
Incremental Web Search:

Tracking Changes in the Web

by

Ziyang Wang

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

May 2006

Ernest Davis

c© Ziyang Wang

All Rights Reserved, 2006

Dedicated to my dear parents Shidong Wang, Weiqing Gong

and my lovely wife Xiang Jin who blessed and supported me

iv

Acknowledgments

Many thanks to my advisor Professor Ernest Davis for all of his kind help with

my work. He is very nice and patient in helping his students. I am very lucky

to find him as my advisor. Thanks to other committee members of my thesis:

Prof. Panagiotis Ipeirotis, Prof. Zvi Kedem, Prof. Dennis Shasha and Prof.

Ralph Grishman. They gave many valuable advices in reading the draft of

the thesis. Some of this thesis work are presented at different conferences and

workshops. Many anonymous reviewers gave valuable suggestions to improve

my work. During my Ph.D. studies, I did internships at Avaya Research Labs,

IBM Watson Research Center and Amazon Inc. The team members in these

companies also helped me polish the ideas related to my work. I would like

to thank my wife, Xiang Jin, for her years support during my Ph.D. study.

She encouraged and helped me a lot to concentrate on my study and made

my life go smooth for years. Now she is going to get a degree in Carnegie

Mellon University too. I would like to congratulate her great achievements.

Finally, special thanks to the staffs, Anina Karmen and Rosemary Amico, in

the department of computer science of New York University. They are very

helpful in dealing with my academic issues during the last five years.

v

Abstract

A large amount of new information is posted on the Web every day. Large-scale

web search engines often update their index slowly and are unable to present

such information in a timely manner. In this thesis, we present our solutions

of searching new information from the web by tracking the changes of web

documents.

First, we present the algorithms and techniques useful for solving the fol-

lowing problems: detecting web pages that have changed, extracting changes

from different versions of a web page, and evaluating the significance of web

changes. We propose a two-level change detector: MetaDetector and Content-

Detector. The combined detector successfully reduces network traffic by 67%.

Our algorithm for extracting web changes consists of three steps: document

tree construction, document tree encoding and tree matching. It has linear

time complexity and extracts effectively the changed content from different ver-

sions of a web page. In order to evaluate web changes, we propose a unified

ranking framework combining three metrics: popularity ranking, quality rank-

ing and evolution ranking. Our methods can identify and deliver important new

information in a timely manner.

Second, we present an application using the techniques and algorithms we

developed, named “Web Daily News Assistant (WebDNA): finding what’s new

vi

on Your Web.” It is a search tool that helps community users search new

information on their community web. Currently WebDNA is deployed on the

New York University web site.

Third, we model the changes of web documents using survival analysis.

Modeling web changes is useful for web crawler scheduling and web caching.

Currently people model changes to web pages as a Poisson Process, and use

a necessarily incomplete detection history to estimate the true frequencies of

changes. However, other features that can be used to predict change frequency

have not previously been studied. Our analysis shows that PageRank value is a

good predictor. Statistically, the change frequency is a function proportional to

exp[0.36 · (ln(PageRank)+C)]. We further study the problem of combining the

predictor and change history into a unified framework. An improved estimator

of change frequency is presented, which successfully reduces the error by 27.3%

when the change history is short.

vii

Contents

Dedication iv

Acknowledgments v

Abstract vi

List of Figures xii

List of Tables xiv

List of Appendices xv

1 Introduction 1

1.1 Motivation . 1

1.2 Support from the statistical data of web evolution studies 3

1.3 Our Contributions . 5

2 Techniques and algorithms 8

2.1 Problems of searching for new information over the web 8

2.1.1 The definition of indexable change of web pages 8

2.1.2 The framework and problems of incremental web search . 9

2.2 Web document change detection 13

viii

2.2.1 Level 1: MetaDetector 13

2.2.2 Level 2: ContentDetector 16

2.2.3 The effectiveness of change detector 18

2.3 Extracting web changes between different versions 19

2.3.1 Document tree construction 21

2.3.2 A bottom-up tree encoding for hypertext documents: HT-

encoding . 27

2.3.3 An efficient algorithm for tree matching 29

2.3.4 Complexity of algorithms 32

2.3.5 Information segmentation 35

2.3.6 Demo . 35

2.4 A framework of evaluating web changes 39

2.4.1 Popularity ranking . 40

2.4.2 Content-based ranking 45

2.4.3 Structured evolution ranking 46

2.4.4 Unified ranking . 48

2.5 Summary . 49

3 Application: Web Daily News Assistant 50

3.1 Design . 50

3.2 Architecture . 53

3.3 Building the initial data . 56

3.4 An event-driven incremental web crawler for WebDNA 59

3.4.1 Determining the crawling rate 62

3.5 Retrieving web changes from database 66

3.5.1 Full-text keyword search 67

ix

3.6 Developing tools . 68

4 Modeling Web Changes and Analysis 70

4.1 Introduction . 70

4.2 Background . 72

4.2.1 Change frequency and change history 72

4.3 Modeling web changes . 72

4.3.1 Review of frequency estimator based on detecting history 73

4.3.2 The disadvantage of detection based frequency estimator 74

4.3.3 Predicting the change frequency of web pages 75

4.3.4 An improved change frequency estimator 78

4.4 Experiments . 79

4.4.1 Simple regressions on uncensored data 80

4.4.2 Cox regression on both uncensored and censored data . . 81

4.4.3 The effectiveness of improved estimator 83

4.5 Conclusion . 85

5 Related work 87

5.1 Searching the Web . 87

5.2 Web evolution studies . 90

5.3 Web crawling and synchronization 92

5.4 Hypertext information extraction 94

5.5 Web ranking . 96

6 Conclusion 98

Appendices 101

x

Bibliography 112

xi

List of Figures

2.1 An overview of incremental search. 10

2.2 The control flow of MetaDetector. 15

2.3 Detection order of meta data. 17

2.4 An example of modification areas on web pages. 20

2.5 Misalignments of HTML tags. 22

2.6 Tag structure transformation for OptTags and ForbTags. 23

2.7 Two versions of the home page of New York Times. 37

2.8 The changed content extracted. 38

2.9 Information segments generated. 39

2.10 The framework of ranking web changes. 40

2.11 The selection of α. 48

3.1 The user interface of WebDNA. 52

3.2 The architecture of WebDNA. 54

3.3 HTTP response and media type distribution of URLs in NYU

domain. 58

3.4 Top sub-domains in NYU web. 59

3.5 The eventloop of incremental crawler. 61

xii

3.6 The loading ratio and crawling load on web servers. (The error

bar is mean +/- standard deviation). 63

4.1 The ratio of standard error of change frequency estimator. . . . 75

4.2 The distribution of URLs. 81

4.3 Simple exponential regression. 82

4.4 Cox regression on different history data sets. 84

4.5 The error ratios of change history based estimator. 85

4.6 The error ratios of the improved estimator. 86

5.1 General search engine architecture (from [9]) 88

C.1 Top 100 most frequent words in web changes of NYU Web. . . . 107

C.2 Top 100 most frequent words in the NYU Website. 108

xiii

List of Tables

2.1 Presence of meta data . 15

2.2 Percentage of changed documents found by different detection

methods. 19

2.3 HTML tags for separating content 36

xiv

List of Appendices

Appendix A

Estimating the number of distinct trees

101

Appendix B

Computing minimum backward distance

103

Appendix C

Top frequent words in the web pages and web changes of the NYU web

site

106

Appendix D

Estimating the lifetime of web changes on a single web page

109

Appendix E

The probabilities for sampling web pages

111

xv

Chapter 1

Introduction

1.1 Motivation

The World Wide Web is an enormous information source useful to millions.

Many users use a search engine to find the information they need when surfing

the web. According to the Pew Internet & American Life Project [35], there

are over 107 million users of Web search engines in United States alone, and

they made over 3.9 billion queries in the month of June 2004. A search engine

usually takes a keyword query from user and returns a ranked list of the most

relevant web documents. There is no question that the Web is huge and hard

to deal with. In order to provide a high coverage for searching, search engine

maintains a huge index of web pages and updates it regularly. For example,

Google claims that it had indexed over 8 billion pages as of June 2005. Although

processor speeds are increasing and hardware is getting less expensive every

day, updating such a huge index in a short time is a very challenging task.

Typically, it takes from weeks to a couple of months for a comprehensive update.

Although the precise information of how often the search engines update the

1

index is their commercial secret, the huge size prohibits a short term update. For

information that is relatively static on the Web, e.g. “Java API documentation”,

and navigational queries of long-lived URLs, e.g. “CNN”, this delay does not

matter much. However, the Web changes rapidly. According to the experiments

performed by Fretterly et al. [36] and Ntoulas et al. [54], 15% − 25% of web

pages change at least once each week. Searching information on frequently

updated pages will fail using an obsolete index.

In this thesis we consider a different way of searching the Web. Rather than

searching the Web as an entire information library, searching can be targeted

toward new information appearing on the Web. During the evolution of the

Web, a large amount of new information emerges on the Web every day. We

need a high access rate to download such information and present it to users

in a timely manner. The traditional download-and-index approach is not an

efficient solution in dealing with such information.

Searching for new information from media is not a new area of study. News

search engines, such as Google News [2], provide search tools for public news

media. They retrieve news articles from the databases of various news media and

download articles from many news web sites, build an index and present a search

service. But this technique applies only to data sources presented by public news

media which are created by professionals, published at standard locations and

are of general public interests. What has not been well studied is how to retrieve

and organize the innumerable updates that are constantly posted on the web.

New information of the Web can be classified into two categories: changes to

existing web pages and newly created pages. The underlying technologies to

process information of these two categories might be very different. We focus

our studies on the first category only while leaving the second one open. In this

2

thesis, we present our approach of how to search for new information from the

Web by retrieving and presenting the changes in web documents. The techniques

of searching new information from web changes can be very useful in many

applications. We give two examples here: finding new information in a local

web site; and incremental indexing of web data. Localized web or community

web are closely related to people’s daily life. Much new information on those

webs, such as event announcements, has very short lifetime. Retrieving changes

of web documents at high frequency can quickly bring such information to users.

Incremental indexing of web data can maintain a fresh web index continuously.

Indexing by snapshot requires huge amount of resources. By comparing different

versions of web documents, we can reduce the cost and make indexing process

much faster.

1.2 Support from the statistical data of web

evolution studies

Why is retrieving and managing web changes an effective method for retrieving

new information from the web? Evolution studies of the Web [36, 54, 22, 13]

demonstrate the following: Although the Web is growing and changing fast, the

absolute amount of changed content on existing web pages during a short period

is significantly smaller than the total amount of content in the Web. We review

the results of two recent studies.

• Ntoulas et al. [54] collected a historical database for the web by download-

ing 154 popular Web sites (e.g., acm.org, hp.com and oreilly.com) every

week from October 2002 until October 2003, for a total of 51 weeks. The

3

average number of web pages downloaded weekly was 4.4 million. The

experiments show that a significant fraction (around 50%) of web pages

remain completely unchanged during the entire period they studied. To

measure the degree of change, they compute the shingles1 of each docu-

ments and measure the difference of shingles between different versions

of web documents [15, 18]. They show that many of the pages that do

change, undergo only minor changes in their content: even after a whole

year, 50% of the changed pages are less than 5% different from their initial

version.

• Fretterly et al. [36] performed a large crawl that downloaded 151 million

HTML pages. They then attempted to fetch each of these 151 million

HTML pages ten more times over a span of ten weeks during Dec. 2002

to Mar. 2003. For each version of each document, they compute the

checksum and shingles to measure the degree of change. The degree of

change is categorized into 6 groups: complete change (no common singles),

large change (less than 30% common shingles), medium change (30%-

70% common shingles), small change (70%-99% common shingles), no

text change (100% common shingles), and no change (same checksum).

Experiments show that about 76% of all pages fall into the groups of no

text change and no change. The percentage for the group of small change

is around 16% while the percentace for groups of complete change and

1A shingle is a k-word subsequence, for some k > 1. The shingle method uses a window

of size k moving from the beginning of a document to the end and records all shingles into

a vector. For web documents, mark-ups are removed before the shingle method is used.

Quantitatively, the similarity of two documents is defined to be the number of distinct shingles

appearing in both documents divided by the total number of distinct shingles.

4

large change is only 3%.

The above results are very supportive to our studies. They suggest that in-

cremental method may be very effective in updating web indexes, and that

searching for new information appearing on the web by retrieving the changes

will require a small amount of data processing as compared to the huge size of

the Web.

1.3 Our Contributions

In Chapter 2, we studied a set of problems emerging in the application de-

velopment of searching new information from the web, and for each problem,

we present a practical solution and analyze its efficiency. The problems and

solutions are:

• How can changes in web pages be detected effectively? We detect changes

on-line using a two-level detecting method. Level 1 detection uses the meta

information of web documents retrieved from web servers to determine

whether a document is changed. If Level 1 detection fails, we use Level 2

detection, which detect changes using a hypertext document tree encoding

of the document. The overall quality of our detection method is superior to

the naive change detection which downloads all pages and detect changes

offline. It reduces the network cost by about 67%. Our detection method

can also distinguish indexable and non-indexable changes. Among all

candidate pages that are modified, about 51% are found having indexable

content changes.

• How can changes between different versions of web documents be extracted

5

effectively? We present an efficient and effective algorithm for comparing

different versions of web documents. The change extractor based on this

algorithm includes three phases: document tree construction, bottom-up

tree encoding and top-down matching. Our extractor is very effective for

real web data in practice and has linear scalability.

• How should new information be evaluated? We rank new information

by combining the results of three ranking schemes: popularity ranking,

quality ranking and evolution ranking. Popularity ranking evaluates the

global importance of web pages that present the changes in the Web.

An improved link-based ranking algorithm is presented for measuring the

popularity of web documents. Quality ranking evaluates the content in-

formation of web changes in favor of how much information they carry and

how timely the new information is. Evolution ranking evaluates new infor-

mation based on the time-stamp of changes and show how the importance

of web changes decreases over time.

In Chapter 3, we present an application using the techniques and algorithms

we developed, named “Web Daily News Assistant (WebDNA): finding what’s

new on Your Web”. WebDNA is a web search tool that helps community users

search new information on their community web. We deployed this application

on the Web site of New York University.

In Chapter 4, we discuss how to allocate and schedule crawling resources.

We model the changes of web documents using survival analysis. We find that

the popularity metrics of web pages is a good predictor of web changes. We show

that such a predictor can be utilized to improve the change frequency estimator

by 20% when the detection history is incomplete. Furthermore, we show how to

6

improve the freshness of the web index using the improved frequency estimator

and quality metrics of web documents.

7

Chapter 2

Techniques and algorithms

2.1 Problems of searching for new information

over the web

2.1.1 The definition of indexable change of web pages

First of all, what is the definition of a change on a web page?

Definition 1. If a web page P is modified at time t, the change of P at time

t is defined as the new text data added on the version at t compared with the

latest version before t.

According to this definition, a change of a web page is made up of two kinds

of information: the event of modification at time t and the new content added in

the new version. Since the content removed during a change can be considered

as obsolete information, we ignore it in our study. From the perspective of a

search engine, such a definition might not be very useful. First, a web page can

be inaccessible to search engines (e.g. the page is published on a local network

8

only, or is generated by a query from a database); second, a modification of a

web page might not introduce any new information that can be indexed by a

search engine. Therefore, we use a stronger notation to describe a change of

web page: indexable change. The term “indexable” has two levels of meanings:

a web page is considered as indexable if the page is accessible from the internet

through a unique URL; a piece of HTML content is considered as indexable if

the text data within the content contains non-stop words. Therefore, indexable

change is defined as following:

Definition 2. An indexable change is a change to textual content on an acces-

sible web page.

In the rest of this thesis, unless stated otherwise, when we talk about a web

change, we always refer to an indexable change of a web document.

2.1.2 The framework and problems of incremental web

search

In general, our approach to incremental search uses a framework similar to a

general search engine (Figure 5.1, Section 5.1). However, new problems and

underlying techniques arise within each of the major components. Figure 2.1

is an overview of searching new information from a data processing view. We

divide the retrieval process into three phases and identify the key problems

within each phase.

• Phase 1: fetching modified documents from the Internet

Our first task is to find and download the candidate pages that may con-

tain indexable changes during crawling. The candidate pages are those

9

Internet

Current copies History copies/Meta

Download Detect changes

Crawling: resource allocation

Phase 1:

Fetching data

Indexable changes

Extract changes, data filtering

content segmentation Data management
Phase 2:

Extracting data

Phase 3:

Presenting data
Ranked new information

Evaluation: off-line ranking

Indexing

Users/Search data

Evaluation: on-line ranking

UI

Figure 2.1: An overview of incremental search.

that have been modified since the last visit. Therefore the first problem

is how to effectively detect the modification of web pages. The goal is

to find the candidate pages that have been modified since the last visit

accurately while reducing the average cost as much as possible. We only

learn that a web page has changed when we detect that a new version

differs from a previous version. When such a change is detected, we do

not, of course, know when the change was made, or how many times the

page was changed. Therefore, searching for new information requires high

detecting frequency in order to reduce the delay of two successive detec-

10

tions and increase the freshness of local data. How to reduce the average

cost of single detection is a big challenge.

• Phase 2: extracting and processing web changes

The second problem is how to effectively extract indexable changes by

comparing the current version with the last version of the document.

There are two challenges in designing algorithm for this problem. First,

unlike pure text data, web documents contain hypertext markups as well

as text data. Most indexable content is provided in the text data. How-

ever, the markup data provides a structural view of the text data. The

string algorithms for comparing pure text documents, e.g. [50], are in-

appropriate for comparing web documents. Second, the volume of web

data is huge. Algorithms dealing with web data must be very efficient.

Complex algorithms for processing structural data are not practical. Sub-

sequent data processing, such as data filtering and content segmentation,

can be applied after the changes have been extracted.

• Phase 3: presenting new information

A search engine usually presents results to a query through a ranked list.

The quality of presentation relies on the quality of the evaluation of data.

In presenting web changes, rather than ranking web documents, we con-

sider the problem of ranking web changes. We know that the information

carried by web changes differs from that carried by web documents. Some

meta information differs too, such as the location of the change and the

modification timestamp. Due to these differences, there are several sub-

problems as described in the following:

11

– How to rank changes between different web documents.

– How to rank changes appearing at different locations on a single web

page.

– How to rank changes appearing at different time on a single web

page.

In presenting results to users, it is not proper using multiple ranked lists

of different categories. We need to combine multiple evaluation strate-

gies to provide a unified evaluation. We need solutions for each of the

sub-problems and study how these solutions can be combined to an com-

prehensive evaluation.

In the following of this chapter, we will present the solutions to these prob-

lems and discuss their effectiveness. The data we use for our analysis is collected

from the web of New York University by the application presented in Chapter

3. It includes a snapshot of about 240,000 web pages, the link structure of these

pages, and the complete change history of 60,000 web pages from March 2005

to November 2005. Although the NYU web site is much smaller than the global

web, it is structurally similar1. The ratio between the number of hyperlinks and

URLs is 7.4, which is in agreement with previous work [17]. The study of the

in-link and out-link distributions shows they obeys power law with power coef-

ficients of 1.94 and 2.24. Both of them agree well with previous work studied

by Broder el al. [17] and Barabasi and Albert [11]. The average size of the web

documents is 10.5K bytes similar to the results given by Fretterly et al. [36].

1Kumar et al. [45] showed that the structural similarity between local webs and the global

web is typical.

12

2.2 Web document change detection

We use two detectors to find candidate web pages that has been modified since

last visit: MetaDetector and ContentDetector. MetaDetector performs on-line

detection using meta data given by HTTP HEAD responses. If it fails to de-

termine whether a web page has been changed, we download the web page and

start ContentDetector that performs detection using the content of the page.

2.2.1 Level 1: MetaDetector

There are two different types of HTTP messages: a Request Message sent by

client, and a Response Message returned by server. Each HTTP message can

include a list of header fields. In HTTP/1.1 (RFC 2616) [7], header fields are

divided into four categories: General Header Fields, which apply to both request

and response messages, but do not apply to the entity transferred; Request

Header Fields, which allow the client to pass additional information about the

request, and about the client itself, to the server; Response Header Fields, which

allow the server to pass additional information about the response which cannot

be placed in the Status-Line; Entity Header Fields, which usually present the

meta information of the entity body. Among these headers, entity headers and

cache control headers can be used to determine whether the content has been

modified and whether we should update the local cache.

Related entity headers are:

• Last-Modified – the latest timestamp when a web page is modified.

• Content-Length – the content length of a web page.

• Content-MD5 – the MD5 encoding [6] of a web page.

13

Related cache control headers are:

• If-Modified-Since – a conditional GET if the content is modified since a

timestamp.

• ETag – the ETag response-header field provides the current value of the

entity tag for the requested variant.

In cache control, the header If-Modified-Since is based on the time information

presented by Last-Modified when server determines a conditional get. Further

analysis will show that Last-Modified header is not a reliable header for change

detection all the time. Therefore, we ignore the If-Modified-Since header in

MetaDetector.

We maintain a cache of all these related header values locally. The MetaDe-

tector checks each of the related headers one-by-one in a certain order until it

can successfully determine whether the web page is changed. The detection on

each of the meta data returns one of three results: CHANGED, UNCHANGED

and UNKNOWN. Figure 2.2 shows the control flow of MetaDetector.

The effectiveness and reliability of meta detection

Because web servers may present false meta data or even do not give the needed

meta data, a detection of a single meta data, e.g. Last-Modified, may fail to

determine whether a web page has been modified. We performed experiments on

NYU web to examine the probability whether required meta data is presented

by web servers. Additionally, for Last-Modified header field, if it is not the

detection time and is within last three months, we mark it as Good. Table 2.1

shows the results of 159,731 successful detections on a set of 60,000 URLs in a

three-day period where we attempt to detect each URL one time each day.

14

Figure 2.2: The control flow of MetaDetector.

Table 2.1: Presence of meta data

Meta data Missing Provided Good

Last-Modified 33.8% 66.2% 11.3%

Content-Length 27.1% 72.9% N/A

Content-MD5 100% 0.0% N/A

ETag 34.1% 65.9% N/A

We found no server in nyu.edu domain that presents Content-MD5 header

field. For Last-Modified header, we found most data is not quite reliable for

change detection. The percentage given as Provided in Table 2.1 gives the

coverage of each single meta data, which is not very satisfying if we choose

only one of them for detection. The question is whether the coverage will be

improved a lot using multiple meta data.

In order to study the coverage of multiple meta data, we select three meta

data: Last-Modified, Content-Length and ETag, and study the coverage of their

15

arbitrary combination. The combined coverage shows that every HTTP message

that provides “ETag” header also provides “Last-Modified” header; and every

HTTP message that provides “Last-Modified” header also provides “Content-

Length” header.

Such results are not encouraging at all. The combined coverage does not

improve than individual presence. In most cases, a web server choose to provide

most relevant meta data or choose not to provide at all.

The detection order of meta data

Each meta data has limitations in change detection. The Last-Modified header

may provide false data, e.g. timestamp dynamically generated by web servers at

runtime. The unchanged Content-Length does not guarantee that the content is

100% unchanged. To accomodate these limitations, we use the detection order

given by Figure 2.3.

2.2.2 Level 2: ContentDetector

If meta detection fails and return a status of UNKNOWN, we download the web

page. There are two methods for detecting changes here:

• Content length detection – We know that servers may not provide neces-

sary meta data for MetaDetector. One case is that content length is not

provided in HTTP header fields. For such cases, after downloading the

document, we compare the actual content length of the current version

with the length of local copy of the last modified version. If it is different,

we report detection result as CHANGED, otherwise as UNCHANGED.

16

Detection order of Meta data

 Last-Modified → Content-MD5 → ETag → Content-Length

Code:

 IF Last-Modified is provided and is GOOD and is changed

 return CHANGED

 ELSE IF Last-Modified is provided and is GOOD and not changed

 return UNCHANGED

 ELSE IF Content-MD5 is provided and is changed

 return CHANGED

 ELSE IF Content-MD5 is provided and is not changed

 return UNCHANGED

 ELSE IF ETag is provided and is changed

 return CHANGED

 ELSE IF ETag is provided and is not changed

 return UNCHANGED

 ELSE IF Content-Length is provided and is changed

 return CHANGED

 ELSE IF Content-Length is provided and is not changed

 return UNCHANGED

 ELSE

 return UNKNOWN

Figure 2.3: Detection order of meta data.

It is rare that document is modified while the content length remains

unchanged.

• Content encoding detection – This detection requires the computation of

the encoding string of current version, which is the most expensive one

during the detection phase. We compare the computed encoding string of

the current version with the one of the last modified version stored in local

database. If the encoding string is different, it returns status CHANGED,

otherwise returns status UNCHANGED.

Why is content encoding detection needed after content length detection? First,

it is more accurate than content length detection in order to identify indexable

changes in web pages. Rather than encoding the content as a text document,

17

we use an encoding method for hypertext documents, called HT-encoding, pre-

sented Section 2.4.2. The advantage of HT-encoding is that it excludes non-

indexable content, e.g. style sheets, images and white spaces, while preserves

the structure of the hypertext documents. Second, it is less expensive than

direct content comparison of current version and the last modified version. The

encoding string for last version was computed when it was downloaded and is

available for retrieval in database.

2.2.3 The effectiveness of change detector

A naive method for detecting changes is to download every page and detect

changes offline. We compare the network traffic generated by our MetaDetector

and the naive method here. The experiments on the NYU web show that the

probability that MetaDetector reports UNKNOWN status is 0.27. Not count-

ing the web pages that change, our crawler only need to download the content

for 27.1% of URLs in our URL set. The average size of web pages in our data

set is 10.5KB, and the average network traffic of HTTP request is 0.5KB per re-

quest. Our MetaDetector reduces the network traffic by 68.4% compared with

the naive method. Consider that crawler for detecting changes runs at high

frequency, the number of pages that are found changed during a short time is

much smaller than the size of our URL set. For example, a 3-day detection on

60,000 URLs where each URL is detected one time each day only finds 1000-

2000 changed pages in general. Counting the downloads of changed pages, the

network traffic we need is still 67% less than the naive method.

Table 2.2 shows the fraction of changed documents that are found by differ-

18

ent detection methods. We find content encoding detection only reports that

0.412/0.794 = 51.9% of those detected as CHANGED by content length detec-

tion contains indexable content changes.

Table 2.2: Percentage of changed documents found by different detection meth-

ods.

MetaDetection ContentDetection

content length content encoding

20.6% 79.4% 41.2%

2.3 Extracting web changes between different

versions

Hypertext documents are structured by markups that can be used to build a

document tree view. For example, the Document Object Model (DOM) [1] can

be used to construct a document tree for a hypertext document. The document

tree view of web documents carries more information than a text file and can be

used to extract information more effectively than a text view. The question is:

is it good for extracting web changes between different versions of web pages?

We have known that the amount of modification on existing web pages is

significantly smaller than the content of web pages on average. When authors

add or modify the content of web pages, it is very likely that only text is added or

modified while the document tree structure and content layout in web browsers

remains relatively static. Additionally, as more and more web authors tend to

19

maintain the structure of web pages as templates, the modified content tends

to locate in the low levels of the document tree. Figure 2.4 is an example of

Figure 2.4: An example of modification areas on web pages.

web page using templates for layout. The blocks enclosed by the black boxes

are usually used to present new information on this page. While looking at the

HTML source code, we found the starting point of the red blocks is at depth 9

of the document tree and the red blocks spans 3 depths in the tree.

20

To accommodate such modification pattern, we use document tree to repre-

sent different versions of web pages in extracting web changes. Our algorithm

is implemented in three steps:

• Document tree construction

• Bottom-up tree encoding

• Top-down tree matching

2.3.1 Document tree construction

We use the Document Object Model (DOM) [1] to build an HTML document

tree. Unlike XML documents, the elements in HTML documents are not al-

ways presented in a nested style. There are two difficulties in building HTML

document tree:

• According to HTML 4.01 Specification [3], the presence of end tag can

be required or optional or forbidden. We define a tag that must have

an end tag as ReqTag, a tag that can have optional end tag as OptTag

and a tag that cannot have end tag as ForbTab. For examples, <div>,

<table>, <a> are ReqTags, <p>, are OptTabs and
, <meta>

are ForbTags.

• Some formatting tags may be misaligned, such as . Figure 2.5

describes how misalignments can be found. Some HTML parsers, such

as Microsoft Internet Explorer, can accommodate such misalignments to

display the web page correctly.

21

Type 1 Type 2

<parentTag>

 •••

 <misalignedTag>

 •••

</parentTag>

•••

</misalignedTag>

<parentTag>

 <misalignedTag>

 •••

 <nestedTag>

 </misalgnedTag>

 </nestedTag>

 •••

</parentTag>

Figure 2.5: Misalignments of HTML tags.

The procedure of building a document tree is usually integrated in an HTML

document parser. The parser parses the content and returns data when start

tag or end tag or text data is found. The document tree constructor maintains

a cursor starting at the root level, adds nodes and traverses through the tree

during parsing. When an end tag is missing or misaligned, it adds an additional

end tag to preserve the nested document structure. Specifically, if a ForbTag

is found, it adds an end tag immediately after the start tag and maintains the

cursor at the same depth (Figure 2.6 (a) shows the transformation for ForbTag);

if an OptTag is found at depth d and the cursor moves to depth d + 1, but the

end tag of OptTag is not found after the cursor has left depth d + 1, it adds an

end tag (Figure 2.6 (b) shows the transformation when a single OptTag misses

the end tag). There is a special case where multiple OptTags appear in the

same subtree without end tags (e.g. <parentTag> <p> ... <p> ... <p> ...

<parentTag>). Rather than placing them in a nested sub-tree, the parser places

them at the same depth in the sub-tree of <parentTag> (Figure 2.6 (c) shows

the transformation when multiple same OptTags are in the same level and miss

22

end tags). In the layout of multiple same OptTags such as <p>, flat structure

is preferred over nested structure.

(a)

(b)

(c)

<parentTag>

 •••

 <forbTag>

 •••

</parentTag>

<parentTag>

 •••

 <forbTag>

 </forbTag>

 •••

</parentTag>

———→

———→

———→

<parentTag>

 •••

 <optTag>

 •••

</parentTag>

<parentTag>

 •••

 <optTag>

 •••

 </optTag>

</parentTag>

<parentTag>

 <optTag>

 •••

 <optTag>

 •••

</parentTag>

<parentTag>

 <optTag>

 •••

 </optTag>

 <optTag>

 •••

 </optTag>

</parentTag>

Figure 2.6: Tag structure transformation for OptTags and ForbTags.

23

The misalignment problem is more difficult. Theoretically, there is no unique

tree structure that can match an arbitrary misalignment. By examining the

web data we collected from NYU web, we found most misalignments come from

 tag. Other misaligned tags exist but are rare, e.g. <form>. For Type

1 misalignment given in Figure 2.5, we move the end tag out of the sub-tree to

the same depth of start tag. For Type 2 misalignment, we add an end tag at

the same depth of start tag but ignore the actual end tag.

Listing 2.1 gives the algorithm for constructing document tree using an

event driven document parser. In our tree construction, we exclude two kinds

of HTML tags and their nested content: script (<script>) and style sheet

(<style>). A script is a piece of program written in HTML document to add

additional functions. They are not indexable and not relevant to the document

structure. Style sheets are often used to give customized layout of documents

in web browsers. The nested text in style sheet often contains dynamic content

such as advertisement image banner. We do not want to extract such changes.

Listing 2.1: Tree Construction Algorithm using event-driven parser

1 I n i t i a l i z e :

2 // document t r e e

3 DocTree = RootNode

4 // parent node f o r current node

5 ParentNode = RootNode

6 depth = 1 // current t r e e depth

7 // a l i s t s t o r i n g nodes from root to current node

8 DocPath = (RootNode)

9 // a l i s t o f current pending misa l i gn tag

10 Misal ignTags = (empty)

11

12 BuildDocTree (InputF i l e input)

13 {

24

14 // se tup parser

15 Reg i s t e r foundStartTag () , foundEndTag () and foundText ()

16 as par s ing hand le r s

17 // pars ing

18 parse document input

19 re turn DocTree

20 }
21

22 foundStartTag (Tag t)

23 {
24 // c rea t e a new node

25 Node n = createElementNode (t)

26 i f t i s ForbTag {
27 Add n to the ch i l d l i s t o f ParentNode

28 }
29 e l s e i f t i s OptTag {
30 i f the tag o f ParentNode i s the same OptTag {
31 // f i n i s h l a s t OptNode

32 ParentNode = DocPath[−−depth]

33 Add n to the ch i l d l i s t o f ParentNode

34 DocPath[++depth]=n

35 }
36 e l s e {
37 Add n to the ch i l d l i s t o f ParentNode

38 // move to the next l e v e l

39 ParentNode = n

40 Add n to the end o f DocPath

41 depth++

42 }
43 }
44 e l s e { // ReqTag

45 Add n to the ch i l d l i s t o f ParentNode

46 // move to the next l e v e l

25

47 ParentNode = n

48 Add n to the end o f DocPath

49 depth++

50 }
51 }
52

53 foundEndTag (Tag t)

54 {
55 i f t i s in Misal ignTags {
56 // proces s type 1 misal ignment

57 remove t from Misal ignTags

58 re turn

59 }
60 f i nd the index i o f l a s t node in DocPath o f tag t

61 i f (i == depth−1) {
62 // f i n i s h a normal node

63 ParentNode = DocPath[−−depth]

64 // proces s type 2 misal ignment

65 i f Misal ignTags i s not empty , update DocPath

66 }
67 e l s e i f (i < depth − 1) {
68 f o r each node j between i and depth in DocPath {
69 i f the tag o f DocPath [j] i s ReqTag {
70 // type 1 misal ignment

71 add tag o f DocPath [j] to Misal ighTags

72 depth = i − 1

73 }
74 }
75 // type 2 misal ignment

76 Add t to the end o f Misal ignTags

77 }
78 }
79

26

80 foundText (Text t)

81 {
82 Node n = createTextNode (t)

83 Add n to the ch i l d l i s t o f ParentNode

84 }

The nodes in the tree we construct carry several additional attributes not

presented in the original document:

• The location of the tag in the original document.

• The content length represented by the sub-tree.

• The encoding string of the sub-tree. The encoding method is described in

Section 2.3.2.

The first two attributes are preserved for information segmentation and eval-

uation as we will discuss later. The third one is preserved for performing tree

matching and information extraction as described in Section 2.3.3. The encod-

ing string of the root node is also used by ContentDetector to detect whether a

document has been changed.

2.3.2 A bottom-up tree encoding for hypertext docu-

ments: HT-encoding

In order to characterize changes between two versions of a web document, we

need to match nodes between the corresponding document trees. Since modifica-

tions on web pages are often located on low levels of the tree and many sub-trees

remain unchanged, an efficient comparison involves encoding each sub-tree, re-

moving identical sub-trees then matching the rest. Here we present a Hypertext

27

Tree encoding (HT-encoding) algorithm to encode the document tree level-by-

level. For each sub-tree in the document tree, the content and structure are

encoded as a string, which is stored in the root node of the sub-tree. If two sub-

trees share the same encoding string, the content and the tree structure must

be the same. However, the attributes attached to tags are not encoded; thus

if the formatting given by tag attributes or the source link of images are mod-

ified, the encoding string is not changed. For text information retrieval, such

changes are not considered as indexable. Listing ?? shows the HT-encoding

algorithm. The main structure of the algorithm is a Depth-First-Search (DFS)

traversal over the tree. The procedure HT Encoding takes an argument of the

root node of a sub-tree, recursively computes the HT-encoding string of the

immediate children of the root node. We use MD5 [6] algorithm to encode text

string. On return, it concatenates its tag string and all encoding strings of its

children and computes the MD5 encoding. The encoding string is added as a

node attribute.

Listing 2.2: The HT-encoding algorithm for document tree

1 Given :

2 a DocTree −− a document t r e e

3 On return :

4 For each node in the tree , a node a t t r i bu t e o f

5 encoding s t r i n g i s added .

6

7 HT Encoding (DocTree t)

8 {
9 i f t i s a TextNode {

10 // encode t e x t data

11 Add a t t r i bu t e (’ encoding ’ , MD5(t . textData)) to t

12 }
13 e l s e {

28

14 // proce s s ing an element node

15 St r ing encodingStr = t . tagName () ;

16 // encode a l l sub−t r e e s

17 f o r each ch i l d t c h i l d node o f t

18 {
19 HT encoding (t c h i l d)

20 Append t c h i l d . encoding to the end o f encodingStr

21 }
22 // encode roo t node

23 Add a t t r i bu t e (’ encoding ’ , MD5(encodingStr)) to t

24 }
25 }

2.3.3 An efficient algorithm for tree matching

General purpose tree matching algorithms for ordered or unordered trees are

computational expensive. They often use tree edit distance to measure how dif-

ferent two trees are. For matching ordered trees, the best algorithm is given by

Zhang and Shasha [67] which has the complexity of the sub-cubical of the size

of trees. Matching unordered trees is an NP-complete problem in general [68].

Tree edit distance has been used to detect and extract changes between XML

documents [62, 30]. All existing algorithms are of at least polynomial complex-

ity, which are inappropriate for processing mass web data. Here we present a

restricted tree matching algorithm for extracting changes from different versions

of web page, which has linear scalability.

Given the encoded trees of two versions of a web page, we address our

algorithm for extracting the changes from the latter one over the other. Our

algorithm utilizes the following properties of web changes:

29

• While changes may be posted at high frequency, the overall structure of

the web document tend to be static for a long time.

• When a block of content is modified, the starting depth in the document

tree tend to be static for a long time.

• The tag of the parent node of a changing block is relatively static too.

Our algorithm compares two document trees level-by-level, removes common

sub-trees while matches the rest through the tag and second-level tree struc-

ture. Listing 2.3 shows the algorithm. The output tree is a “shrunken” tree of

the new version, which contains the changes as well as the tree structure of the

changes. We call it ChangeTree.

Listing 2.3: The algorithm for extracting changes from two versions of web

documents

1 Given :

2 two document t r e e s , T1 , T2

3 On return :

4 a ’ shrunken ’ document t r e e t1 conta in ing the changed nodes

5 and the corre spond ing t r e e s t r u c tu r e upto the top root node

6

7 MatchTree (DocTree T1 , DocTree T2)

8 {
9 f o r each ch i l d node C1 o f T1 {

10 // 1 s t round : remove common sub−t r e e s

11 i f T2 has a ch i l d C2 with the same HT−encoding as C1 {
12 remove C1 from the ch i l d l i s t o f T1

13 remove C2 from the ch i l d l i s t o f T2

14 }
15 // 2nd round : matching changed nodes

30

16 Group ch i l d nodes o f T1 , T2 by tag name

17 f o r each matching tag group G1 o f T1 and G2 o f T2 {
18 f o r each C1 in G1 {
19 Find the best matching node C2 in G2

20 MatchTree (C1 , C2)

21 }
22 }
23 }
24 return T1

25 }

The best matching node at line 20 is determined by the following function

26 CountMatchs (DocTree C1 , DocTree C2)

27 {

28 count = 0

29 f o r each ch i l d node CC1 o f C1 {

30 i f C2 has non−matched ch i l d node CC2

31 with the same HT−encoding as CC1

32 count++

33 e l s e i f C2 has non−matched ch i l d node CC2

34 with the same tag name as CC1

35 count+=0.5

36 }

37 return count ;

38 }

During the process of extraction, each sub-tree in the original document

tree may have one of three outcomes: completely removed if identical sub-tree

is found; remaining intact if no match is found; “shrunken” if matched. There

are a few limitations of our algorithm: if the document tree is reorganized and

31

common sub-trees are placed at different depth, we cannot match them; if the

parent tags of identical sub-trees are changed, we cannot match them either.

Both situations are rare in the modifications of web documents. Matching trees

using tree edit distance can tolerate such situations to some degree. In partic-

ular, it is widely used to match small tree patterns into a large tree. However,

most algorithms of tree edit distance have high computation complexity which

is not proper for processing mass data such as the Web. Our algorithm runs in

linear cost and is suitable for the extraction task we addressed.

2.3.4 Complexity of algorithms

Denote N as the total number of nodes in the document tree, the number of

children of a node as C, and the depth of the document tree as D. If the tree

is not significantly unbalanced, the depth D is in the order of O(logC(N)).

The document tree construction algorithm runs in linear time for a strictly

nested HTML document since each tag is processed only twice (start tag and

end tag). Misalignments may introduce minor additional cost.

The HT-encoding algorithm navigates the document tree only once thus it

has linear scalability. The complexity is of the order of O(ηN) where η is the

average cost for computing MD5 string.

In order to analyze the cost of our tree matching algorithm, we denote p as

the fraction of nodes with identical encoding strings between two trees, q as the

fraction of matched nodes and r as the fraction of non-matched nodes, where

p+q+r = 1. Denote K as the number of non-overlapping sub-trees whose nodes

have common encoding strings between two document trees. From the results in

Appendix A, we get K = O(pN

D
) = O(pN

logC(N)
). The cost of removing these trees

32

is in the order of O(pCN

logC(N)
). The similar result holds for non-matched nodes,

which is O(rCN
logC(N)

). For matched nodes, the computation cost is of O(C2qN).

Hence the total complexity of the algorithm for the tree matching algorithm is:

Cost = O(
pCN

logC(N)
) + O(C2qN) + O(

rCN

logC(N)
) (2.1)

The analysis above makes an assumption that the number of children for

non-leaf node is a constant. However, the parameter C varies for different

nodes. The actual complexity of the algorithm is determined by the following

expected values: E(C), E(C2) and E(N). We cached about 220,000 web pages

in the domain of nyu.edu. We collected the statistics of these pages and got the

following results:

• The average number of tag nodes in the document tree is 176.0 and the

average number of text nodes is 98.5. Thus E(N) = 274.5.

• The average depth of document tree is E(D) = 11.5.

• The average number of children of non-leaf node is E(C) = 1.75. The

expected depth of a balanced tree is log1.75 274.5 = 10.0, which is smaller

but not greatly smaller than the actual average depth.

• The average of the square of number of children of non-leaf node is

E(C2) = 22.8. This number is not small when computing the complex-

ity of finding the matched nodes. However, our algorithm groups nodes of

same tag names before pairwise matching. The actual complexity for find-

ing matched nodes is determined by qN ·E(ΣiC
2
i), where Ci is the number

of child nodes of tag group i. Our experiments show that E(ΣiC
2
i) = 7.75.

Our algorithm is used to process large number of web pages. We are more

interested in the average cost than the cost of a single case. Therefore, we

33

consider the coefficients related to C as constant factors. Practically, the overall

cost is linear in the size of document tree. However, depending on different

modification patterns, the cost varies and may be lower than linear.

• When the structure of the document tree remains relatively static while

only small portions of content are modified, the cost is dominated by

O(pCN

logC(N)
), which is less than linear.

• When the structure of the document tree remains relatively static while

most content is modified, which is less likely, the cost is dominated by

O(C2qN).

• When the structure of the document tree is modified thoroughly, the cost

is dominated by O(rCN
logC(N)

), less than linear.

Optimization of tree matching algorithm

When the fraction of matched nodes is significant and the number of children of

a node is big, pairwise matching is costly. The algorithm can be optimized using

certain data structure. To simplify our analysis, we consider that all child nodes

have same tag name and are nodes to be matched. Let ci, c
′

i′ , i = 1, 2, ..., k and

i′ = 1, 2, ..., k′, be current level nodes in the two matched subtrees; and cij, c
′

i′j′ ,

i = 1, 2, ..., k and j = 1, 2, ..., ki, j
′ = 1, 2, ..., k′

i′ , are child nodes of next level.

The task is to match nodes between ci, c
′

i′ , where i = 1, 2, ..., k and i′ = 1, 2, ..., k′.

First, we store all second level nodes, c′i′j′ , in a hash table where the hash key is

the encoding string of c′i′j′ . Second, for each node cij, we lookup the encoding

string in the hash table. If the encoding string is the same as c′i′j′ , we increment

the count of matches, match[i, i′], by 1. Third, for each i, we match ci to c′l

where match[i, l] = maxfor each non-matched c′
i′
(match[i, i′]).

34

The cost of the first step is linear to Σi′k
′

i′ ∼ C2; the cost for the second step

is linear to Σiki ∼ C2; the cost for the third step is Σik
′ ∼ C2. The average

cost for matching each node is O(C2

C
) = O(C).

2.3.5 Information segmentation

Web changes may be scattered within a web document and may provide informa-

tion on different topics. We use the location of changes and HTML separation

tags to divide changes into multiple pieces of segments. There are two cases

need to be studied: separated changes and continuous changes.

If two neighboring sub-trees in the ChangeTree are physically remote in

the original web document, that is, many common sub-trees between them are

removed during the process of change extraction, then we put them into different

segments.

If two neighboring sub-trees in the ChangeTree are continuous in the original

web document, we use HTML tags to separate them and put into different

segments. Table 2.3 shows the tags we use. In addition, we also check the text

length separated by these tags. If the length does not exceed a threshold, we

group neighboring segments into a single segment. All these segments are stored

in database as New Information Fragments (NIF) for searching.

2.3.6 Demo

We illustrate the process of change extraction using two versions of the home

page of New York Times. Figure 2.7 shows the screen shots of the page at

5pm, Jan 31, 2006 and 5pm, Feb 31, 2006 respectively. We process these two

versions using the algorithms we have studied: building document tree, encoding

35

Table 2.3: HTML tags for separating content

Parent tag/child tag Function

<DIV> Create block-level structure of content

<P> Separate paragraphs

Double
 Separate content using double line breaks

<TABLE>/<TR> Create table layout

,/ Create list layout

the tree, extracting changes from the second version over the first one, and

dividing ChangeTree into segments. Figure 2.8 shows the result, which is the

serialized view of the extracted ChangeTree. Some additional content extracted

cannot be displayed due to space limitation, such as some new headlines. We

find the extracted content do succeed in identifying and segmenting the new

information on the page. Surrounding text, including page banner, navigational

links, image advertisements and utility links are removed successfully. In the

phase of extracting web changes, we preserve the line breaks between sub-trees in

the ChangeTree, which help preserve the layout of the changes. The information

segments generated by computer are shown in Figure 2.9. Compared with the

layout of the information in Figure 2.8, such segmentation is reliable.

36

Version 1

http://www.nytimes.com/

Jan 31, 5pm, 2006

Version 2

http://www.nytimes.com/

Feb 2nd, 5pm, 2006

Figure 2.7: Two versions of the home page of New York Times.

37

Figure 2.8: The changed content extracted.

38

UPDATED THURSDAY, FEBRUARY 2, 2006 5:01 PM ET

Ohio Congressman Wins Majority
Leader Race, Replacing DeLay By CARL HULSE and DAVID STOUT 4:11 PM ET John Boehner defeated Roy Blunt in a
stunning upset signalling many House Republicans' concerns about recent lobbying scandals. Democrats Seek Prosecutor
in Lobbying Case

Democrats and Bush Aides Spar in Senate Over U.S. Spying By SCOTT SHANE 4:45 PM ET An annual hearing on
national security threats was overtaken by partisan debate about the domestic surveillance program. Senate Panel
Rebuffed on Spying Documents

Iran Vows to End Cooperation if Nuclear Case Goes Forward By ELAINE SCIOLINO 1:21 PM ET The threat means that
the International Atomic Energy Agency would lose access to key sites and installations. Text: Iran's Message to the
I.A.E.A. (pdf)

SUPER BOWL XL Two Steelers Made It in Detroit With his parents' help, Jerome Bettis left a broken neighborhood
behind. Larry Foote was unafraid to face his fatherhood early on. Complete Coverage ... Doug Mills/ The New
York Times Representative John Boehner spoke to reporters after he was chosen to succeed Tom DeLay as the House
Republican majority leader.

ARTS Met Sending Vase to Italy, Ending 30-Year Dispute

INTERNATIONAL Firestorm Over Cartoon
Gains Momentum

Brooks: Nation of the Future Herbert: American Obsession The Opinionator: Next DeLay ? Editorial: Hamas at the Helm

Klinkenborg: Early Spring Warner: Peanuts and Pediatricians

Rhoden: Fighting for Past Players Kristof: Bob Woodruff

Figure 2.9: Information segments generated.

2.4 A framework of evaluating web changes

Web pages indexed by public search engines are ranked using the popularity of

web pages in the global web and the relevance to user queries. For the evaluation

of web changes, these metrics are not enough and may not be good candidates

to evaluate web changes. In order to evaluate the New Information Fragments

(NIF) in the local database, we combine the following metrics to produce an

unified ranking: popularity, content-based evaluation and evolution. Popularity

ranking and quality ranking produce the static ranking scores of NIFs. However,

39

the evolution ranking evaluates the changes over time. Figure 2.10 shows the

framework of our ranking strategy.

URL Content Timestamp

New Information Fragment

Popularity

Ranking

Content-based

Ranking

Evolution

Ranking

Unified

Ranking

URL Content Timestamp

New Information Fragment

Popularity

Ranking

Content-based

Ranking

Evolution

Ranking

Unified

Ranking

Figure 2.10: The framework of ranking web changes.

2.4.1 Popularity ranking

The popularity ranking uses the link structure of URLs to infer which pages

are important in the web graph. The best known method for doing this is

the PageRank algorithm [55] in Google. In this section, we first review the

PageRank algorithm, then we present an improved algorithm that modifies the

underlying stochastic process of PageRank to produce better ranking results.

An introduction to PageRank algorithm

A web graph of n pages can be represented using an n-by-n adjacency matrix

A, where element A(i, j) is 1 if page i links to page j, and 0 otherwise. The

PageRank algorithm first constructs a probability transition matrix M by nor-

malizing each row of adjacency matrix A to sum to 1. The idea of this algorithm

40

corresponds to random walk within a graph. When a person is at page i, with

probability (1 − ǫ), it uniformly picks a link from this page and transits to the

target page of this link. With probability ǫ, it jumps to any other page in the

web with uniform probability. The transition matrix T is

T = ǫU + (1 − ǫ)M (2.2)

where U is an n-by-n matrix of uniform transition probabilities having Uij = 1/n

for all 1 ≤ i, j ≤ n. The PageRank score for a page P is the probability that

the random walker visits P on a very long walk. More formally, the vector

of PageRank scores p is then defined to be the stationary distribution of the

Markov chain corresponding to the random walk model as described. It satisfies:

(ǫU + (1 − ǫ)M)T p = p (2.3)

where p is the vector of importance scores of PageRank. The ǫ here is typically

chosen as 0.15. The computation of PageRank is recursive, on-line and resource

inexpensive [55, 39]. Equation 2.3 shows the score vector p is an eigenvector of

matrix (ǫU + (1 − ǫ)M)T . Practically the score vector is computed via power

iterations as follows:

pt+1 = (ǫU + (1 − ǫ)M)T pt

The convergence of this iteration is fast. Page and Brin [55] compute PageRank

on a web graph containing 75 million distinct URLs and 322 million links and

it converges in 52 iterations with satisfying accuracy. They also show that the

computation of PageRank scales well that the number of iterations needed for

convergence is logarithmic in the size of web graph.

41

An improved ranking algorithm based on web graph information

Link based algorithms for ranking web pages, e.g. [55, 43], often follow a stochas-

tic process over the web graph. In the computational models of these stochastic

processes, if there exists a path from node i to node j and also a path from node

j to node i in the selected web graph, then theoretically, the rank value of node

i will contribute to the rank value of node j and vice versa. We call this effect

as Circular Contribution. The magnitude of such contribution depends on the

actual web graph structure and the actual transition matrices in the algorithms.

In general, Circular Contribution is one important computation mechanism in

stochastic models and can help produce good ranking. But it can cause over-

ranking problem if the web graph contains tightly linked sub-collections. We

improve PageRank algorithm by computing the backward distance of linked

web pages and biasing the random walk with minimum backward distance [63].

Denote G as the web graph of a set of web pages. The minimum backward

distance (denoted as MinBD for short) is defined as follows:

Definition 3. If there is a (i, j) from page i to page j, the minimum backward

distance is the length of the shortest path from page j to i in the graph of G.

An efficient algorithm for computing MinBD is presented in Appendix B. In

Circular Contribution, we know the mutual contribution of two nodes is affected

by the length of the path between them. The smaller the length is, the greater

the contribution is. Thus, for each link i → j, the backward contribution of

node j to node i is dominated by the minimum backward distance from node j

to node i in the web graph. For each link i → j the mathematical representation

42

of the evaluation is

vij =



















f(Ω)
Ci

if MinBDij ≥ Ω

f(MinBDij)

Ci
otherwise

(2.4)

where Ω is a threshold, Ci is the normalization coefficient such that the sum

of vij is 1 respect to index j, f : R → R is an increasing function satisfying

f(0) ≥ 0.

Then we can modify the underline stochastic process of PageRank algorithm

using the above link evaluation. The new transition matrix M̃ is

(

M̃ij

)

= (vij) (2.5)

Since the link values have been normalized, M̃ is a well formed transition matrix.

Replace the original matrix M in Eq. 2.3 with M̃ , new ranking values can be

computed.

Let’s consider the random walk guided by this link evaluation. Suppose the

web surfer can “see” far more than the neighbors at any page. An efficient web

walk strategy would be to explore the web as much as possible and not go back

to the visited local pages frequently. When determining the next transition, the

surfer preferentially jump to the linked pages with higher MinBD. Consequently,

the probability that the surfer goes back to the current node is smaller than

uniform transition selection. Furthermore, as those links with small MinBD are

evaluated less, the effect of Circular Contribution is decreased for tightly linked

sub-collection whose web graph contains many short cycles.

In order to evaluate our algorithm, we manually selected six subcollections

of the NYU web that are tightly connected but not particularly important,

including message boards, large projects, etc. The average ratio of the number

43

of links within a collection as compared to the number of links entering and

leaving collection is 74.24 : 1. An a web graph of about 100,000 web pages

is studied. We compare the ranks between PageRank and the ones given by

our algorithm to evaluate the effectiveness of our algorithm in reducing the

overranking problem. The precise algorithms use the following configurations:

in PageRank algorithm we set ǫ = 0.15 as Page et al. [55] does; in link evaluation

we use f , f(x) =
√

x in Eq. 2.4 to scale MinBD values. We set the threshold

Ω = 15 considering that the backward distance is large enough when MinBD is

greater than 15. Let Φ be a subcollection of local aggregation, R1(i) and R2(i)

be the ranks of page i ∈ Φ in two different ranking algorithms 2. The evaluation

methods are defined as:

• Average rank difference ADiff:

ADiff(Φ, R2, R1) =

∑

i∈Φ(R2(i) − R1(i))

Size(Φ)

• Highest rank difference HDiff:

HDiff(Φ, R2, R1) = min
i∈Φ

R2(i) − min
i∈Φ

R1(i)

Let R2 be the rank given by improved algorithm and R1 be the rank given by

PageRank algorithm. The average rank given by PageRank algorithm of all sub-

collections studied are within the top 27% places of the whole NYU web. The

top rank of each sub-collection is high too. The worst case is that 4 directory

2The rank number is an increasing integer as the importance of web pages decrease. Thus,

the rank of highest score given by a ranking algorithm has a rank number of 1. If the

results in ADiff or HDiff is positive, it shows R2 has a rank distribution lower than R1. For

sub-collections tightly linked inside and should not get high global importance, the positive

numbers given by the evaluation methods show R2 is superior than R1.

44

pages of a message board is ranked within the top 20 positions. Experiments

show that the average rank difference measured by ADiff is 3082.3 and top rank

difference measured by HDiff is 60.7 for all sub-collections selected on average.

2.4.2 Content-based ranking

In evaluating the content of new information carried by web changes, we have

two considerations: how much information carried and how timely that the

information is. The amount of information can be evaluated simply from the

length of the NIFs. In order to evaluate how timely web changes are from

the content of web changes, we need to know what kind of words can be good

indicators of new information.

We followed top 60,000 pages ranked by popularity from the Web of New

York University everyday from March 2005 to November 2005 and collected the

complete change history. We count the word frequency of the web changes found

as well as the word frequency of all web pages. After removing the stop words,

general verbs and too common words that are unrelated to new information, we

select the top 100 words. Then we divide the top 100 words into five groups:

time information words, time related words, university related words, popular

topic words and the rest go to misc words. The results are shown in Appendix

C. It shows that web changes are more likely to contain time or time related

information. This finding is reasonable because web changes often present news

or events which are closely related to time.

News or event information in web changes often have short lifetime. Such

information also has more significance when we present web changes. Therefore,

we count the appearances of time related words in NIFs as a metric of quality

45

ranking. Let L be the length of an NIF; and K be the number of time related

words in the NIF. The quality score is defined as:

Scontent = w1L + w2K (2.6)

where w1, w2 are weights determining the scale of quality ranking score.

2.4.3 Structured evolution ranking

Popularity ranking and content ranking can produce static ranking of informa-

tion. However, the importance of each web change decreases as time goes on.

The evolution ranking reflects this decrease over time. We evaluate the nov-

elty of web changes using an exponential function. Let S0 be the score of static

ranking. The online evaluation of new information at query-time goes as follows

S = S0 · e−αt (2.7)

where α is an adjustable parameter to determine how fast the score decreases.

t = 0 corresponds to the timestamp when the modification is made or when the

change is detected if the former is not available.

How should α be set? A simple solution is using a fixed value of α for all.

However, the lifetime of different NIFs are very different.

Definition 4. The lifetime of a NIF is the time period between the time of its

creation and the time of its removal on a web page.

When a NIF has been removed from the web, we consider the information

it carries is obsolete and of little importance. Denote the average lifetime of

web changes on a single page as Tc, the ranking score of a web change at its

creation as S0 and the score when it is removed as ǫS0 (our configuration of ǫ is

46

0.2, that is the importance of a web change decreases to 1
5

of its original score

at the time of its removal). The parameter α satisfies:

S0 · e−αTc = ǫS0

Therefore

α = − log(ǫ)

Tc

(2.8)

Direct estimation of Tc by observing whether a change is removed on a page

is difficult. We use the average lifetime of versions of a web page to estimate

the average lifetime of web changes on the page.

Definition 5. The lifetime of a version of a web document is the time period

between the time of its creation, denoted as t0, and the first time when indexable

content is added or removed after t0.

For dynamically generated pages whose last modified time is always request

time while the content is the same, we do not consider a new version is created.

Denote the average lifetime of versions for a single web page as Tv. From

Appendix D, we get the estimation of the average lifetime of web changes as

Tc = 2Tv

Furthermore, we observed that the update of many pages are very passive. Even

a version containing a web change can exist for a long time, the information

it carries can still be obsolete. Hence, we put a threshold, Θ, on the average

lifetime of versions. Then the model for choosing α is given as

α = − log(ǫ)

2 min(Tv, Θ)
(2.9)

47

The average lifetime of versions is the inverse of change frequency, which can

be estimated from the detection history. The detailed coverage of how to esti-

mate change frequency is given in Chapter 4. Figure 2.11 shows the results for

configuration ǫ = 0.2, Θ = 10.

0 5 10 15

0.0

0.2

0.4

0.6

0.8

ε = 0.2 Θ = 10

α

Average lifetime of versions

0.080

Figure 2.11: The selection of α.

2.4.4 Unified ranking

Given the methods and ranking scores of popularity ranking, quality ranking

and evolution ranking, the formulation of unified ranking score is straightfor-

ward. Denote Sp as the normalized score of popularity ranking, Sc as the nor-

malized score of content-based ranking and the α of evolution ranking. The

48

unified ranking score of New Information Fragments at query time is

S = (Sp + Sc) · e−α(t−t0) (2.10)

where t0 is the creation time of the web change.

We choose the sum of Sp and Sc rather than the product as static score. Sp

measures the importance of the page that contains the change. We consider it

as a base score when we evaluate changes. The quality score can be considered

as an adjustment to the base score. Such combination can well distinguish the

significance of multiple changes of the same page at the same time. For changes

on different pages, which is evaluated more than one another is determined by

the configuration of the numerical scale between Sp and Sc.

2.5 Summary

In summary, we analyzed the issues of collecting and presenting new information

from web content changes and identified three central, inter-related problems:

how changed pages can be detected, how changes of different versions of web

pages can be extracted and how changes can be evaluated. We developed tech-

niques and algorithms that can be used to solve these problems. We proposed

a two-level change detector to detect candidate pages of web changes, effective

algorithms to construct HTML document trees, encode document trees and ex-

tract changes between different versions of web pages, an improved algorithm

for ranking popularity of web pages, and a framework of how to evaluate web

changes. Experimental evaluations show these solutions are effective in collect-

ing and presenting new information over the web.

49

Chapter 3

Application: Web Daily News

Assistant

3.1 Design

In this Chapter, we present a brand new searching application, Web Daily News

Assistant (WebDNA): Finding What’s New on Your Web, which can assist peo-

ple to automatically find what is new on the community Web. Consider the

following situation when people use the community Web:

A community has changed their work schedule and got it updated on the web.

A person in this community needs to be notified that the work schedule has been

changed. If the web is the only media to deliver such information, in order to

get new updates on time, he must visit the web page posting the work sched-

ule frequently. This is time consuming and erroneous because he never knows

whether or when the schedule will be changed. Furthermore, the situation gets

worse if he has to keep in mind a lot of things similar.

50

Our goal here is to develop a search utility that can assist people in the

similar situations to get valuable new information. There is an XML technol-

ogy, Really Simple Syndication (RSS), which is a lightweighted XML format

for syndicating news and the content of news-like sites, including major news

sites, news-oriented community sites and personal weblogs. It is a server based

technology which requires the web site to distribute the RSS content. Here we

consider a different approach, which uses web crawlers to find the changes and

news, and provides a search capacity to user. Our application is specifically

designed for use on the scale of a community web, such as a web site or a local

web domain. Within such a scale, we can update the index much more fre-

quently than general public search engines to the rate of a couple of times per

day. Furthermore, our application is particularly interested in retrieving what

has been changed recently. WebDNA is deployed on the New York University

web site. It has the following functionalities:

• Presenting a news digest university wide.

• Presenting news digests for different departments.

• Presenting The changing history of a single page.

• Full-text keyword search on web changes.

• Managing and presenting the summary of changes on a user defined URL

set.

Figure 3.1 gives a sample output of this system.

51

Figure 3.1: The user interface of WebDNA.

In designing this application, we have two major considerations here: one is

freshness, the other is quality. Although community webs are small compared

with the global Web, maintaining a fresh index of such web is still very chal-

lenging. The size of community web is typically of the scale 104 ∼ 106 pages.

For example, from our crawling records, we found there are roughly 600, 000 dif-

ferent URLs in the Web of New York University (nyu.edu) and about 200, 000

of them point to retrievable HTML documents. From [41] we know, Internet

performance is the major bottleneck of crawler-like applications. For commu-

nity web search engines, the performance of web servers becomes bottleneck too.

Like the World Wide Web, a community web is a distributed system if there are

more than one web servers running, but the number of hosts is of course very

small compared to the World Wide Web. In many community webs, a large

fraction of the web pages are delivered by a single host, e.g. www.nyu.edu in

52

nyu.edu domain. While updating the local data, the crawler cannot avoid down-

loading from the same host many times in a short time. The capacity of such

server will finally limit the speed of downloading. Furthermore, crawlers must

observe a politeness policy to avoid overloading web hosts, especially when such

web hosts serve a large community population. Typically, only several requests

per second for each server are allowed. If the crawler runs at an aggressive

downloading rate, the server may block the IP address of the crawling machine.

Large-scale search engines, such as Mercator [41], limit the maximum number of

requests to a single host by one request per second. From Chapter 2, Section 2,

we know a significant portion of the requests are HTTP HEAD requests, which

impose much less load on web servers and network traffic. For quality concerns,

we care about the accuracy of extracting changes and the quality of presenting

information. The techniques for extracting web changes and evaluating new

information discussed in Chapter 2 are used in the development of our appli-

cation. Furthermore, as an online application, the service should achieve high

availability for continuous service.

3.2 Architecture

Although the service and the techniques provided by WebDNA are quite differ-

ent from public search engines, the fundamental framework of the application is

roughly similar. It contains three major components: an incremental crawler, a

data repository and a query engine. In addition to these, there is a Web portal

to make it accessible through the internet. We store and manage data in a re-

lational database such that an word indexer is not included in our application.

Figure 3.2 shows the architecture of this application in an overall view.

53

Internet User interface

Database

Meta data NIF User data

URL Set HTTP frontier

MetaDetector

HTTP HEAD

HTTP GET
Meta data

Entity data

ContentDetector

ChangeExtractor

DocumentSegmentor

InformationEvaluator

Web cache

meta datastatus

document tree

change tree

meta data NIF

New version

Crawler

NIF

Server interface

Request

Digest

Document

Generator

Online

Ranking

Query Engine

Request

Processor
NIF

Request

Ranked list

Figure 3.2: The architecture of WebDNA.

The Incremental Crawler starts from a pre-built set of URLs. It repeatedly

probes and downloads the web pages from Internet to maintain a fresh database.

There are five major kernel components that are integrated into the Incremental

Crawler:

• MetaDetector : detecting pages that have been changed since last visit

using HTTP meta data.

• ContentDetector : detecting pages that have been changed since last visit

using content entity.

54

• ChangeExtractor : extracting changed content between the downloaded

version and cached version.

• DocumentSegmentor : dividing changed content into NIFs.

• InformationEvaluator : evaluating the static scores of NIFs.

The techniques for building these components have been discussed in Chapter 2.

The crawler manages a URL set to detect or download. For each URL, the

crawler first issues an HTTP HEAD request to the web server and passes the

meta data to MetaDetector. If the MetaDetector finds that a page has been up-

dated or if it cannot determine whether the content has been changed, it tells

the crawler to download the actual content of the web page. Then the docu-

ment tree of the current version of web page is constructed and HT-encoding is

computed. If the MetaDetector returns a status of UNKNOWN, the Content-

Detector compares the HT-encoding string of the root node of the document

tree with the encoding string of the last version in our database. Once Content-

Detector determines that the page has been changed, the encoded document

tree of current version is passed into ChangeExtractor. Any web page in the

URL set has a cached copy of last version of the web page on local disk. The

ChangeExtractor gets the old version from local disk, performs tree matching of

two different versions and extracts what has been changed in the new version.

It returns a ChangeTree that contains all changed data. The DocumentSegmen-

tor partitions the ChangeTree into several content-independent text fragments.

Then the InformationEvaluator evaluates these text fragments to determine

which are valuable information sources, each of which is call a New Information

55

Fragment (NIF) that will be stored into data repository with related Meta in-

formation. In each round of crawling or probing, if any page has been updated,

a new cache of the content is stored on the disk and the corresponding updated

Meta data is stored in database.

The Query Engine is a standalone server application, which may be used

by multiple users simultaneously. It is authorized to read data on relational

database but not authorized to write to the database. A script program that is

deployed at web server accepts and pre-processes requests from web interface.

The script program forwards the requests to Query Engine via sockets. Query

Engine maintains a server socket to accept requests and uses a multi-threaded

model to distribute work to Request Processors. Each request processor talks

with the database to retrieve recent NIFs properly. Each NIF comes with a

static ranking score. The online ranker then orders them into a ranked list

using evolution ranking. Typically, the multi-threaded application model is

very similar to a simple web server.

3.3 Building the initial data

Before starting the crawler and query engine, we need to collect and set up the

following data:

• URL set.

• Popularity ranking scores.

• Initial document cache.

56

• The meta data of initial document cache.

In order to collect all these data, we run a navigational crawler, which starts

with a small URL set and crawls the NYU web by following the links on web

pages. The navigational crawler maintains a URL queue for downloading and

a hash table storing all visited URLs. The crawler picks URLs from the front

of the URL queue to download while newly found URLs are added to the end

of the queue. This crawling mode corresponds to a breath-first-search of the

web. As Najork and Weiner [51] studied, the breath-first-search crawling mode

can produce good crawling results in practice. However, a strict breath-first-

search crawling mode has the following problem: as many pages contain large

number of links pointing to the same server, the frontier of the URL queue can be

aggregated by URLs on the same host. This imposes a high load for web servers.

To reduce such negative effect, we re-arrange the crawling queue by randomly

inserting a newly found URL into the last 1000 URLs of the same depth in the

queue. Such re-arrangement only applies to URLs of the same depth during

crawling such that the overall crawling mode still preserves breath-first-search

order. It is very possible that navigational crawler can jump into a crawling trap

[41], where the URL queue is piled with mass URLs of a huge sub-collection

of the web, e.g. URLs randomly generated by scripts. In order to overcome

this problem, we manually monitor an exclusion list of URL prefixes during

crawling.

The navigational crawler collected over 600,000 different URLs within the

domain of nyu.com. It is interesting to know how much information is retriev-

able as hypertext documents. Figure 4.2 shows the HTTP response distribu-

tion and media type distribution of successfully retrieved URLs. The category

57

of “successful” HTTP responses includes the HTTP response code of 200, and

redirections to URLs that get 200 response code too. The category of “dead-

links” includes URLs with 4xx and 5xx HTTP response codes, unknown host,

server timeout, etc.

Successful: 92%

Deadlinks: 7%
Other: < 1%

HTTP Responses

HTML: 59%

Image: 31%

Text: 3%
PDF: 3%

Other: 3%

Media distribution

Figure 3.3: HTTP response and media type distribution of URLs in NYU do-

main.

Because mass junk pages exist on the web and the limit of local disk space,

the navigational crawler only collects URLs, link structure and meta data. Then

we build the web graph using the link structure and compute the popularity

scores using popularity ranking algorithm. URLs with very low popularity

scores are excluded from our URL set for WebDNA. URLs pointing to non-html

content and many low quality dynamically generated links are removed too.

After ranking and filtering, about 200,000 URLs are kept. Then we download

the pages in this URL set to build the first local cache. The URLs are spread

on 279 different hosts. We group these hosts into 119 groups according to their

third-level domain name, e.g. host skirball.med.nyu.edu is grouped into domain

58

med.nyu.edu. Then we sort the domains by the number of pages. Figure 3.4

shows the top domains in NYU web:

0%
5%

10%

15%
20%
25%

w
w

w
.n

y
u

.e
d

u

m
e
d

.n
y

u
.e

d
u

c
s.

n
y

u
.e

d
u

m
a
th

.n
y

u
.e

d
u

d
ra

m
.n

y
u

.e
d

u

it
p

.n
y

u
.e

d
u

h
o

m
e
p

a
g

e
s.

n
y

u
.e

d
u

st
e
rn

.n
y

u
.e

d
u

c
im

s.
n

y
u

.e
d

u

la
w

.n
y

u
.e

d
u

ti
sc

h
.n

y
u

.e
d

u

p
h

y
si

c
s.

n
y

u
.e

d
u

c
n

s.
n

y
u

.e
d

u

Percentage

Figure 3.4: Top sub-domains in NYU web.

For data management, all meta data are stored in relational database while

the cached web pages are stored on disk. We choose free database software

MySQL for our use.

3.4 An event-driven incremental web crawler

for WebDNA

Built on LibWWW [4], the crawler uses an event driven architecture to manage

tasks and data flow. Figure 3.5 shows the event loop in the crawler. With the

59

prebuilt URL set, the crawler starts with one HTTP request for a URL in the

set to enter into event loop. In the request/response diagram of LibWWW, all

non-internet operations on the data getting through or getting from network

are performed by handlers. Some handlers are registered before or after the

network activity during the event loop. The crawler maintains a pool of active

requests or connections to the internet. Some handlers are registered during

parsing the content. The functionalities of these handlers are shown as follows:

• Net-before handler is called before a request is sent to the internet. It

validates the availability of a URL from the result of last visit. If the local

data shows that the host of this URL was available but the web page of

the URL is not available since last visit, the request is disregarded and

will not enter into the network module.

• Net-after handler is called after a request is finished. Once a request is

finished and the data is processed, its network after handler checks the size

of current pool and starts new requests; if the pool is not full and there

are new requests pending, it starts a number of new requests to fill the

pool before deleting itself. The net-after handler also determines when a

round of crawling is finished by checking the activity of the request pool.

• All handlers processing hypertext data are registered in the network mod-

ule, including hypertext document creation and deletion callbacks, hyper-

text document build callback, text data callback, start and end tag call-

backs, and hyperlink callback. These handlers parse the content, build

the document tree, encode the document tree and process other tasks if

necessary. Four kernal components described in Section ??, ContentDe-

tector, ChangeExtractor, DocumentSegmentor and InformationEvaluator

60

are directly called by hypertext document build handler.

Start crawl

Internet

Request pool

Network module Net-after handlersNet-before handlers
Next crawl

Figure 3.5: The eventloop of incremental crawler.

Because many requests are processed in parallel, it is difficult to determine

which will be finished earlier than any other in the event loop. Therefore, in a

single-thread model, we encounter two problems: first, if a request blocks for

a long time and the timeout operation fails, the request will stay in the pool

forever; second, the request finishing the current round of crawling cannot be

determined by itself. To solve these problems, we run our crawler in two thread

mode. One thread is an event-driven crawler, and the other is a crawling con-

trol thread. The active request pool is shared by both threads. Both threads

also share a status flag which stores the current crawling state (i.e. crawl-start,

crawl-end, etc). The crawl control thread periodically checks the active request

pool. If a request is inactive in the pool for a long time, the control thread kills

and removes it from the pool. If there is no more new requests pending and no

active requests, it revises the status flag to initiate the ending of current round

of crawling. The net-after handler of the last request will detect the state flag

until it has been changed as crawl-end. Then it terminates all active connec-

61

tions (the idle persistent HTTP connections without any active requests) and

starts the next round of crawl after a period of sleep. A script program is used

to schedule crawls.

3.4.1 Determining the crawling rate

How rapidly should our crawler send requests to web hosts? From Figure 3.4, we

know that the largest sub-domain is a single host in NYU web, www.nyu.edu.

It takes about 1/5 of the whole local web. If the crawler runs too fast, it

imposes an significant load on the host and affects its performance in serving

other users. In order to find the proper crawling rate, we define the following

metric to measure the traffic generated by the crawler to web servers:

Definition 6. Let τ(t) be the maximum number of requests to a single server

sent by the crawler during [t, t+1) and n(t) be the total number of requests sent

by the crawler during time [t, t+1), the loading ratio to web servers is defined

as the mean of τ(t)/n(t) during the whole crawling process, denoted as ζ.

The loading ratio depends on the crawling order of the URL set. We discuss

the effectiveness and advantages of two orders here: random order and optimal

order.

Random order

We generate a random order of all URLs. Then we simulate the behavior

of the crawler by following the same order. Suppose we send N requests per

second. We compute the loading ratio of different settings of N on our URL set.

The result is given in Figure 3.6. The loading ratio decreases as N increases.

62

However, since the largest host serves about 20% of all web pages, the ratio will

never be lower than 0.2 no matter how large N is.

0.20

0.40

0.60

]

]

]

]

]
]

]
]

]
]]

Α

Α

Α

Α

Α
Α

Α
Α

Α
Α Α

102 3 4 5 6 7 8 9 11 12 N

ζ

0.00

1.00

2.00

3.00

4.00

5.00

]

]

]

]

]

]

]

]

]

]

]

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

102 3 4 5 6 7 8 9 11 12 N

ζ•N

(a) (b)

Figure 3.6: The loading ratio and crawling load on web servers. (The error bar

is mean +/- standard deviation).

For random order, an appropriate crawling rate is 8 requests/sec. When

N = 8, the average maximum number of requests that the crawler sends to

the same host during each second is 2.52, which is considered very “polite” to

web servers. From the standard variation bar, we can estimate the distribu-

tion of τ(t), the maximum number of requests that the crawler sends to the

same server during each second. Let σ(τ) be the standard deviation of τ(t).

From the knowledge of statistics, we know that most τ(t) is within the range

[Mean(τ(t)) − 2σ(τ), Mean(τ(t)) + 2σ(τ). For example, if the data follows a

normal distribution, above 95% of the cases fall into that range. From Figure

3.6(b), we see that for N = 8, Mean(τ(t)) + 2σ(τ)1 is less than 5, which is

1ζ = Mean(τ(t)
N

) = Mean(τ(t))
N

, therefore Mean(τ(t)) = ζ · N .

63

tolerable. When the crawling rate is 8 requests/sec, the crawler can roughly

send 690,000 requests each day, which is enough to maintain the freshness of

our web index.

The order of minimum loading ratio

In fact, the order of URLs can be arranged to get the minimum loading ratio,

which equals the fraction of pages on the largest host. Consider we have M

pages, and the largest host H0 have ηM URLs, where 0 < η < 1. Then we

divide the ordered list into ηM buckets, where each bucket contains 1
η

URLs.

Listing 3.1 shows the algorithm for generating the optimal order. Because the

number of buckets is greater than or equal to the number of URLs on any host,

each bucket contains at most one URL from a single host. Furthermore, any 1
η

successive URLs contain at most one URL from a single host too. Hence the

average loading ratio for this order is η. For NYU web site, η = 0.2. Consider

we can send 2.5 requests per second to a single server, the crawling rate for

this order is 12.5 per second, which is larger than the crawling rate for random

order.

Listing 3.1: The algorithm for generating the optimal order

1 Given :

2 M −− number o f URLs

3 K −− the s i z e o f each bucket

4 Output :

5 an ordered l i s t L

6

7 I n i t :

8 Generate an ordered l i s t L0 f o r a l l URLs grouped by host

64

9 i , o f f s e t = 0

10

11 For each URL u in the l i s t L0 {

12 L [i+o f f s e t] = u ;

13 i += K;

14 i f (i >= M) {

15 i = 0 ;

16 o f f s e t ++;

17 }

18 }

Although optimal order gives better crawling capacity than random order, it

is not easily extensible. Each time when we add new URLs into the set, we have

to recompute the order. For random order, adding new URLs is much simpler.

We can randomly insert new URLs into the set without any restriction. Since

the crawling rate based on random order is fairly enough for our purpose, we

choose random order for crawling.

We keep a timer to separate successive requests to adjust the crawling rate

to be close to 8 requests per second. Currently, it issues about 6.3 HTTP HEAD

requests per second and 1.7 HTTP GET requests per second on average. The

average downloading size, including both meta data and content data, is about

20 KB per second, which is a tolerable internet traffic on the local web. During

Mar. 2005 to Jan. 2006, we kept the crawler running almost all the time except

for several times of redeployments of code improvement. A few interruptions

were caused by network problems.

65

3.5 Retrieving web changes from database

The query engine of WebDNA is a server which process all kinds of user queries.

Each request is processed by the following steps: identifying the type of requests,

correcting user data if necessary, constructing the corresponding SQL query,

retrieving NIFs from database and formatting results into a web page. We

know the design of data schema has great impact on data retrieval. According

to the types of user requests, the data schema for NIFs contains multiple indexes

as follows:

• Index on URL, which is used for retrieving change history of a single web

page.

• Index on host name, which is used for retrieving changes on a single host.

• Index on the last modified time, which is used by multiple queries with

time limit.

• Index on the static ranking score, which can improve the performance of

ordering.

• Full-text index on the title of web pages and content of web changes, which

is used by full-text search.

Our ranking algorithm consists both static ranking and evolution ranking.

The static ranking score can be computed at crawling time and stored in the

database. However, the evolution ranking uses the query time, which cannot be

stored as a column in the data table. Therefore, the “order by” clause in SQL

query must contain a formular which computes the ranking score using both

static score and query time. We compare the query performance using and not

66

using index on static ranking score. Experiments shows that using index on

static score does improve the performance by 30% on average.

3.5.1 Full-text keyword search

The full-text keyword search on web changes is built based on both the full-

text search provided by database software and our ranking algorithms. MySQL

provides a full-text search which orders results using text relevance. However,

the text relevance ranking is not good for presenting web information. We

combine the relevance score and our ranking framework to present the most

important and relevant web changes to user queries. Mathematically, there are

numerous ways to combine the relevance score and query independent score. We

compare two fundamental methods, “product” method and “sum” method, and

we give the descriptive reasons for our choice of “product” method rather than

“sum” method. Let Squery be the relevance score to query and Snon−query be the

query independent score given in Eq. 2.10. The final score of “sum” method

is Squery + Snon−query and that of “product” method is Squery × Snon−query. Our

purpose of ranking is to return both highly relevant and important changes on

the top on the returned list. Consider the following examples:

• Record 1: Squery = 3.0, Snon−query = 3.0.

• Record 2: Squery = 0.5, Snon−query = 6.0.

• Record 3: Squery = 6.0, Snon−query = 0.5.

Using “sum” method, both Record 2 and 3 are ranked higher than Record 1. But

using “product” method, Record 1 is ranked higher than Record 2 or 3. Which

ranking is better? First, if we compare Record 1 and 2, we see that Record 2

67

has low relevance even the page is an important page on the web. People may

not find good information of they interest from it. Second, we compare Record

1 and Record 3 and find Record 3 has much higher relevance, but its query

independent importance is low. It can be un-popular pages that few people

reference to it. Even Record 3 has higher relevance, but if few people like it

and reference to it, it is highly possible that the page is of little significance to

user’s interest or even a keyword spam. Therefore Record 1 should be ranked

higher than both Record 2 and 3, and “product” method is better.

The following is the MySQL query that we use for full-text search:

SELECT * FROM

(SELECT [columns],MATCH (title,content) AGAINST ([keywords])

AS relevance

FROM niftable

WHERE MATCH (title,content) AGAINST (<keywords>)

HAVING relevance > [threshold]

ORDER BY relevance DESC

LIMIT [threshold of number of records]) AS temptable

ORDER BY

relevance*staticscore

exp(-alpha(Current time - last modified time)) DESC

3.6 Developing tools

WebDNA is implemented and deployed on a single machine. Currently it is

running on a PIII machine with 256MB memory and T1 Internet connection.

The crawler, the integrated components for processing web data and the query

68

engine of WebDNA is written completely in C++. Several offline tools and

analyzers are written in Java. In order to reduce the work of system level coding

(i.e. implementing Internet protocols from bottom up) and reduce potential

programming bugs as much as possible, we build our application on two popular

and well tested library tools: LibWWW and Xerces C++.

LibWWW, the W3C protocol library, is the implementation of Internet pro-

tocols by W3C.org. As it states, “LibWWW is a highly modular, general-

purpose client side Web API written in C for UNIX and Windows (Win32). It’s

well suited for both small and large applications, like browser/editors, robots,

batch tools, etc.”. The design of LibWWW adopts three-layer software devel-

opment architecture. The layer in the bottom is a large set of generic utility

modules such as container classes, string utilities, network utilities etc. They

have the important function of separating the upper layer code from platform

specific implementations using a large set of macros that makes the Library

more portable. The modules are used throughout the Library itself and some

of them have be utilized in our application development.

Xerces is the next generation of high performance, fully compliant, and

widely used XML parsers in Apache XML Project. Xerces-C++ is a validating

XML parser written in a portable subset of C++ in the Apache Xerces family.

Xerces-C++ is faithful to the XML 1.0 recommendation and many associated

standards. In particular, Xerces C++ conforms to the following standards:

XML 1.0 (Second Edition), DOM Level 1 Specification, DOM Level 2 Core

Specification, etc. Xerces has an implementation of DOM structure, which we

use to build the document tree view of HTML documents.

69

Chapter 4

Modeling Web Changes and

Analysis

4.1 Introduction

There are a large number of web pages updated every day. However, the change

frequencies of web pages varies a lot. Some pages are updated several times per

day while some others remain unchanged for months. Accurate estimation of

web change frequencies is very important in the following problems: scheduling

crawling resources for incremental web crawlers and web catching. Building

effective models of web changes can help estimate change frequencies or even

predict web changes.

Currently the problem of synchronizing a web index is treated as the prob-

lem of synchronizing a database. Each web document is considered as a data

element in the database. If the size of the database is considered relatively

static, then each element is detected for a fair long period to estimate its av-

erage change frequency; and by given limited resource and the knowledge of

70

change frequencies, optimal synchronizing schedule can be obtained to achieve

maximum overall freshness of the database. Cho and Garcia-Molina [24, 25]

discussed the methods for crawler scheduling based on this approach. There

are some challenges in this approach. First, accurate estimation of the average

change frequency requires an examination of a long change history of web docu-

ments. When the detecting history is short, the estimation of change frequency

has big deviation from the actual one, as we will show in Section 4.3. Second,

not like a database, web documents indexed by search engines have very diverse

quality. Such diversity has big impact in retrieval. We know that search engines

present results as a ranked list. Only those in the top positions are retrieved

frequently. Such retrieval pattern is very different from relational database. In

evaluating the freshness of web index, we should take into account the retrieval

frequencies of web pages.

In this chapter, we focus our studies on how to improve the accuracy of

measuring the change frequencies of web pages. First, we model web changes

using the characteristics of web documents and find PageRank value [55] is

a good predictor of change frequency. Second, by combining the predicted

frequency and the one derived from partial detecting history, we obtain an

improved estimator.

The following of this chapter is organized as follows: in Section 4.2, we

introduce necessary background knowledge that we will use in this chapter; in

Section 4.3, we first review the current studies of modeling web changes, then

discuss the methods and solutions of our approach; in Section 4.4, we present our

experimental results using the data we collected from the New York University

web site.

71

4.2 Background

4.2.1 Change frequency and change history

The change frequency is a metric measuring how often web pages are modified.

It can be used to improve the scheduling of web crawlers [24] and web caching

[12]. Brewington and Cybenko [13, 14] and Cho and Garcia-Molina [25] both

identified that the changes of web pages follow Poisson Process. A Poisson

process is often used to model a sequence of random events that happen indepen-

dently with a fixed rate over time. If a web page follows a Poisson Process with

change rate λ, then the probability density function of the time to the occurrence

of the next change is

f(t) =







λe−λt for t > 0

0 for t ≤ 0

A change history of a web page is a set of change events made to the web page.

A partial change history can be obtained by detecting the web pages regularly.

However, detection based change history can be inaccurate. First, there may

be multiple changes between two successive detections. Second, detections are

often made in fixed period of time and is incomplete. The accuracy of the

detection based change history can be improved by increasing the detection

rate.

4.3 Modeling web changes

Two kinds of data sources can be used to model the changes of web pages:

the change history and the characteristics of web pages, e.g. length, location,

importance, etc. The methods used to model web changes using change history

72

alone are discussed by Cho and Garcia-Molina [25]. In this section, we first

review the frequency estimators presented by Cho and Garcia-Molina. Then

we analyze these estimators and find these estimators can be inaccurate in

certain situations. In Section 4.3.3, we describe our approach of identifying the

characteristics that can be used to predict change frequencies. Section 4.3.4

presents an improved frequency estimator which combines the predictors and

change history.

4.3.1 Review of frequency estimator based on detecting

history

Cho and Garcia-Molina [25] studied how to estimate the change frequencies of

web pages using an incomplete detection history. Here we briefly introduce the

estimators they presented. Suppose a web page is detected n times at frequency

of f times per time unit, and among them, X detections find that the page is

modified. Consider the detection engine runs under a fixed amount of resources

(CPU, network, etc) and the size of the collection of pages to detect is relatively

static, then the detection frequency f can be considered as a constant and the

time interval, I = 1/f , for every successive two detections on a single page is a

constant too. Denote r = λ/f . A naive estimator of r is given by

r̂ =
X

n

where r̂ is the estimated value. As the number of detections n increases, the

estimation gets more and more accurate. However, Cho and Garcia-Molina [25]

showed this estimator is not good enough and proposed an improved estimator

73

which is given as follows:

r̂ = − log(
n − X + 0.5

n + 0.5
) (4.1)

Cho and Garcia-Molina [25] proved that this estimator is consistent eventually

by showing limn→∞ E[r̂] = r and limn→∞ V [r̂] = 0, where E[r̂] and V [r̂] are the

mean and standard variation of r̂ respectively.

4.3.2 The disadvantage of detection based frequency es-

timator

Web evolution studies [54, 36] show that the change frequencies of web pages

varies significantly. A large amount of web pages follows a change pattern with

very small frequencies. Here we show that the change frequency estimator based

on an incomplete detection history is not accurate when r is small, even though

the standard error converges to 0 eventually.

In Poisson Process model, the probability that a page changes during a time

interval I is e−r. Then we get the probability that X equals i as follows

Pr(X = i) =





N

m



 (1 − e−r)i(e−r)N−i

Then

E[r̂] = −
n

∑

i=0

log(
n − i + 0.5

n + 0.5
)





n

m



 (1 − e−r)i(e−r)n−i

The standard error is given by

V [r̂] = E[r̂2] − E2[r̂]

The above formulation provides a way of how to compute V [r̂] theoretically.

The standard error V [r̂] measures the absolute deviation of the estimated value

74

from the actual value, which does not take into account the magnitude of actual

change frequency. Alternatively, we use the ratio of standard error, V [r̂]/r, to

measure the deviation. Figure 4.1 shows the theoretical values of the ratio of

standard error for estimator given in Eq. 4.1. Given a fix number of detections,

the error ratio increases dramatically as change frequency decreases. It is very

difficult to make accurate estimation for pages with small change frequencies.

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Deviation when frequency > 0.2

Frequency

de
vi

at
io

n
ra

tio

n=30
n=100

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Deviation when frequency < 0.1

Frequency

de
vi

at
io

n
ra

tio

n=30
n=100

Figure 4.1: The ratio of standard error of change frequency estimator.

4.3.3 Predicting the change frequency of web pages

We learn that estimating change frequency of web pages using detection his-

tory is not always a reliable method. Here we describe our “survival analysis”

modeling approach for identifying the features of web pages that can be used

to predict change frequencies.

75

Survival analysis and Cox Proportional Hazards Regression model

Survival analysis encompasses a wide variety of statistical methods for analyzing

the timing of events, also known as time to event analysis. These methods

were initially used to predict the time of survival for patients under different

treatment, where the prototypical event is death. But survival analysis is also

appropriate for many other kinds of events, such as job changes, marriage, birth

of children and so forth. For our purpose, an event is a modification of a web

page and the survival time is the lifetime of a version of the web page. Survival

times can be modeled through a survival function S(t), which is the probability

that the survival time of an object is greater than or equal to t. The distribution

of S(t) is also described in terms of a hazard function h(t), which is the “ratio

of failure” at time t. The hazard function is defined as the following:

h(t) = −
dS(t)

dt

S(t)

For modeling web changes under Poisson Process, we have

S(t) =

∫

∞

t

λe−λt̂dt̂ = e−λt

The hazard function h(t) for a single web page under this model is a constant,

which is the rate of change (λ). Modeling on a single web page is studied by

Cho and Garcia-Molina [25] as we reviewed in Section 4.3.1. However, what

parameters that can affect the value of λ are unknown. We need to find the

predictor variables that influence the survival time.

The Cox Proportional Hazards Regression method in survival analysis is

widely used in statistics for discovering important variables that influence sur-

vival time. Let x(p) be a predictor variable of data element p, under the Cox

76

model, the hazard function h(p, t) can be expressed as:

h(p, t) = eβx(p)h0(t) ⇒ ln h(p, t) = ln h0(t) + βx(p) (4.2)

where h0(t) is the baseline hazard function, common for all elements in the

population. The Cox model can be generalized for n predictor variables:

ln h(p, t) = ln h0(t) +
∑n

i=1 βixi. An important feature of Cox model is that

it can effectively exploit incomplete or “censored” data, from cases that “sur-

vived” the whole studying period. For modeling the changes of web pages, a

lot of web pages do not change for a long time period and it is not practical to

obtain sufficient change history for all of web pages. These pages constitute a

significant portion of the web and generate a large amount of censored data for

study. The censored data contains partial information but excluding them can

seriously affect the results. Another important feature of Cox model is that it

does not assume any shape of the base line function.

Using COX regression to model the changes of web pages

In modeling web changes, we assume each single page follows a Poisson Process

such that the survival time follows an exponential distribution. The baseline

hazard function is independent of time under this model, we simply denote h0(t)

as λ0. Now we consider what features can be used as parameters. The features

we use are:

• The logarithm of PageRank score.

• The content length of web pages.

• The length of the newly added content in each change.

77

The PageRank score is an evaluation of the popularity of web pages. This

feature is selected to examine whether popular pages gain more updates. We

know PageRank score is less than 1 and many web pages have small PageRank

value. We add a constant over the logarithm of PageRank such that the feature

value is greater than 0. We call it normalized logarithm of PageRank. We find

only the PageRank score is a good predictor of the survival time of web pages

experimentally. The average of the coefficient of the normalized logarithm of

PageRank for multiple studying periods varying from 2 month to 8 months is

0.36 given the following settings: the logarithm of PageRank score is normalized

to be in the range of [0, 10]. Section 4.4.2 discusses our experiments in detail.

This unveils the following trend how web authors choose to update web pages:

popular pages are more likely to be better maintained to be up-to-date. Given

the PageRank score PR(p) of a web page p, the predicted change frequency is:

λ(p) = eβ(ln(PR(p))+C) · λ0 (4.3)

4.3.4 An improved change frequency estimator

Although Cox model uses a change history to identify the predictors of survival

time, the experiments in Section 4.4 will show that the coefficients of the pre-

dictors is stable regardless of the length of the change history. This provides a

way of estimating change frequency without knowing any change history data

of web pages. For the estimator derived from change history, we know that the

estimator gets more accurate when the detection history gets more complete.

Now we consider how to combine both to provide a more accurate estimator.

The idea is that in the early stage of detection, we tend to use the predicted

estimator, however, as the detection period gets longer, the estimator transits

78

from predicted estimator to change history based estimator.

Denote the predicted estimator as λ1(p), which is defined as Eq. 4.3. Denote

λ2(p) as the change history based estimator of change frequency for page p. From

Eq. 4.1, we have λ2(p) = −f · log(n−X+0.5
n+0.5

). Then improved estimator is given

as follows:

λimp(p) = e−αtλ1(p) + (1 − e−αt)λ2(p) (4.4)

where α is a configuration parameter determining how fast the transition be-

tween different estimators. When t = 0, λimp(p) = λ1(p). When t = ∞, it

goes λimp(p) = λ2(p). Therefore, E[λimp] eventually converges to the actual

change frequency and V [λimp] converges to 0. The effectiveness of the improved

estimator based on incomplete history is discussed in Section 4.4.

4.4 Experiments

The data we use for our analysis is collected from the web of New York Univer-

sity. We ran a crawler and collected about 240,000 web pages. Then we con-

structed the link structure of these pages and computed the PageRank scores.

We select the top ranked 60,000 web pages for detection. We detect each page

once every day and obtained a complete change history from March 2005 to

November 2005. Although the NYU web site is much smaller than the global

web, it is structurally similar. The ratio between the number of hyperlinks and

URLs is 7.4, which is in agreement with previous work [17]. The study of the

in-link and out-link distributions shows they obeys power law with power coef-

ficients of 1.94 and 2.24. Both of them agree well with previous work studied

by Broder el al. [17] and Barabasi and Albert [11]. The average size of the

web documents is 10.5K bytes similar to the results given by Fretterly et al.

79

[36]. In order to study how popularity metric affects the change frequencies, we

first analyze through a simple regress method on “uncensored” data only, then

discuss the effectiveness of Cox model using both “censored” and “uncensored”

data.

4.4.1 Simple regressions on uncensored data

Given the PageRank scores of the 60,000 pages in our data set, we choose a

constant C such that the values of the normalized logarithm of PageRank ,

ln PR + C, are mapped into the range [0, 10]. We notice that the number of

cases that ln PR + C is greater than or equal to 6 is small. Thus all pages are

divided into 7 groups: group i, i < 7, contains pages that i−1 ≤ ln PR+C < i;

group i = 7 contains pages that lnPR + C ≥ 6. For each group i we choose

a representative value of the normalized logarithm of PageRank, denoted as

φ(PR). For each group i < 7, φi(PR) = i + 0.5. For group 7, we choose

φi(PR) = 6.5. Figure 4.2 (a) shows the size of each group. The plot shows

the logarithm of the number of pages in each group is a linear function of the

representative value of normalized logarithm of PageRank scores. Consider that

φi(PR) is the logarithm of PageRank scores plus a constant, such relationship

actually shows that the distribution of PageRank values follows a power-law

distribution, where the number of pages in each group is proportional to the

power of PageRank score: 1/(PR)α. The coefficient α given by the regression in

Figure 4.2 (a) is 1.68. Power-law distribution has been found for the distribution

of the degrees of in-link and our-link of web pages [17]. The degree of in-link

is one of the metrics measuring the popularity of web page. Here we showed

another popularity metric, PageRank, also follows a power-law distribution. For

80

each group, Figure 4.2 (b) shows the percentage of web pages that have changed

during the period of our study. It does exhibit the behavior that pages with

higher PageRank scores are more likely to be modified.

1 2 3 4 5 6

20
50

20
0

50
0

20
00

10
00

0
50

00
0

URL Distribution against PageRank

ln(PageRank)+C

N
um

be
r

All Pages
Changed Pages

1 2 3 4 5 6

10
20

30
40

50

Percentage of change VS. PageRank

ln(PageRank)+C
%

 o
f p

ag
es

 c
ha

ng
ed

Figure 4.2: The distribution of URLs.

In order to find the statistical trend of the uncensored change data, we did

an exponential regression on the average change frequencies over the 7 groups,

which follows λavg(i) ∼ eβ·φi(PR) for each group i. The change frequencies are

computed based the entire change history of the period of our study using the

method given in Eq. 4.1. Figure 4.3 shows the results of simple exponential

regression. The result of the regression gives a coefficient β = 0.390.

4.4.2 Cox regression on both uncensored and censored

data

We choose statistical software R-Project [5] to do Cox regression. Our eight

month change history data contains 85,053 uncensored data items and 60,000

81

1 2 3 4 5 6

0.
05

0.
10

0.
15

Simple regression: exponential fit

ln(PageRank)+C

F
re

qu
en

cy
: n

um
be

r
pe

r
da

y

Figure 4.3: Simple exponential regression.

censored data items (including the pages that do not change during the time

period of study as well as the pages that changed but censored at the end

of the period of study). Since computing cost of Cox regression is high, it is

not practical to do a direct regression on all the data set. We use sampling

method to build a representative but much smaller data set for Cox regression.

From the distribution of PageRank scores (Figure 4.2 (a)), we know that a

large number of web pages have small PageRank values. Universal sampling

will be greatly biased by the pages with small PageRank values. In order to

build a evenly distributed sample set for the logarithm of all PageRank values,

we sampled web pages of different PageRank scores with different probabilities.

Let f(ln PR) be the density function of the logarithm of PageRank values and

Prob[PR] be the probability of picking a page with PageRank score PR into

82

the sample set. Our sampling method is (refer to Appendix E.1 for details):

Prob[PR] ∝ 1

f(ln PR)
(4.5)

In computing the sampling probabilities, we use the following to estimate the

value of f(ln PR).

number of pages in [ln PR, ln PR + ∆ ln PR]

∆ ln PR

In doing Cox regression, we use incomplete histories of 1 month up to 8

months. For each history data set, we build 5 sample sets, where each sample

set contains 500 sample data items. Then we do Cox regression using the

PageRank feature for each of the sample sets and compute the average of the

coefficients for each history. The results are shown in Figure 4.4. We find other

than the history of one month data, the coefficients for the PageRank feature

agrees well for different history profiles. The average value from 2 months to 8

months is 0.360. Compared to the results in Section 4.2, we find the coefficient

given by Cox regression is similar but smaller.

4.4.3 The effectiveness of improved estimator

We first compute the standard error ratios on our data set using the estimator

presented in Eq. 4.1 and observe how they change when the number of detec-

tions increases. Figure 4.5 (a) shows the actual deviations and the theoretical

deviations. The computation of the actual standard error ratios requires the

knowledge of the actual change frequencies. It can only be obtained when the

change history is complete. In our analysis, we use the estimated change fre-

quency at the end of our studying period as the actual change frequency in error

analysis. We see that the error ratio gets smaller when the number of detections

83

1 2 3 4 5 6 7 8

0.
35

0.
40

0.
45

COXPH regression

Month(from March)

B
et

a

Figure 4.4: Cox regression on different history data sets.

increases. In an overall view, the actual error ratios do agree with the theoret-

ical ones. Figure 4.5 (b) shows the error ratios for different PageRank groups.

The trend is similar when number of detections increases. And it is shown the

PageRank value does not affect the error much.

In order to evaluate the effectiveness of the improved estimator given by

Eq. 4.4, we compute the standard error ratios using the improved estimators.

One problem is how to choose α in Eq. 4.4. We compare two configurations

here: α = 0.03 and α = 0.01. With configuration α = 0.03, the coefficient e−αt

decreases to 0.5 after 23.1 days and decreases to 0.25 after 46.2 days. With

configuration α = 0.01, the coefficient e−αt decreases to 0.5 after 69.2 days

and decreases to 0.25 after 138.6 days. Figure 4.6 shows the results. We found

different configurations of α affect the result a lot. The configuration of α = 0.03

84

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

Average frequency deviation

Months detected

av
g−

de
vi

at
io

n
actual
theoretical

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Average actual frequency deviation

Months detected

av
g−

de
vi

at
io

n

logPR=0.5
logPR=1.5
logPR=2.5
logPR=3.5
logPR=4.5
logPR=5.5
logPR=6.5

Figure 4.5: The error ratios of change history based estimator.

is superior to the configuration of α = 0.01. For α = 0.03, when the change

history is short, we observe a good improvement. For one month detection

history, the improvement is 27.3%. Such improvement lasts for 4 months data.

After that, the estimator transits to change history based estimator well. For

configuration α = 0.01, it does give an improvement during the first months,

but after that it is not as good as the change history based estimator alone.

4.5 Conclusion

We presented a study of modeling web changes using survival analysis. We

successfully discovered that the PageRank score is a good predictor of change

frequencies of web pages. Such predictor can be combined with change history

date of web pages to improve the effectiveness of the estimator of change fre-

quencies. As we learned, popular pages are more likely to be updated by web

authors. A further thought is that whether updates on popular pages are of

85

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

Improved frequency estimator, alpha=0.03

Months detected

av
g−

de
vi

at
io

n
original
improved

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

Improved frequency estimator, alpha=0.01

Months detected

av
g−

de
vi

at
io

n

original
improved

Figure 4.6: The error ratios of the improved estimator.

high quality for retrieval. Cho et al. [27] proposed the concept of page quality,

which is closely related to the popularity metrics of web pages. In our prospec-

tion, if such quality metric can be used to evaluates the updates of web pages,

then people may be able to develop solutions to improve the quality, as well as

freshness, of web index for retrieval. We leave it as a good future direction that

how different metrics (change frequency, quality, popularity, etc.) can be used

in a unified framework for web index synchronization problem.

86

Chapter 5

Related work

Our work is closely related to many works within the fields of web search and

databases. The problems that we have encountered in this thesis come from

different subareas, such as web crawling, hypertext information extraction, etc.

In this chapter, we first introduce several survey papers discussing the general

framework of search engine architecture and metrics of measuring web char-

acteristics. Then we review four categories of related works: web evolution

studies, web crawling and synchronization, information extraction of hypertext

documents and web ranking.

5.1 Searching the Web

The general framework of search engine architecture and the issues for each

component is discussed by Arasu et al. [9] comprehensively. Figure 5.1 is

the architecture of a general search engine. It consists of five major compo-

nents: crawler, indexer, data repository, ranking and query engine. The crawler

downloads web pages from the Internet periodically. Giving the crawler certain

87

Figure 5.1: General search engine architecture (from [9])

amount of CPU and network bandwidth, the goal is to find and download high

quality web pages as much as possible. Therefore, page selection and resource

allocation are two critical problems in building a high quality, high performance

web crawlers. The indexer extracts all the words from each page and builds

an inverted index. The query engine receives search requests from users and

return results as a ranked list. The rank of a page is determined by a combi-

nation of a query-independent value, such as PageRank, and a measure of the

relevance of page to the query. The local copies of web documents as well as

the index are stored in the page repository. The Google File System [37] is an

88

industrial implementation of search engine data storage where the performance

of applications is boosted by mass replication of data.

Dhyani et al. [31] reviewed a lot of metrics for measuring the characteristics

of the Web structure and content, such as the relevance of web documents to

queries, the importance of web pages, and the similarity between web docu-

ments.

The relevance of a document D to query Q is computed as follows. Let

N be the number of documents in the collection and let M be the number of

distinct words. For each word i and document j, let TFij (term frequency)

be the number of occurrences of i in j; let Ni be the number of documents

containing i; and let IDFi = − log(Ni/N) (inverse document frequency). Let

wij = TFijIDFi. We model each document as a vector (w1j, w2j, ..., wNj); and

we consider query to be a very short document. Then the relevance of document

D to query Q is taken to be the cosine of angle between these two vectors:

RDQ =

∑

k wkDwkQ
√

∑

a w2
aD

∑

b w2
bQ

This algorithm is called TFIDF algorithm [59], which is widely used in infor-

mation retrieval.

The importance of web pages can be computed from the web graph struc-

ture of the web, where each page corresponds to a node and each link linking

two pages corresponds to an edge. The best known of these are the PageRank

algorithm [55], used in Google; and the HITS algorithm [43], proposed by Klein-

berg. They can be viewed as computing the steady-state distribution of various

Markov processes over the Web graph. PageRank algorithm is similar to the

behavior of a random surfer on the web graph: at each page, it randomly picks a

link on the current page and jump to the target page of the link, or, it jumps to

89

any random page within the web graph with certain probability. The PageRank

scores are the stationary distribution of the stochastic process corresponding to

the random surf. HITS algorithm is based on relationship between authorities -

pages that contain a lot of information about a topic, and hubs - pages that link

to many related authorities. The importance of an authority is measured by the

importance of the hubs pointing to it, and the importance of a hub is measured

by the importance of authorities that it points to. Content-based similarity are

usually measured by shingle method as we mentioned before. In addition to key-

word search of web documents, search engines usually maintain a set of content

analyzers of web documents that perform many tasks: information extraction,

classification, etc. As a subarea of web data mining [44], information extraction

in hypertext media tends to discover information on hypertext documents for

a particular purpose. Hypertext documents are semi-structured by makeups

and are much less organized than collections of text articles. Consequently,

the methods and techniques used in web information extraction is very diverse.

Information extraction is very useful in developing numerous web applications,

such as product search and people search.

5.2 Web evolution studies

The field of web evolution studies is divided into two categories: web content

evolution and web graph evolution. Web content evolution studies the content

update frequency and the lifetime of web pages. The two works most relevant

to this thesis are those of Ntoulas et al. [54] and Fretterly et al. [36], which

we have discussed in Section 1.2. Before that, Cho and Garcia-Molina [22]

performed an experiment conducted on more than half million web pages over

90

4 months in order to measure how web pages evolve over time. They showed

the following results: 15% of the pages have a change interval longer than a day

and shorter than a week; more than 20% of pages had changed daily; more than

40% of pages in .com domain change every day; more than 70% of the pages

had change intervals more than a month. One of the focuses of web evelotion

studies is to measure the change frequencies of web pages. Previous work of

studying the changes of web pages focuses on the distribution of change rate

and the modeling based on the change history. The most related work is the

study of how to estimate change frequencies by Cho and Garcia-Molina [25].

They modeled web changes using Poisson Process and presented a couple of

change frequency estimators. As we discussed in Chapter 4, their estimators

are not accurate enough when the change history is short and the value of change

frequency is small. Our study discover that the popularity metric can be used

to predict change frequencies other than change history. It can improve Cho’s

estimator, especially in the situation where Cho’s estimator can fail. Based on

the knowledge of change frequencies, Cho et al. [24] discussed the methods of

how to schedule web crawlers to maximize the freshness of web index. A similar

approach for scheduling the updates of web databases is covered in the study of

Ipeirotis et al. [42]. Brewington and Cybenko [13, 14] use last-modified dates

to estimate the distribution of change frequencies over a set of pages, but not

the change frequency of an individual page.

Survival analysis has been used to model changes of web databases. Ipeirotis

et al. [42] used survival analysis to model the content changes in text databases.

Our method for finding the predictors of changes is very similar to what they

use. However, the events for their study is the change of a single web database

rather than a single web page. The survival function of a web database is more

91

complicated than a single web page, which follows a Weibull distribution. The

feature set of web databases differs from web pages too.

Web graph evolution studies the distribution and growth of links in the web

graph. Broder et al. [17] studied the graph structure of the web and showed the

distribution of the degrees of in-link and out-link of web pages follows power-

law. The power coefficients are 2.1 for in-link distribution and 2.3 for out-link

distribution. Kumar et al. [45] showed that the web graph structure can be

used to infer web communities. The growth model of web graph is shown to be

similar to many other networks, e.g. social networks. When a new link is added,

it has preference to point to popular pages. Such growth model is often referred

as random network, which leads to a “rich-gets-richer” phenomenon. Barabasi

and Albert [11, 8] studied the properties of random networks and showed a

power-law distribution analytically.

Web evolution study is motivated by the maintenance of fresh web index

[23], web incremental crawlers [22, 28] and web content caching [12]. Another

observation of web evolution is that, as people use search engines heavier and

heavier, the index of search engines will get an important impact on page popu-

larity. Those indexed by search engines with high rank will gain more popularity

because people will have better chance to visit them if they use search engines.

This topic is recently covered by Cho and Roy [27].

5.3 Web crawling and synchronization

A large scale web crawler is a resource expensive application. Two large-scale

web crawlers have been developed in a research setting: Google prototype [16]

which was the first large-scale crawler developed at Standford; and Mercator

92

[41, 51] developed at Compaq Systems Research Center. These crawlers were

used to build and maintain the data repositories of the web for large scale search

engines. In developing Mercator, Heydon et al. [41] found the DNS resolving

and network bandwidth is the major bottleneck of crawler performance. Our

crawler is built on mid-scale web domain where the number of hosts is signifi-

cantly smaller. We use the internal DNS cache in LibWWW library to reduce

the DNS resolving traffic. Crawling politeness policy and crawling traps are

also discussed by Heydon et al. [41]. In general, Mercator sends hundreds re-

quests per second but at most one request to a single server per second. Since

our crawler runs on a limited number of hosts, it crawls web pages more ag-

gressively to web servers, averaging 2.5 requests per second to a single server.

Such crawling rate is appropriate for the development of domain level crawling.

Najork and Wiener [52] examined the average page quality over time of pages

downloaded during a web crawl using Mercator. They use the connectivity-

based metric PageRank to measure the quality of pages and show that travers-

ing the web graph in breadth-first search order is a practically good crawling

strategy. Cho et.al [26] compared four different URL frontier ordering metrics:

random ordering, breath-first ordering, backlink count ordering and PageRank

value ordering. It demonstrates that if the basic unbiased crawling algorithm

is used, the PageRank metric is the best one in ordering the URL frontier to

crawl high quality web pages. Crawlers designed to crawl relevant pages to a

given topic are often referred as Focused Crawler [21, 48, 20] or Topic-driven

Crawler [49]. Focused crawlers use heuristics on choosing links to follow to try

to gather pages with particular characteristics. Focused crawling algorithms

often use similarity metric to analyze the text of URL or the anchor text of that

link [26]. The URLs whose URL string or the anchor text contains some given

93

keywords are chosen to insert into the crawling frontier.

In order to maintain the freshness of the local web index, incremental web

crawlers are used to repeatedly download web pages. A number of works [22,

28, 23, 24] studied the problems of how to select web pages to re-crawl and how

to manage the crawling set. Given the change frequencies of web pages and a

fix amount of crawling resources, Cho and Garcia-Molina [22, 24] modeled the

problem as an optimization problem that the freshness of the web index is the

goal while the resources are constrains. They showed that the optimal scheduler

can be obtained through the method of Lagrange multipliers.

5.4 Hypertext information extraction

The process of web information extraction can be viewed as mining particu-

lar information from text and hypertext. It is well known that many business

web sites use templates to generate web pages. Such templates often contain

business logo, copyright, web master information, and many useful navigational

links to top level resources within the same business domain. Templates help

structure web content and make the web pages within the same site share the

same look and feel. The informative content on the page is embedded within

these templates other than provided by pure text. Often, the web pages in a

business domain are generated by programs using the back end data reposi-

tory. Computer programs can easily build template oriented web pages. For

example, templates are frequently used by industry (e.g. Amazon.com) to

present information of products, services, etc. Based on such observations,

recently, there are several interesting works studying the methods of extracting

useful information on web pages using the structural view of web documents

94

[66, 38, 60, 61, 56, 57, 64, 10, 65]. Most of these works are based on the static

view of web pages, and often based on a tree-structured view of HTML doc-

uments. The essential goal of these approaches is to find informative content

from Web documents. Zhai and Bin [66] used document tree alignment to

find product information on web pages. A dynamic programming algorithm

is proposed to match web data and extract product information that shares

common tree structure. The complexity of the algorithm is O(N2). Dynamic

programming matches nodes bottom-up while our tree matching algorithm is

top-down. Bottom-up approach is appropriate when the bottom-level structure

of the document tree remains relatively static, e.g. the product information

on commercial web sites. However, top-down approach is appropriate when

the bottom level structure changes a lot. As we showed, new content on web

pages is often added at low levels. Therefore a top-down matching is chosen in

our approach. Top-down matching has a superior performance too. Gupta et

al. [38] gave an approach of content extraction based on the DOM-structure

of HTML documents [1]. They provide a set of rules for content filtering to

remove clutter (such as pop-up ads, unnecessary images and extraneous links)

around the body of a web article that distracts a user from actual content. Yi

et al. [64] proposed an cooperative HTML block filtering algorithm using data

mining to eliminate noisy information on business web pages such as navigation

panels, copyright and privacy notices, and advertisements, etc. It first builds

a style tree of a set of similar web documents which is the combination of the

DOM trees of these documents. Then the algorithm examines the complexity

of the presentation styles in each sub tree of the style tree to eliminate the

most common ones. Extracting information using the methods of tree edit dis-

tance [57] and machine learning [61, 60] are discussed recently. Reis et al. [57]

95

used algorithms of tree edit distance to extract common templates of news web

site. Song et al. [61] used learning methods to automatically assign importance

scores to pre-extracted blocks on web pages. Shih and Karger [60] used URL

and table layout in the tree structure of web pages to extract news content from

news web site. It provides a learning approach for automatic Web page classifi-

cation tasks such as content recommendation and ad blocking. Bar-Yossef and

Rajagopalan [10] propose the concept of Pagelet which is a self-contained logical

region within a page that has a well defined topic or functionality. Pagelets can

often be grouped n terms of templates which may be shared by multiple pages

in a web site. By detecting and removing common templates, the filtered web

pages are more likely to carry informative content and therefore can be used

to improve the performance of web ranking and focused crawling. Other than

extracting important content on Web documents, the HTML tree structures

are also used for document segmentation [65, 56]. All these works are closely

related to our design of extracting web changes from different versions of web

documents.

5.5 Web ranking

Query independent evaluation of web documents often uses the link structure

of the Web. Such link analysis can infer which pages are mostly referenced

and visited in the web. The best known of these are the PageRank algorithm

[55] and the HITS algorithm [43] as we discussed in Section 5.1. Both of them

are discussed for years and a number of improved algorithms have been pro-

posed [53, 46, 58, 47, 19, 40, 33, 32]. Ng et al. [53] discussed the stabilities

of PageRank and HITS algorithms under perturbations to the link structure.

96

Lempel and Moran [46] identifies the Tightly Knit Community (TKC) Effect in

HITS ranking that HITS algorithm often over-ranks tightly connected web page

collections. They introduced SALSA, an improved HITS algorithm with link

normalization. Li et al. [47] improves HITS by weighting links with relevance

score. To combine content information and link analysis together to rank doc-

uments, Richardson and Domingos [58], Chakrabarti et al. [19] and Haveliwala

[40] propose several effective solutions. Ding et al. [33] builds a unified frame-

work that could represent PageRank, HITS in the same frame and indicates that

the ranking results of them agree with each other quite well. Diligenti et al. [32]

uses a different notation combining PageRank and HITS into a single ranking

system. Different ranking results can be combined together to produce more

effective ranking using ranking aggregation method [34]. In a addition to these,

our link-based algorithm is designed to alleviate the local aggregation problem

which has not been addressed before. Recently, Del Corso et al [29] studied

the problem of how to rank news article. They proposed a ranking framework

which models: (1) the process of generation of a stream of news articles, (2)

the news articles clustering by topics, and (3) the evolution of news story over

the time. Their solution for evaluating the evolution of news stories is similar

to our approach of ranking the novelty of web changes.

97

Chapter 6

Conclusion

Web search engines usually maintain a huge index and update it slowly. In

order to bring new information to users in a timely manner, we studied the

problem of incremental web search by tracking changes of web documents. In-

cremental web search requires a much smaller amount of data processing than

full indexing of the web. Therefore, new information carried by changes can

be updated in the web index more quickly. There are several key problems

in incremental web search: detecting changes, extracting changes, evaluating

changes and modeling changes. In this thesis, we developed effective solutions

to these problems. First, we found that detecting changes using HTTP meta

data can successfully reduce network traffic by about 67%. Second, existing

algorithms for extracting changes using tree edit distance have high computa-

tional cost, which is inappropriate for large-scale search engine development.

We proposed a new algorithm, which reduces the cost to linear using both tree

encoding and level-by-level tree matching. Our algorithm is appropriate for ex-

tracting changes between different versions of web pages. Third, the evaluation

of changes differs from the evaluation of web documents. A unified ranking

98

framework is proposed combining three ranking metrics: popularity ranking,

content-based ranking and evolution ranking. Fourth, we modeled web changes

using survival analysis. We successfully discovered that the PageRank score is

a good predictor of change frequencies of web pages. Such predictor can be

combined with change history date of web pages to improve the effectiveness of

the estimator of change frequencies.

Using the techniques we proposed, we developed an web search application,

named “Web Daily News Assistant (WebDNA): finding what’s new on Your

Web”, which helps community users search for new information on their com-

munity web. We present the framework, architecture and components of this

application. We also discussed the techniques that are useful for crawling web

pages on a medium scale web. Currently WebDNA is deployed on New York

University web site. It provides several services for community web users: news

digest university wide, news digest for different departments, change history for

each single web page and full-text search on web changes.

There are several future directions for our studies:

• Our study focuses on the new information appearing in the changes on

existing web pages. How to search for information posted on new pages

is not well studied yet. When a new page is created, it is often referenced

by a new link on a existing page. A short summary is often presented

around the link. Tracking changes can successfully retrieve the summary

but not the complete content of the newly created page. A good future

direction is to integrate both changed content and newly created content

into a unified search index. Such index can have a higher coverage of new

information on the web.

99

• We learn that time related information appears at high frequency in new

information and can be used to evaluate the quality. However a precise

extraction of time information has not been studied yet. It is interesting

to develop language patterns for the time information on web pages to

evaluate the timeliness of new information more precisely.

• As we learned, popular pages are more likely to be updated by web au-

thors. A further thought is that whether updates on popular pages are of

high quality for retrieval. Cho et al. [27] proposed the concept of page

quality, which is closely related to the popularity metrics of web pages. In

our prospection, if such quality metric can be used to evaluate the updates

of web pages, then people may be able to develop solutions to improve

the quality, as well as freshness, of web index for retrieval. We leave it

as a good future direction that how different metrics (change frequency,

quality, popularity, etc.) can be used in a unified framework for web index

synchronization problem.

100

Appendix A

Estimating the number of

distinct trees

Consider we have M nodes spreading in K non-overlapping C-trees (each non-

leaf node has C child nodes) of depth d = 1, 2, 3, ..., D. Suppose the probability

that a node locates in a tree of any height d is the same, denoted as Φ. Let

nd be the number of trees of depth d. Here we describe how we estimate the

number K here.

We know a complete tree having depth d has Cd
−1

C−1
nodes. Then we have the

followings holds:
D

∑

d=1

nd ·
Cd − 1

C − 1
= M (A.1)

D
∑

d=1

nd = K (A.2)

D
∑

d=1

nd · Cd
−1

C−1

M
= Φ (A.3)

101

From Eq. A.3 we get nd = ΦM(C−1)
Cd−1

, replace it in Eq. A.2 and get the following

Φ =
K

M(C − 1)
· 1
∑D

i=1
1

Ci−1

Combined with Eq. A.3, we have

nd =
K

Cd − 1
· 1
∑D

i=1
1

Ci−1

Finally we get the mathematical representation of K

K =
M(C − 1)

D
·

D
∑

i=1

1

Ci − 1
(A.4)

First we know
∑D

i=1
1

Ci−1
> 1

C−1
, then K > M

D
.

Second, we know 1
Ci−1

< 1
Ci−1 for i > 1. So we get

∑D

i=1
1

Ci−1
< 1

C−1
+

∑D−1
i=1

1
Ci

= 1
C−1

+
1− 1

CD

C−1

< 2
C−1

Thus K < 2M
D

. Now we obtained the estimation of K as

M

D
< K <

2M

D

.

102

Appendix B

Computing minimum backward

distance

As we are only interested in computing minimal backward distance of neigh-

boring pages and the web graph is sparse, we present an algorithm which can

compute MinBD much more efficiently than computing the all-pair shortest

paths.

For simplicity, we assume the web graph is a directed unweighted graph

without any link from and to the same page. Our algorithm starts with a depth-

first-search (DFS), repeatedly updates the minimal backward distance in the

DFS when new cycles are found. We color each graph node with WHITE, GREY

and BLACK representing whether it is unvisited, visited but not finished and

finished in DFS. For each page i, the algorithm stores a list of cycle ancestors,

each of which locates in the DFS path from root page to page i and there exists

a cycle containing the cycle ancestor and i. And for each cycle ancestor of a

page, the algorithm stores the minimal distance from the cycle ancestor to that

page in convenience of future update of MinBD in DFS. The algorithm picks a

103

root page and runs recursively on the following procedure:

1 MinBD DFS = (page $ i$)

2 {

3 Color page i as GREY

4 f o r each l i n k i−>j

5 {

6 i f page j i s WHITE // t r e e l i n k

7 MinBD DFS(j)

8 e l s e i f page j i s GREY // back l i n k

9 UPDATE DFSPATH(j , i)

10 e l s e i f page j i s BLACK // cros s l i n k

11 {

12 f o r each cy c l e ance s to r k o f page j do

13 {

14 i f k i s GREY

15 UPDATE DFSPATH(k , i)

16 }

17 }

18 }

19 Color page $ i$ as BLACK

20 }

where the procedure UPDATE DFSPATH() is defined as

1 UPDATE DFSPATH (page i , page j)

2 {

3 f o r each l i n k k−>l a long DFS path i to j

4 {

104

5 update MinBD of l i n k k−>l

6 s t o r e cy c l e ance s to r i in node l

7 update minimal d i s t anc e from l to i

8 }

9 }

The correctness of this algorithm comes from the following lemmas:

Lemma 7. In DFS, if a back link (a link pointing to a GREY node) is found,

a new cycle is found.

Lemma 8. In DFS, if an cross link (a link pointing to a BLACK node) i → j

is found, there exists a cycle containing this link if and only if there is a cycle

containing j with ancestor of a GREY node.

The first lemma is obvious. We state the proof of the second one here:

Proof. For an inter link i → j, if there is a cycle containing j with ancestor of

a GREY node k, then there exists a DFS path from k to i, denoted as k i.

Denote the arc from j to k in the cycle containing j and k as j k. We see

i → j, j k and k i is a cycle containing the link i → j. On the other

hand, if there exists a circle C within all the links found so far in DFS, which

contains link i → j, C must contain at least one GREY node because the page

i is the current node in DFS and it must be linked by its parent, which is a

GREY node. Furthermore, the nodes with minimum DFS depth in such a cycle

must also contain a GREY node. Otherwise, their exists a link on this cycle

satisfying that it links from a BLACK node to a GREY node and the BLACK

node has smaller DFS depth. This contradicts with the property of DFS. Proof

done.

105

Appendix C

Top frequent words in the web

pages and web changes of the

NYU web site

106

Time

information

2005

pm

2004

july

june

april

october

march

year

september

tuesday

november

2003

week

august

today

Time

related

new

event

news

press

now

recent

University

Related

nyu

york

research

university

student

school

center

program

study

journalism

service

faculty

education

department

system

policy

office

course

Popular

Topics

adult

online

free

poker

sex

people

case

casino

blackjack

video

work

american

perl

gay

life

game

law

blog

health

Misc

information

public

writer

reporter

editor

special

posted

note

comments

street

download

content

Popular topics continued

social media world art risk market home state international web business

teen internet city music national development movie data server story

women search girls history community science security technology

Figure C.1: Top 100 most frequent words in web changes of NYU Web.

107

Time

information

2004

2005

2003

2001

year

2002

Time

related

newdate

current

events

news

University

Related

nyu

york

university

research

program

school

student

center

department

faculty

course

study

education

graduate

office

seminar

Popular

Topics

home

field

search

service

data

contact

work

medicine

world

medical

protein

history

node

copy

art

state

Misc

information

file

share

index

value

public

type

page

number

description

general

length

Popular topics continued

american law directory java note group case section science international web

slide social business line institute management development life man mail

support function code resource form example source project analysis room

record policy software process method print system health package point

people title version market

Figure C.2: Top 100 most frequent words in the NYU Website.

108

Appendix D

Estimating the lifetime of web

changes on a single web page

Given a web page W and its average lifetime of versions, Tver. Here we show

how to estimate the average lifetime of web changes, denoted as Tchg, on W .

Suppose the probability that a web change is removed by a new version of W

is p = 0.5. At time t0, a web change C is created. The the probability that it

is removed at time kTver is (1 − p)k−1p. The expected lifetime of C is given as

follows:

Tchg(C) =
∞

∑

k=1

kTver · (1 − p)k−1p (D.1)

Eq. D.1 - Eq. D.1 multiplied by 1 − p, we get

Tchg(C) − (1 − p)Tchg(C)

= Tver(1 − p) +
∑

∞

k=2 Tver(1 − p)k−1p

= Tverp + Tver(1 − p)

= Tver

109

Therefore

Tchg(C) =
Tver

p
= 2Tver (D.2)

110

Appendix E

The probabilities for sampling

web pages

Let f(ln PR) be the density function of the logarithm of PageRank values, the

size of sample set be K, and the probability of picking a page with PageRank

score PR into the sample set be Prob[PR]. An evenly-distributed sampling for

all PageRank scores satisfies the following:

Prob[PR]df(ln PR) =
Kd ln PR

∫ max(ln PR)

min(ln PR)
d ln PR

=
K

max(ln PR) − min(ln PR)
(E.1)

From Figure 4.2 (a) we know that

d ln f(ln PR)

d ln PR
=

df(ln PR)

f(ln PR)d ln PR
= constant (E.2)

Combine Eq. E.1 and Eq. E.2, we get

Prob[PR] =
K

C0(max(ln PR) − min(ln PR))f(ln PR)
∝ 1

f(ln PR)
(E.3)

111

Bibliography

[1] Document Object Model (DOM). http://www.w3.org/DOM/.

[2] Google News. http://news.google.com.

[3] HTML 4.01 Specification. http://www.w3.org/TR/html4/.

[4] LibWWW - the W3C Protocol Library. http://www.w3.org/Library/.

[5] The R project for statistical computing. http://www.r-project.org/.

[6] RFC 1321 - The MD5 Message-Digest Algorithm. http://www.faqs.org/

rfcs/rfc1321.html.

[7] RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1. http://www.faqs.

org/rfcs/rfc2616.html.

[8] R. Albert, A.-L. Barabasi, and H. Jeong. Scale-free characteristics of ran-

dom networks: the topology of the world-wide web. Physica A, 281, 2000.

[9] A. Arasu, J. Cho, and H. Garcia-Molina. Searching the web. ACM Trans-

actions on Programming Languages and Systems, 1(1), 2001.

112

[10] Z. Bar-Yossef and S. Rajagopalan. Template detection via data mining and

its applications. In Proc. 11th International World Wide Web Conference,

2002.

[11] A. Barabasi and R. Albert. Emergence of scaling in random networks.

Science, 1999.

[12] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and

Zipf-like distributions: Evidence and implications. In Proc. 18th IEEE

INFOCOM The Conference on Computer Communications, 1999.

[13] B. Brewington and G. Cybenko. How dynamic is the web. In Proc. 9th

International World Wide Web Conference, 2000.

[14] B. Brewington and G. Cybenko. Keeping up with the changine web. IEEE

Computer, 33(5), 2000.

[15] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection mechanisms for

digital documents. In Proc. 1995 ACM SIGMOD Special Interest Group

on Management of Data, 1995.

[16] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search

engine. In Proc. 6th International World Wide Web Conference, 1998.

[17] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,

A. Tomkins, and J. Wiener. Graph structure in the web. In Proc. 9th

International World Wide Web Conference, 2000.

[18] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clus-

tering of the web. In Proc. 6th International World Wide Web Conference,

1997.

113

[19] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Ra-

jagopalan. Automatic resource compilation by analyzing hyperlink struc-

ture and associated text. In Proc. 7th International World Wide Web

Conference, 1998.

[20] S. Chakrabarti, K. Punera, and M. Subramanyam. Accelerated focused

crawling through online relevance feedback. In Proc. 11th International

World Wide Web Conference, 2001.

[21] S. Chakrabarti, M. van de Berg, and B. Dom. Focused crawling: a new

approach to topic-specific web resource discovery. In Proc. 8th International

World Wide Web Conference, 1999.

[22] J. Cho and H. Garcia-Molina. The evolution of the web and implications

for an incremental crawler. In Proc. 26th International Conference on Very

Large Data Bases, 2000.

[23] J. Cho and H. Garcia-Molina. Synchronizing a database to improve fresh-

ness. In Proc. 2000 ACM SIGMOD Special Interest Group on Management

of Data, 2000.

[24] J. Cho and H. Garcia-Molina. Effective page refresh policies for web

crawlers. ACM Transactions on Database Systems, 28(4), 2003.

[25] J. Cho and H. Garcia-Molina. Estimating frequency of change. ACM

Transactions on Internet Technology (TOIT), 2003.

[26] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling through URL

ordering. In Proc. 7th International World Wide Web Conference, 1998.

114

[27] J. Cho and S. Roy. Impact of search engines on page popularity. In Proc.

13th International World Wide Web Conference, 2004.

[28] E. Coffman, J. Z. Liu, and R. R. Weber. Optimal robot scheduling for web

search engines. Technical report, INRIA, 1997.

[29] G. M. D. Corso, A. Gullf, and F. Romani. Ranking a stream of news. In

Proc. 14th International World Wide Web Conference, 2005.

[30] D. Curbera and A. Epstein. Fast difference and update of xml documents.

In XTech99, 1999.

[31] D. Dhyani, W.-K. Ng, and S. S. Bhowmick. A survey of web metrics. ACM

Computing Surveys, 34(4), 2002.

[32] M. Diligenti, M. Gori, and M. Maggini. Web page scoring systems for

horizontal and vertical search. In Proc. 11th International World Wide

Web Conference, 2002.

[33] C. Ding, X. He, P. Husbands, H. Zha, and H. Simon. PageRank, HITS and

a unified framework for link analysis. In Proc. 25th ACM SIGIR Special

Interest Group on Information Retrieval, 2002.

[34] C. Dwork, S. Kumar, M. Naor, and D. Sivakumar. Rank aggregation meth-

ods for the web. In Proc. 10th International World Wide Web Conference,

2001.

[35] D. Fallows, L. Rainie, and G. Mudd. The popularity and importance of

search engines, The Pew Internet and American Life Project. http://www.

pewinternet.org/pdfs/PIP_Data_Memo_Searchengines.pdf, 2004.

115

[36] D. Fretterly, M. Manasse, M. Najork, and J. Wiener. A large-scale study of

the evolution of web pages. In Proc. 12th International World Wide Web

Conference, 2003.

[37] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In

Proc. Symposium on Operating Systems Principles (SOSP), 2003.

[38] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm. DOM-based content

extraction of HTML documents. In Proc. 12th International World Wide

Web Conference, 2003.

[39] T. Haveliwala. Efficient computation of PageRank. Stanford Digital Library

working paper, 1999.

[40] T. Haveliwala. Topic-sensitive PageRank. In Proc. 11th International

World Wide Web Conference, 2002.

[41] A. Heydon and M. Najork. Mercator: a scalable, extensible web crawler.

In Proc. 8th International World Wide Web Conference, 1999.

[42] P. G. Ipeirotis, A. Ntoulas, J. Cho, and L. Gravano. Modeling and man-

aging content changes in text databases. In Proc. 21st IEEE International

Conference on Data Engineering (ICDE), 2005.

[43] L. Kleinberg. Authoritative sources in a hyperlinked environment. In Proc.

9th ACM-SIAM Symposium on Discrete Algorithms, 1998.

[44] R. Kosala and H. Blockeel. Web mining research: a survey. In Proc. 6th

ACM SIGKDD Special Interest Group on Knowledge Discovery and Data

Mining, 2000.

116

[45] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the

web for cyber communities. In Proc. 8th International World Wide Web

Conference, 1999.

[46] R. Lempel and S. Moran. The stochastic approach for link-structure anal-

ysis (SALSA) and the TKC effect. In Proc. 9th International World Wide

Web Conference, 2000.

[47] L. Li, Y. Shang, and W. Zhang. Improvement of HITS-based algorithms on

web documents. In Proc. 11th International World Wide Web Conference,

2002.

[48] M.Diligenti, F. Coetzee, S. Lawrence, C. Giles, and M. Gori. Focused

crawling using context graph. In Proc. 26th International Conference on

Very Large Data Bases, 2000.

[49] F. Menczer, G. Pant, P. Srinivasan, and M. Ruiz. Evaluating topic-driven

web crawlers. In Proc. 24th ACM SIGIR Special Interest Group on Infor-

mation Retrieval, 2001.

[50] E. Myers. An O(ND) difference algorithm and its variations. Algorithmica,

1(2), 1986.

[51] M. Najork and J. Wiener. High-performance web crawling. SRC Research

Report 173, Compaq System Research Center, 2001.

[52] M. Najork and J. L. Wiener. Breadth-first search crawling yields high-

quality pages. In Proc. 10th International World Wide Web Conference,

2001.

117

[53] A. Ng, A. Zheng, and M. Jordan. Stable algorithms for link analysis. In

Proc. 24rd ACM SIGIR Special Interest Group on Information Retrieval,

2001.

[54] A. Ntoulas, J. Cho, and C. Olston. What’s new on the web?: the evolution

of the web from a search engine perspective. In Proc. 13th International

World Wide Web Conference, 2004.

[55] L. Page, S. Brin, R. Motowani, and T. Winograd. The PageRank citation

ranking: bringing order to the web. Stanford Digital Library working paper,

1997-0072, 1997.

[56] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis. Automatic detection of

fragments in dynamically generated web pages. In Proc. 13th International

World Wide Web Conference, 2004.

[57] D. C. Reis, P. B. Golgher, A. S. Silva, and A. F. Laender. Automatic web

news extraction using tree edit distance. In Proc. 13th International World

Wide Web Conference, 2004.

[58] M. Richardson and P. Domingos. The intelligent surfer: probabilistic com-

bination of link and content information in PageRank. In Proc. Advances

in Neural Information Processing Systems, 2002.

[59] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, first edition edition, 1983.

[60] L. K. Shih and D. R. Karger. Using URLs and table layout for web clas-

sification tasks. In Proc. 13th International World Wide Web Conference,

2004.

118

[61] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma. Learning block importance

models for web pages. In Proc. 13th International World Wide Web Con-

ference, 2004.

[62] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-diff: An effective change detection

algorithm for xml documents. In Proc. 19th IEEE International Conference

on Data Engineering, 2003.

[63] Z. Wang. Improved link-based algorithms for ranking web pages. In Proc.

5th International Conference of Web Age Information Management, 2004.

[64] L. Yi, B. Liu, and X. Li. Eliminating noisy information in web pages

for data mining. In Proc. 9th ACM SIGKDD Special Interest Group on

Knowledge Discovery and Data Mining, 2003.

[65] S. Yu, D. Cai, J.-R. Wen, and W.-Y. Ma. Improving pseudo-relevance

feedback in web information retrieval using web page segmentation. In

Proc. 12th International World Wide Web Conference, 2003.

[66] Y. Zhai and B. Liu. Web data extraction based on partial tree allignment.

In Proc. 14th International World Wide Web Conference, 2005.

[67] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance

between trees and related problems. SIAM Journal of Computing, 18-6,

1989.

[68] K. Zhang, R. Statman, and D. Shasha. On the editing distance between

unordered labeled trees. Information Processing Letters, 42, 1992.

119

