Usually � is a bigFloat or a rational.

We guarantee that � approximates the value of E to the precision-bound [a; r]. Note that

the user chooses E and [a; r] but the system generates �. Furthermore, when the user change

[a; r] or E, this is an implicit request for the system to update �.

4



Semantics of precision-bounds. Let [a; r] be a pair of integers, called a (composite)

precision-bound. We say that a real number

b

x approximates another real x to precision [a; r]

if either the absolute error jx�

b

xj is at most 2

�a

or the relative error j(x�

b

x)=xj is at most 2

�r

.

We call this the \or" semantics, since it is clear that could just have easily de�ned the \and"

semantics. Depending on the application, it is common to specify the precision in terms of

either absolute or relative terms. We choose to use the composite notion because it exibly

encompasses both. If for example, a user wishes to specify only relative precision r they may

do so by specifying a bound of [1; r].

Since our \or" semantics for composite precision-bounds is not the obvious choice, we try

to motivate it. In fact, Schwarz [18] had already used the \and" semantics. Our original idea

is that

b

x

�

=

x[a; r] should mean that

b

x = x(1 + � � 2

�r

) + � � 2

�a

for some 0 � j�j; j�j < 1. But this seems di�cult to handle directly. But our \or" semantics

is easily seen to be a close approximation.

Let us illustrate one use of composite precision bounds. Suppose that a certain com-

putation involves only rational numbers with at most N and D bits in the numerator and

denominator, respectively. Under certain assumptions, it seems reasonable to approximate

these values with big oats that does not exceed absolute precision D or relative precision

N +D. That is, we can set a global precision bound of [a; r] = [D;N +D] for all expressions

in this computation.

Another reason why we chose to consider both relative and absolute precision is their

relationship to the basic arithmetic operations. Roughly speaking, addition and subtraction

preserve absolute precision, while multiplication and division preserve relative precision. The

desire to specify relative precision was partially responsible for the decision to include dynamic

error bounds with bigFloat values. If static error bounds are used, then it is only possible to

work with absolute precision.

Basis for Geometric Computation. In some sense, multiprecision number packages serve

as the ultimate basis for exact computation. The problem is that, from the viewpoint of a

number package, exact computation amounts to computing each arithmetic operation exactly

(or to user speci�ed precision). This is a limited view which misses the bigger picture of ge-

ometric computing: an important aspect of any geometric algorithm is that calls to number

packages can invariably be structured into larger units called expressions. At the expression

level, exact computation takes on a whole new meaning { and opportunities for optimization

seem wide open. If arithmetic operations are atoms, then expressions are the molecules or

5



even polymer, if we may use a physical analogy. The distinguishing mark of a geometric al-

gorithm is the intertwining of combinatorial with numerical computation [21]. It seems that

an unstructured interaction between these two aspects of geometric algorithms is generally

undesirable. We suggest that for geometric algorithms, the level of expressions is the appro-

priate one for interaction. It is in this sense that we think of bigExpression as a \basis" for

exact geometric computation: ideally, we want to design geometric algorithms so that they

never access number packages except through bigExpression.

4 The Exact Basis for Using Approximations

Although big oat packages have been around almost as long as big integer packages, their

role has always been in support of the �xed-precision computation paradigm (see [23]). For

instance, Brent's MP is designed for this mode of computation, even though the precision is no

longer dictated by the hardware. Since the use big oats in exact computation seems novel,

it is important (1) to establish that the basis for their use in exact computation, and (2) to

demonstrate their usefulness. We now treat (1), leaving (2) to the next section.

The fundamental issue here is how to determine the sign of an expression. Since we can

specify precision bounds, we can keep increasing the precision until we obtain a positive or

negative sign. But what if the sign is really zero? We must have some �a priori bound on

when to stop increasing the precision and conclude that the sign is zero. Basically, we can

determine such �a priori bounds because of the existence of root bounds. We now make this

precise.

If � is an algebraic number that is a root of the integer polynomial A(X) then we use

the following bound from Landau (see [22]): j�j � (kA(X)k

2

)

�1

where kA(X)k

2

refers to

the Euclidean length of the coe�cient vector of A(X). Assume that � is the value of a

\rational radical expression" that is recursively built-up from the rational constants using the

operations of

+;�;�;�;

p

: (1)

Our fundamental goal can be reduced to obtaining lower bound on j�j when � 6= 0. Towards

this end, we maintain with each node of E an upper bound on the degree and length of the

algebraic number represented at that node. If � is an algebraic number, we call the pair (d; `)

a degree-length bound on � if there exists a polynomial A(X) 2 Z[X] such that A(�) = 0,

deg(A) � d and kAk

2

� `. Note that this implies that j�j � 1=` (Landau's bound) and so we

only need to a big oat approximation of � with absolute precision (lg `) + O(1) in order to

determine its sign. We now derive the recursive rules for maintaining this bound.

Suppose the algebraic number � is obtained from �

1

and �

2

by one of the 5 operations

6



in (1). Inductively, assume a degree-length bound of (d

i

; `

i

) on �

i

, (i = 1; 2), and let A

i

(X)

be a polynomial that achieves this bound. We now describe a polynomial B(X) such that

B(�) = 0, and a corresponding degree-length bound (d; `) on �.

Theorem 1 The pair (d; `) is a degree-length bound for � in each of the cases, as listed below.

� (BASIS) � = p=q is a rational number, where p; q 2 Z. Choose B(X) = qX � p, d = 1

and ` =

p

p

2

+ q

2

.

� (INVERSE) � = 1=�

1

: choose B(X) = X

d

1

A

1

(1=X), d = d

1

and ` = `

1

.

� (SQUARE-ROOT) � =

p

�

1

: choose B(X) = A

1

(X

2

), d = 2d

1

and ` = h

1

.

� (PRODUCT) � = �

1

�

2

: choose B(X) = res

Y

(A

1

(Y ); Y

d

2

A

2

(X=Y )), d = d

1

d

2

and

` = `

d

2

1

`

d

1

2

:

� (SUM/DIFFERENCE) � = �

2

��

1

: chooseB(X) = res

Y

(A

1

(Y ); A

2

(X�Y )), d = d

1

d

2

and

` = `

d

2

1

`

d

1

2

2

d

1

d

2

+minfd

1

;d

2

g

:

Remarks.

1. Here res

Y

(A;B) is the resultant of polynomials A andB in Y . Only the SUM/DIFFERENCE

case in this theorem is non-trivial, and it is based a bound of Graham and Goldstein [12, 22].

2. The use of big oats as approximate values is by no means essential. We could use any

dense number system (e.g., rational numbers) or intervals, as in [3].

5 The Advantage of Using bigFloat

The example arises in the exact implementation of Fortune's plane sweep algorithm [8] for

Voronoi diagrams of a point set.

Comparison of Priorities. In Fortune's algorithm, we need to order a sequence of \events"

according to their \priorities". It turns out that we need to make comparisons of the form

a +

p

b

d

:

a

0

+

p

b

0

d

0

: (2)

where a; b; d essentially have 3L; 6L and 2L bits, respectively, assuming input points has L-bit

integer coordinates.

7



The Method of Repeated-Squaring It is clear that this comparison can be made by

repeated squaring. In fact, Fortune

1

has already noted that this may involve 20L-bit integers.

But it turns out that the details are somewhat involved, a fact which previous authors seems

to have missed. To see this, we may assume that we want to verify whether d

0

(a +

p

b) �

d(a

0

+

p

b

0

) or,

(I) : d

0

p

b � d

p

b

0

+ e (3)

where e = da

0

�da

0

. Note that we assume d; d

0

6= 0, not necessarily positive. Then equation (3)

is equivalent to the disjunction of the following three conjuncts:

(II) : (d

0

� 0); (d

p

b

0

+ e � 0); (d

02

b � (d

p

b

0

+ e)

2

): (4)

(III) : (d

0

� 0); (d

02

b � (d

p

b

0

+ e)

2

): (5)

(IV ) : (d

0

� 0); (d

p

b

0

+ e � 0): (6)

These can ultimately be expanded into a Boolean function of the sign of the following 6

expressions:

d; d

0

; e; d

2

b

0

� e

2

; d

02

b� d

2

b

0

� e

2

; 4d

2

e

2

b

0

� (d

02

b� d

2

b

0

� e

2

)

2

:

Alternatively, we can expand (II)_(III)_(IV ) into a disjunction of 18 conjuncts involving the

signs of these expressions. In any case, having to evaluate such a large number of expressions

leaves something to be desired. Similar observations clearly apply to the repeated-squaring

technique.

The Method of Approximate Numbers. To use approximate numbers, we need the

following lemma:

Lemma 2 It su�ces to compute the values in (2) to 25L + O(1) bits in order to make an

error-free comparison.

Classical root separation bounds gives us 60L bits. Our proof uses a bound of Goldstein-

Graham [12, 22].

The advantage of repeated squaring over the approximate square-root approach is that

only integer operations are used. But approximate square-roots are essentially as fast as mul-

tiplication (in theory and not much slower in practice). The biggest advantage of approximate

square-roots is that we do not need to perform up to 20L-bit arithmetic for each comparison

{ instead, we compute each � to 25L-bits of accuracy once. Subsequent comparisons using

the pre-computed approximate square-roots is simple and fast, as compared to the evaluation

of a large Boolean function in the repeated squaring approach.

1

Private communication.

8



Remark: Mehlhorn points out that we can improve the root separation bound to 20L-bits.

But recently, Sellen and Yap (to appear) further reduced this to 15L-bits, and they show

that this 15L-bit bound is the best possible. So the comparative advantage of using big oats

proves to be even greater.

6 bigExpression: precision-driven computation

The most important feature of our package is the use of precision-driven computation. This

should be contrasted to the system of Benouamer, Jaillon, Michelucci and Moreau [3]. They

used a \lazy approach" that increases the precision of leaves in an expression, and automat-

ically propagate this increased precision up the tree until the root. It is not clear how one

predicts the necessary precision at the leaves to ensure a desired precision at the root, so

presumably there is a loop to repeat this process. Their approach may be regarded as a

\bottom-up" propagation of error-bounds; our evaluation evaluation algorithm has an ad-

ditional \top-down" propagation of precision-bounds. Recall that our expression has an

associated precision bound. We �rst propagate the precision bound from the root to all the

nodes of the expression. At each leaf, we may assume that we have a procedure to extract

an approximate value to satisfy the precision bound at the leaf. Then these values are prop-

agated back to the root { but the precision achieved at the root is now guaranteed to be the

desired one.

Our distinction between error-bounds and precision-bounds, in some sense, just reects

the di�erence between a half-empty cup and a half-full cup, whether you look at the same

phenomenon as a pessimist or as an optimist. But we can distinguish them within the context

of our evaluation process:

(i) Error-bounds appear in the leaves of an expression when we substitute parameter values

with approximations. These error-bounds propagate upwards in a completely deterministic

manner. For instance, if the express is c = a + b and both a and b have an absolute error of

at most �0:1 then we can place an error-bound of �0:2 on c.

(ii) On the other hand, a precision-bound is a user-speci�ed quantity, usually imposed only

at the root of an expression. E.g., the user can specify that the expression c = a+ b must be

computed to within a precision-bound of �0:2 in absolute terms. The system then propagates

this precision top-down all the way to the parameters. Note that this propagation is not

deterministic: we could specify that a; b must each be computed to within absolute precision

�0:1, but clearly there are many other choices. For instance, if we know that jaj < 0:01, then

we can ignore a and simply require b to be computed to absolute precision �0:19, and output

the approximated value of b as the approximation to c. We have used only absolute bounds

9



in this illustration, but in general, these concepts extend to relative bounds as well.

The hard part of our precision approach is the top-down propagation of precision bounds!

Once these bounds are computed, the rest is presumably automatic. But the algorithms

for propagating precision-bounds is not at all obvious. The interaction of the relative and

absolute bounds adds to the complications. In the full paper, we will describe these algorithms

(see also [23]). Here, we illustration the case of square-roots.

Propagating Precision-bounds for Square-root. Suppose we require the value of a tree

node E up to some precision � = (a

0

; r

0

). We determine a priori the required precision of the

sub-expression values:

Lemma 3 To evaluate the square root of an expression E

1

to a precision (a

0

; r

0

), it su�ces

to evaluate E

1

with precision (2a

0

+ 2; r

0

+ 1).

7 Experimental Results

Preliminary testing indicates that the packages are not unacceptably slow, and do provide

a reasonable alternative to �xed-precision computation. Among the algorithms which we

have used to test our packages is Fortune's netlib distributed code for Voronoi diagram. We

modi�ed it for C++. Using his distributed data set containing 100 sites, we �nd that using

bigFloat the execution is approximately 10 times slower than using machine oating point.

When we use the bigExpression package, the execution time is approximately 66 times slower

than oating point. Similar results have been produced with various point sets ranging in size

from 50 to 400 points. For this problem, a pro�ler indicates that 55% of the execution time

is spent for memory allocation, and the bulk of the remaining time is used in performing the

bigFloat/bigExpression computations. Other time spent in the algorithm is negligible.

Another test involved computing the determinant of a Hilbert matrix. The initial entries

in the matrix were rational numbers. We computed the determinant two ways:

� converting the numbers to bigExpression and performing the determinant algorithm

allowing the precision of the sub-expressions to be determined automatically by the

system. The �nal result is guaranteed to have at least 40 (accurate) bits of precision.

� converting the numbers to bigFloat with k bits of precision, and then computing the

determinant using only the available precision in the system. The number of bits of

precision p in the computed determinant is of course less than k.

The results of these experiments are summarized in Fig. 1. In these tests it was found that

approximately 69% of the time was spent in memory management and the rest was used in

10



matrix time (sec) time (sec) starting precision ending precision

dimension bigExpression bigFloat k p

8 2.34 0.16 40 3

0.18 60 19

0.19 80 51

12 24.88 0.55 80 12

0.59 100 28

0.63 120 44

16 110.90 1.37 120 1

1.43 140 17

1.54 160 49

20 393.37 3.13 160 1

3.24 180 17

3.44 200 33

3.65 220 49

Figure 1: Timing results for Hilbert matrix determinant

the computation.

At this point, we have not yet optimized our packages. In particular we do not yet handle

our own memory management and pro�ling shows this to be the most costly part. We believe

that future realizations of these packages will be considerably faster.

8 Conclusion

The exact computation paradigm is important to develop for a variety of reasons. At least,

users should be given a viable alternative when the standard computing paradigm based on

�xed-precision computation becomes inadequate.

1. In this paper, we propose two basic pieces of software that are essential for the above ba-

sic goal. We described considerations that went into our design of two packages. In our system,

the automatic tracking of error appear in two places: in bigFloats and in bigExpressions.

The latter embodies a novel evaluation mechanism based on the precision-driven paradigm

which we expect to have other applications.

2. bigExpressions is relatively easy to use. It does change the programming style

somewhat, forcing the user to construct expressions ahead of any computation. But this

discipline is probably ultimately for the good.

3. The present implementation can be improved in several ways. This includes (a) devel-

11



oping an incremental big number package, and (b) incorporating a determinant operator as

primitive, (c) incorporating more compiler technology into its design. The reason for (b) is

that currently, determinants can only be implemented as the evaluation of a polynomial in n!

terms and we cannot take advantage of polynomial algorithms such as Bareiss's algorithm.

This is only feasible for small n. Note that (c) is an enormous topic with many possibilities:

global optimization, expression restructuring, common expressions, run-time tactics, etc.

4. Currently, we are implementing a heterogeneous number package based on a Real class.

A Real object can equally represent a big integer, big rational, big oat, machine types or

other user constructed number packages. Eventually we will incorporate general algebraic

numbers as well. Although this is in general expensive, it should be available when the user

has a genuine need for it. With the user-speci�ed precision, the user only needs to pay for

the amount of precision desired.

5. The availability of such packages would in any case be a boon to the experimental

side of the �eld. Even when an application could not ultimately a�ord the cost overhead of

exact computation, it is still useful in debugging and testing �xed-precision algorithms. By

substituting our package for the �xed-precision arithmetic, the user can see if a mysterious

failure in their �xed-precision computation is really due to non-robustness problems. As one

is never sure about the results of most �xed-precision computations, it is nice to be able to

check results using our package.

References

[1] David H. Bailey. MPFUN: a portable high performance multiprecision package. Technical Report

RNR-90-022, NASA Ames Research Center, 1990. Email: dbailey@nas.nasa.gov.

[2] David H. Bailey. Automatic translation of Fortran programs to multiprecision. Technical Report

RNR-91-025, NASA Ames Research Center, May 6, 1993. Email: dbailey@nas.nasa.gov.

[3] M. Benouamer, P. Jaillon, D. Michelucci, and J.-M. Moreau. A lazy solution to imprecision in

computational geometry. In Proc. 5th Canad. Conf. Comput. Geom., pages 73{78, Waterloo,

Canada, 1993.

[4] Richard P. Brent. A Fortran multiple-precision arithmetic package. ACM Trans. on Math.

Software, 4:57{70, 1978.

[5] Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra. How to compute the Voronoi diagram

of line segments: theoretical and experimental results. In Proc. 2nd European Symposium on

Algorithms (ESA'94), 1994. Utrecht, the Netherlands, September 26-28, 1994 (to appear).

[6] Jacqueline D. Chang and Victor Milenkovic. An experiment using LN for exact geometric com-

putations. Proceed. 5th Canadian Conference on Computational Geometry, pages 67{72, 1993.

University of Waterloo.

12



[7] C.W. Clenshaw, F.W.J. Olver, and P.R. Turner. Level-index arithmetic: an introductory survey.

In P.R. Turner, editor, Numerical Analysis and Parallel Processing, pages 95{168. Springer-Verlag,

1987. Lecture Notes in Mathematics, No.1397.

[8] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153{174, 1987.

[9] Steven Fortune. Numerical stability of algorithms for 2-d Delaunay triangulations and Voronoi

diagrams. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 83{92, 1992.

[10] Steven Fortune and Christopher van Wyk. E�cient exact arithmetic for computational geometry.

ACM Symp. on Computational Geometry, 9:163{172, 1993.

[11] Steven Fortune and Christopher van Wyk. LN User Manual, 1993. AT&T Bell Laboratories.

[12] A. J. Goldstein and R. L. Graham. A Hadamard-type bound on the coe�cients of a determinant

of polynomials. SIAM Review, 16:394{395, 1974.

[13] A. Knight, J. May, M. McA�er, T. Nguyen, and J.-R. Sack. A computational geometry workbench.

ACM Symp. on Computational Geometry, 6:370, 1990.

[14] Kurt Mehlhorn and Stefan N�aher. Algorithm design and software libraries: Recent developments

in the leda project. Algorithms, Software, Architectures, Information Processing 92, 1:493{505,

1992.

[15] Victor Milenkovic. Robust polygon modeling. Computer-Aided Design, to appear, fall 1993.

(special issue on \Uncertainties in Geometric Computations).

[16] P.J.de Rezende and W.R. Jacometti. GeoLab: an environment for development of algorithms in

Computational Geometry. Canadian Conference on Computational Geometry, 5:175{180, 1993.

[17] P. Schorn. An object-oriented workbench for experimental geometric computation. Canadian

Conference on Computational Geometry, 2:172{175, 1990.

[18] Jerry Schwarz. A C++ library for in�nite precision oating point. Proc. USENIX C++ Confer-

ence, pages 271{281, 1988.

[19] B. Serpette, J. Vuillemin, and J.C. Herv�e. BigNum: a portable and e�cient package for arbitrary-

precision arithmetic. Research Report 2, Digital Paris Research Laboratory, May, 1989.

[20] K. Sugihara and M. Iri. An approach to the problem of numerical errors in geometric algorithms.

Proceedings, 37th Annual Convention of the Information Processing Society of Japan, Kyoto,

pages 1665{1666, September 12{14, 1988.

[21] Chee Yap. Towards exact geometric computation. In Fifth Canadian Conference on Computa-

tional Geometry, pages 405{419, Waterloo, Canada, August 5{9 1993. Invited Lecture.

[22] Chee Yap. Fundamental Problems in Algorithmic Algebra. Princeton University Press, to appear.

Available on request from author (and via anonymous ftp).

[23] Chee Yap and Thomas Dub�e. The exact computation paradigm. In D.-Z. Du and F. K. Hwang,

editors, Computing in Euclidean Geometry. World Scienti�c Press, 1994. (To appear, 2nd edition).

13


