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Abstract

The increasing demand for highly detailed geometric models poses new and

important problems in computer graphics and geometric modeling. Applications

for complex models range from geometric design and scientific simulations to

feature movies and video games.

We focus on the fundamental problem of creating and manipulating com-

plex surface models. We address the problem by designing an efficient and

general surface representation, and develop algorithms for efficient modification

of surfaces represented in this form. Our surface representation extends existing

subdivision-based representations with explicit representation of sharp features

and boundaries, which is crucial in many computer-aided design applications.

We consider two types of surface modifications: boolean operations on solids

bounded by surfaces, and surface pasting. Our technique rapidly and robustly

computes an approximate result rather than aiming for the precise solution. At

the same time, our approach allows one to trade speed for accuracy, and, in most

cases, compute the result with any desired accuracy. The second type of editing

operations we consider address the problem of transferring geometric features

between different objects. Our technique makes it easy to combine geometric

data from various sources (e.g. 3D scanning, CAGD model) into a single model.
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Chapter 1

Introduction

The increasing demand for highly detailed geometric models poses new and im-

portant problems in computer graphics and geometric modeling. Applications

for complex models range from geometric-design[17] and scientific simulations[14]

to feature movies[18] and video games (i.g. Id Soft’s Quake).

The currently emerging field of geometry processing aims to process geomet-

ric data in a unified way. Key problems are the creation and representation of

complex geometry[108], editing[42], transmission[35], compression[39], signal-

processing[30], simulation, etc.

These problems are extremely challenging due to the enormous amount of

data and the wide range of scale of geometric data. Moreover, many applications

such as editing require processing at interactive rates. Many of these problems

can only be approached by designing a geometry representation which supports

certain processing operations very efficiently.

In our work, we focus on the fundamental problem of creating and manip-

ulating a complex surface. We address the problem by designing an efficient

representation for multiresolution surfaces and develop several algorithms for
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the efficient modification of surfaces represented in this form.

Surface representation. Our surface representation, described in Chapters 2

and 3 extends the most commonly used techniques[60, 11], by representing sharp

features explicitly. These features are of great practical relevance, because sharp

creases and corners are common in geometric modeling applications, especially

if boolean operations are used to create objects. The mathematical properties

of our representation are considered in Chapter 4.

The goal of our work on surface modification is to develop algorithms for

high-level operations which hide the specifics of the underlying surface repre-

sentation from the user. At the same time, the processing operations exploit

our computationally efficient representation.

Boolean operations. The first type of editing operations (Chapter 5) that

we consider addresses the problem of creating complex models from scratch.

In solid modeling, basic shapes are combined into more complex shapes with

Boolean operations. However, the computation of intersections required for

such operations is numerically unstable[34], and even state of the art methods

are far from achieving interactive rates [46]. We propose the novel approach

of rapidly computing an approximate result rather than aiming for the precise

solution. Our approach allows one to trade speed for accuracy, and, in most

cases, compute the result with any desired accuracy. While we cannot guarantee

that we are able to produce an arbitrarily accurate result for all possible inputs,

we do guarantee that the result is a valid closed surface, which is a property

often missing in many existing systems.
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Copy-and-paste surface editing. This type of editing operations consid-

ered in Chapter 6 addresses the problem of combining existing surfaces. This

choice of the application is motivated by the typical work-flow in industrial de-

sign, where computer models are often based on conceptual designs created in

clay. It is frequently necessary to rebuild the computer model, because changes

in the clay design can not be incorporated due to the specific surface represen-

tation in the software.

We have developed a technique which allows geometric data from various

sources (e.g. 3D scanning, CAGD modeling) to be combined into a single model.

Our multi-resolution surface representation supports copy-and-paste operations:

geometric features can be transferred between different objects and across dif-

ferent scales. The efficiency of the proposed pasting technique is based on using

highly regular data structures and adapting image processing methods. Fol-

lowing the approach used for combining images in a typical image editing tool,

sampling pattern of the target object is not changed whenever possible; instead

geometric features transferred from the source object are resampled using the

target object sampling pattern.
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Chapter 2

Piecewise Smooth Subdivision

Surfaces with Normal Control

This chapter has been published as a paper in the SIGGRAPH 2000 Confer-

ence Proceedings [6]. It introduces the subdivision schemes for representing

piecewise-smooth surfaces with boundary, which are extensively used in subse-

quent chapters.

2.1 Introduction

Subdivision surfaces are rapidly gaining popularity in computer graphics. A

number of commercial systems use subdivision as a surface representation:

Alias-Wavefront’s Maya, Pixar’s Renderman, Nichimen’s Mirai, and Micropace’

Lightwave 3D, to name just a few. The greatest advantage of subdivision al-

gorithms is that they efficiently generate smooth surfaces from arbitrary initial

meshes. Subdivision algorithms are also attractive because they are conceptu-

ally simple and can be easily modified to create surface features without making

4



major changes to the algorithm.

At the same time, one of the drawbacks of subdivision is a lack of precise

definition of the schemes with guaranteed behavior for a sufficiently general type

of control meshes. Anyone who tries to implement a subdivision scheme can

observe that more often than not it is unclear how rules should be specified in

certain cases (most commonly on boundaries and creases). Ad hoc solutions

have to be used, which often have unexpected undesirable behavior. The lack

of precise and complete definition makes it more difficult to exchange data

between applications, reuse control meshes, and design new algorithms based

on subdivision.

The difficulty in defining a reasonably complete set of subdivision rules is

related to the fact that subdivision algorithms allow a large variety of data as in-

put: an arbitrary polygonal or triangular mesh, possibly with boundary, marked

edges, and vertices. Subdivision rules for the interior of a control mesh are well

understood, while the boundary rules have received less attention. Boundary

rules are quite important for a variety of reasons. The boundary of the sur-

face, together with the contour lines, forms the visual outline. Often, only an

approximate definition is required for the interior of the surface, whereas the

boundary conditions may be significantly more restrictive. For example, it is

often necessary to join several surfaces along their boundaries. Boundary subdi-

vision rules lead to rules for sharp creases [36] and soft creases [18]. In addition

to specifying the boundary or crease curves, it is often desirable to be able to

specify tangent planes on the boundary; existing subdivision schemes do not

allow to control tangent plane behavior.

The goal of this paper is to present two complete sets of subdivision rules

for generating piecewise-smooth, C1-continuous, almost everywhere C2 subdi-

5



vision surfaces, with tangent plane control. Our rules extend the well-known

subdivision schemes of Catmull-Clark [11] and Loop [60]. The properties of our

schemes were rigorously verified. We use a uniform approach to derive a set of

rules, including new rules for concave corners, improved smooth boundary rules,

new rules for tangent plane modification, and C2 rules. While our approach is

based on a number of known ideas, its advantage is that all desired features are

handled in a unified framework.

Our approach to building a complete set of rules can be applied to any

stationary subdivision scheme. In this paper, we focus on the Loop and Catmull-

Clark subdivision schemes as schemes having the greatest practical importance.

The code implementing our algorithms is available on the Web1.

2.2 Previous Work

A number of subdivision schemes have been proposed since Catmull and Clark

introduced subdivision surfaces in 1978 [11]. A detailed survey of subdivision

can be found in [17].

Theoretical analysis of subdivision rules was performed in [86, 77, 32, 88,

106, 105]. Most of this work has focused on closed surfaces; while the general

theory does not impose symmetry restrictions on the subdivision rules, almost

all theoretical analysis of specific schemes relies on the rotational symmetry of

the subdivision rules and applies only to the interior rules.

Subdivision rules for Doo-Sabin dual surfaces for the boundary were dis-

cussed by Doo [20] and Nasri [69, 70, 68], but only partial theoretical analysis

was performed. Our work builds on the work of Hoppe et al. [36] and partially

1http://www.mrl.nyu.edu/biermann/sub
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on the ideas of Nasri [71].

To the best of our knowledge, the boundary subdivision rules proposed in

work [36] are the only ones that result in provably C1-continuous surfaces (the

analysis can be found in Schweitzer [88]). However, these rules suffer from two

problems:

•The shape of the boundary of the generated surface depends on the control

points in the interior;

•Only one rule for corners is defined, which works well for convex corners but

does not work well for concave corners.

Standard Catmull-Clark rules, when applied to the boundary, suffer from the

same problems.

Sederberg et al. [91] proposed a generalization of Catmull-Clark and Doo-

Sabin subdivision rules that contains NURBS as a subset. For some applications

it is important to include NURBS patches, however, the complexity of the al-

gorithms is increased and the behavior of the surface near the extraordinary

points becomes difficult to analyze and predict. The smooth crease effects that

are obtained by manipulating NURBS weights for subdivision surfaces can be

achieved using an elegant technique proposed by DeRose et al. [18]. Our ap-

proach to C2 subdivision is similar to the approach of [83].

Levin recently introduced a combined subdivision scheme which interpolates

a network of curves [53]. There are two main distinctions between the present

work and [53]. First, we are solving a different problem: rather than assuming

that we are given a network of smooth curves that has to be interpolated, we as-

sume only a discrete mesh with tags, which controls the behavior of our surface,

but no interpolation is required. Second, Levin’s combined subdivision schemes

are an interesting new research direction; not much is known and understood
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about their behavior, especially on arbitrary meshes. In contrast, we focus on

completing the subdivision toolbox with provably reliable tools.

Halstead et al. [33] describe a method of interpolating positions and normal

direction on subdivision surfaces. However, this method involves the solution

of a global system of equations, unlike our local subdivision rules.

2.3 Piecewise smooth surfaces

Piecewise smooth surfaces. Our goal is to design subdivision schemes for

the class of piecewise smooth surfaces. This class includes common model-

ing primitives such as quadrilateral free-form patches with creases and corners.

However, we exclude certain singularities (e.g., cone-like singularities and cor-

ners).

Here we give a somewhat informal description of piecewise-smooth surfaces.

For simplicity, we consider only surfaces without self-intersection.

Recall that for a closed C1-continuous surface in R3, each point has a neigh-

borhood that can be smoothly deformed (that is, there is a C1 map of maximal

rank) into an open planar disk D. A surface with a smooth boundary can be de-

scribed in a similar way, but neighborhoods of boundary points can be smoothly

deformed into a half-disk H, with closed boundary (Figure 2.1). In order to al-

low piecewise smooth boundaries, we introduce two additional types of local

charts: concave and convex corner charts, Q3 and Q1. We conclude that a

C1-continuous surface with piecewise smooth boundary looks locally like one of

the domains D, H, Q1, or Q3. Piecewise-smooth surfaces are constructed out

of surfaces with piecewise smooth boundaries joined together. If two surface

patches have a common boundary, but different normal directions along the

8



Q1 Q0Q3D H

Figure 2.1: The charts for a surface with piecewise smooth boundary.

boundary, the resulting surface has a sharp crease.

We allow two adjacent smooth segments of a boundary to be joined, pro-

ducing a crease ending in a dart (cf. [36]). For dart vertices an additional chart

Q0 is required; the surface near a dart can be deformed into this chart smoothly

everywhere except at an open edge starting at the center of the disk.

It is important to observe that convex and concave corners, while being

equivalent topologically, are not differentially equivalent. That is, there is no

C1 nondegenerate map from Q1 to Q3. Therefore, a single subdivision rule

can not produce both types of corners [109]. In general, any complete set of

subdivision rules should contain separate rules for all chart types. Most, if not

all, known schemes miss some of the necessary rules.

2.4 Problems with common rules

In this section, we demonstrate some problems of existing subdivision rules. We

will see that not all piecewise-smooth surfaces can be adequately represented in

these schemes.

Concave corners. Concave corners often arise in modeling tasks (e.g., sur-

faces with holes). In an attempt to model such a corner with subdivision sur-

faces, one might arrange the control mesh in a concave configuration and expect
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the surface to approximate the configuration. However, the corner rules of pop-

ular subdivision schemes (e.g., [36]) can only generate convex corners. If the

control mesh is in a concave configuration, the rules force the surface to ap-

proach the corner from the outer, convex, side, causing the surface to develop

a fold (Figure 2.2).

Figure 2.2: Upper row: behavior of a subdivision surface when rules of Hoppe

et al. [36] are applied near a corner of the control mesh. As the corner of the

control mesh is moved, the surface develops a fold. Lower row: our concave

corner rules applied to the same mesh. The concave rules produce a small fold

if applied to a convex control mesh configuration (not visible in the picture).

For a concave configuration, our rule produces surfaces without folds.

Boundary rules. Hoppe et al. [36] observed that standard subdivision rules

fail to produce smooth surfaces at extraordinary boundary vertices. They pro-

pose to change the subdivision scheme for the boundary curve in order to gener-

ate smooth surfaces. However, the boundary curve now depends on the interior

of the control mesh. More specifically, the number of the interior vertices ad-
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jacent to each boundary vertex. This side effect is undesirable if one wants to

join surfaces along their boundary curves: Two separate meshes might initially

have the same boundary, but after subdivision a gap between the meshes can

appear (Figure 2.6).

Moreover, even though the rules of [36] are formally smooth, they might

produce undesirable sharp normal transitions if the control mesh is twisted

(Figure 2.7).

2.5 Subdivision and eigenanalysis

In this section, we briefly state several facts of the theory of subdivision [17],

which are helpful to understand the problems described above and our solutions.

Subdivision algorithms recursively refine a control mesh, recomputing vertex

positions and inserting new vertices on edges (and possibly faces).

Our method of constructing subdivision rules is based on manipulating the

eigenstructure of subdivision matrices associated with most common subdivision

rules. This idea can be traced back to [21]. Consider a vertex v, and let p be

the vector of control points in a neighborhood of the vertex (Figure 2.3).

Let S be the matrix of subdivision coefficients relating the vector of control

points pm on subdivision level m to the vector of control points pm+1 on a

similar neighborhood on the next subdivision level. Suppose the size of the

matrix is N . Many properties of the subdivision scheme can be deduced from

the eigenstructure of S. Let us decompose the vector of control points p with

respect to the eigenbasis {xi}, i = 0..N − 1, of S, p = a0x
0 + a1x

1 + a2x
2 + . . .

(it exists in the cases of importance to us).

Note that we decompose a vector of 3D points: the coefficients ai are 3D
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vectors, which are componentwise multiplied with eigenvectors xi.

We assume that the eigenvectors xi are arranged in the order of non-

increasing eigenvalues. For a convergent scheme, the first eigenvalue λ0 is 1,

and the eigenvector x0 has all components equal to one; this is also required for

invariance with respect to rigid and, more generally, arbitrary affine transfor-

mations.

Subdividing the surfacem times means that the subdivision matrix is applied

m times to the control point vector p.

Smp = λm0 a0x
0 + λm1 a1x

1 + λm2 a2x
2 + · · · (Iterated Subdivision)

If we further assume that λ1 and λ2 are real and equal, and λ1 = λ2 = λ > |λ3|,
we see from this formula that the vector of control points pm can be approxi-

mated by a0x
0 + λm(a1x

1 + a2x
2); the rest of the terms decay to zero faster.

If a1 × a2 is not zero, then all of the control points pmi are close to the plane

passing through a0 and spanned by vectors a1 and a2. As m → ∞, the positions

of all points converge to a0.

This means that the limit position of the center vertex is a0; the tangent

directions at this position are a1 and a2. We compute these values using the

left eigenvectors of S (i.e., vectors li, satisfying (li, xi) = 1 and (li, xj) = 0 if

i �= j): ai = (li, p).

These observations form the basis of our method: to ensure convergence to

the tangent plane, we decrease the magnitudes of all eigenvalues except for those

that correspond to the vectors a1, a2 spanning the desired tangent plane. We

also modify the vectors a1 and a2 to change the direction of the normal. It should

be noted that obtaining the correct spectrum of the subdivision matrix is not

sufficient for smoothness analysis of subdivision; once our rules are formulated,
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we still have to prove that the resulting surfaces are C1, using the characteristic

map analysis.

2.6 Algorithm

2.6.1 Tagged meshes

Before describing our set of subdivision rules, we start with the description of

the tagged meshes which our algorithms accept as input. We use these meshes

to represent piecewise-smooth surfaces: edges and vertices of the mesh can be

tagged to generate the singularities described in Section 2.3.

The complete list of tags is as follows. Edges can be tagged as crease edges.

A vertex with incident crease edges receives one of the following tags:

• crease vertex: joins exactly two incident crease edges smoothly.

• corner vertex: connects two or more creases in a corner (convex or concave).

• dart vertex: causes the crease to blend smoothly into the surface.

We require that all edges on the boundary of the mesh are tagged as crease

edges. Boundary vertices are tagged as corner or crease vertices.

Crease edges divide the mesh into separate patches, several of which can

meet in a corner vertex. At a corner vertex, the creases meeting at that vertex

separate the ring of triangles around the vertex into sectors. We label each

sector of the mesh as convex sector or concave sector indicating how the surface

should approach the corner.

The only restriction that we place on sector tags is that we require concave

sectors to consist of at least two faces. An example of a tagged mesh is given

in Figure 2.4.
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Figure 2.3: Neighborhoods of a vertex on different subdivision levels. The

subdivision matrix relates the vector of control points pm to the control points

on the next level pm+1. For a neighborhood of k triangles pm = {pmc , pm0 . . . pmk−1},
for k quadrilaterals pm = {pmc , pm0 . . . pmk−1, q

m
0 . . . qmk−1}

e1

e2

Figure 2.4: Crease edges meeting in a corner with two convex (light grey) and

one concave (dark grey) sectors. Our subdivision scheme modifies the rules for

edges incident to crease vertices (e.g., e1) and corners (e.g. e2).
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In our implementation, the user applies the tags interactively, and the user

interface prohibits an inconsistently tagged mesh (for example, there cannot be

a corner vertex with some sector untagged). Also, the user can specify normal

directions and flatness parameters for untagged vertices, crease vertices, and for

each sector at a corner vertex. The flatness parameter determines how quickly

the surface approaches the tangent plane in the neighborhood of a control point.

This parameter is essential to our concave corner rules. Additionally, it improves

the user control over the surface, for example, one can flatten a twist in the

mesh (as shown in Figure 2.7). It is important to note however, that while

manipulating these parameters is possible, it is not necessary: we provide default

values reasonable for most situations (Section 2.6.2).

2.6.2 Subdivision rules

We describe our sets of rules for the triangular and quadrilateral schemes in

parallel, as they are structurally very similar.

Our algorithm consists out of two stages, which, if desired, can be merged,

but are conceptually easier to understand separately.

The first stage is a single iteration over the mesh during which we refine

the position of existing vertices (vertex points) and insert new vertices on edges

(edge points). For the quadrilateral scheme, we also need to insert vertices in

the centers of faces (face points). The first stage is similar to one subdivision

step of standard algorithms, but the weights that we use are somewhat different.

In the following we refer to the rules of Loop and Catmull-Clark as standard

rules.
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Vertex points. We apply the standard vertex rules to reposition untagged

vertices and dart vertices. The new control point at a vertex is the weighted

average of the control points in its neighborhood.

If a vertex has k adjacent polygons, then its new position is a combination of

the old position with weight 5/8 and of the sum all surrounding control points

with weight 3/8k, for k �= 3. In case k = 3 we use a special set of coefficients

with the weight of the central vertex equal to 7/16 [103]. For the quadrilateral

scheme, the center vertex has weight 1 − β1 − β2, while all adjacent vertices

have weight β1/k; the remaining vertices in the ring receive weight β2/k with

β1 = 3/(2k) and β2 = 1/(4k).

A crease vertex is refined as the average of its old position with weight 3/4

and the two adjacent crease vertices with weight 1/8 each. Corner vertices are

interpolated.

Face points. For the quadrilateral scheme we insert a vertex at the centroid

of each face; only one rule is necessary.

Edge points. This is the most complicated case. We choose the rule for an

edge point depending on the tag of the edge and the tags of adjacent vertices

and sectors. In the absence of tags, we apply the standard edge rules. The

averaging masks are given in Figure 2.5.

We insert a new vertex on a crease edge as the average of the two adjacent

vertices.

The remaining case of an untagged edge e adjacent to a tagged vertex v is

illustrated in Figure 2.4. We modify the standard edge rule in the following

way: we parameterize the rule by θk, which depends on the adjacent vertex tag
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Figure 2.5: Edge rules for triangular and quadrilateral schemes. These rules

apply to untagged edges. When both endpoints are untagged, we use standard

rules. In case of a tagged endpoint we modify the rule such that the tagged

endpoint (marked with a circle) receives coefficient 3/4− γ.

and sector tag. Let the vertices be labeled as in Figure 2.3, and let the position

of the tagged endpoint be pmc , the other endpoint is pmi . We insert a vertex on

the edge at position pm+1
i . The edge rule for the triangular scheme is

pm+1
i = (3/4− γ) pmc + γpmi + 1/8

(
pmi−1 + pmi+1

)
.

We use a similar rule for the quadrilateral case:

pm+1
i = (3/4− γ) pmc + γpmi + 1/16

(
pmi−1 + pmi+1 + qmi−1 + qmi

)
.

The subdivision masks are illustrated in Figure 2.5. In each case γ is given in

terms of parameter θk:

γ (θk) = 1/2− 1/4 cos θk (triangular scheme)

γ (θk) = 3/8− 1/4 cos θk (quadrilateral scheme).

For a dart vertex v, we use θk = 2π/k, where k is the total number of polygons

adjacent to v. If v is a crease vertex, we use θk = π/k, where k is the number

of polygons adjacent to v in the sector of e.
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At a corner vertex v we differentiate whether e is in a convex or concave

sector. For a convex corner we use θk = α/k, where α is the angle between

the two crease edges spanning the sector (k as above), for concave corners

θk = (2π − α)/k.

2.6.3 Flatness and normal modification

The second stage of the algorithm is always applied at concave corner vertices

and vertices with prescribed normals. It can be also applied at other boundary

and interior vertices when it is desirable to increase flatness near a vertex or

achieve C2-continuity.

There are two slightly different types of position modifications performed at

this stage: normal and flatness modification. Whenever we compute a vertex po-

sition in the neighborhood of a vertex subject to normal or flatness modification

we compute the position using the rules above and modify it in a second step.

The required eigenvectors for these modifications are listed in the appendix 3.6.

Flatness modification. We observe that we can control how quickly the con-

trol points in a neighborhood converge towards the tangent plane. The equation

for iterated subdivision suggests to accelerate the convergence by reducing eigen-

values λi, i = 3 . . . N − 1. We introduce a flatness parameter s and modify the

subdivision rule to scale all eigenvalues except λ0 and λ = λ1 = λ2 by factor

1 − s. The vector of control points p after subdivision in a neighborhood of a

point is modified as follows:

pnew = (1− s) p+ s
(
a0x

0 + a1x
1 + a2x

2
)
,
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where ai = (li, p), and 0 ≤ s ≤ 1. Geometrically, the modified rule blends

between control point positions before flatness modification and certain points

in the tangent plane, which are typically close to the projection of the original

control point. The limit position a0 of the center vertex remains unchanged.

The flatness modification is always applied at concave corner vertices; the

default values for the parameter s is s = 1 − 1/(2 + cos θk − cos kθk), which

ensures that the surface is C1 in this case. In other cases, s can be taken to be

0 by default.

C2-modification. The flatness modification can be also used to make the

subdivision scheme C2, similar to the flat spot modifications [83]. It is known

from the theory of subdivision that under certain conditions a scheme which

is C2 away from extraordinary vertices, generates surfaces which are C2 at

extraordinary vertices if all eigenvalues excluding 1 and λ are less than the

squared subdominant eigenvalue. This can be easily achieved using flatness

modification: s is taken to be less than |λ|2/maxi>3 |λi|. In general, values

of s close to this quantity produce surfaces of better shape, but with greater

curvature oscillations. It is worth noting that this approach has a fundamental

problem: the resulting surface has zero curvature at the extraordinary vertex;

the results of [82] indicate that for schemes with small support this is inevitable.

Normal modification. We introduce a similar modification, which allows

one to interpolate given tangent and normal position at a vertex v. As above,

we modify the control point positions in v’s neighborhood after each subdivision

step. In this case, the parameter t blends between the unmodified positions and

positions in the prescribed tangent plane, while the limit position a0 of v remains
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unchanged.

For a prescribed tangent vector pair a′1 and a′2, we modify

pnew = p+ t
(
(a′1 − a1) x

1 + (a′2 − a2) x
2
)
;

where ai = (li, p) and 0 ≤ t ≤ 1. In case of a prescribed normal direction n we

compute the tangent vectors as a′i = ai − (ai, n)n.

We observe that the subdivision rules are no longer applied to each coordi-

nate of the control points separately; rather, the whole 3D vector is required.

We can think of this as a generalized form of subdivision, where the coefficients

are matrices rather than scalars. Thus, a control point position pm+1
i in a neigh-

borhood with prescribed normal n on level m + 1 can be explicitly expressed

as

pm+1
i =

∑
j

pmj

(
sijId− t

(∑
k

x1
i l

1
kskj + x2

i l
2
kskj

)
nTn

)

where sij are entries of the original subdivision matrix S and Id the 3 × 3

identity matrix. It should be noted that our analysis applies only to the case

t = 1, which we use as a default value; the analysis of the general case is still

an open question.

2.7 Discussion

We have presented a number of simple extensions to the standard Catmull-Clark

and Loop subdivision schemes that resolve some problems with existing rules.

Our rules are designed to coincide with cubic endpoint interpolating B-

splines rules along a crease. As a consequence, the generated crease curves

depend only on the crease control points. Therefore, it is possible to modify

the interior of a surface patch without any effect on the bounding crease curves;
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moreover, one can join piecewise-smooth surfaces without gaps and combine

them with other surface representations supporting B-spline boundaries.

We can understand the behavior of the surface in a neighborhood of a corner

or crease vertex from the eigenstructure of the corresponding subdivision matrix.

If we apply the standard rules in the neighborhood of a crease vertex, the

eigenvalue 1/2 corresponding to the tangent vector of the crease is not subdom-

inant. As a result, the surface contracts at a different rate from the crease,

leading to a degenerate configuration without tangent plane (Figure 2.2). The

situation for corner vertices is similar as both tangent vectors are determined

from crease curve segments with eigenvalue 1/2.

Our subdivision rules ensure that 1/2 is the subdominant eigenvalue in both

cases. It it not difficult to see that 1/2 is an eigenvalue: Consider a planar

fan of k congruent polygons, where each polygon contributes an angle θk to

the total angle θ = kθk. If we treat this configuration as a crease or corner

neighborhood and apply our modified subdivision rules, then the center vertex

does not change its position, and for each adjacent edge we insert a vertex at

exactly the midpoint. Thus, the configuration is scaled down by a factor of 1/2,

i.e., 1/2 is an eigenvalue.

It turns out that λ = 1/2 is indeed subdominant for crease vertices and

convex corners. For concave corners we ensure subdominance by reducing all

other eigenvalues (except λ0 = 1) using the flatness modification with parameter

s satisfying (1− s)(2 + cos θk − cos kθk) < 2. Figure 2.11 demonstrates how the

flatness modification pulls the neighborhood of a convex corner into its tangent

plane.

Our implementation of the rules is available on the Web. We have also

developed explicit evaluation rules for our schemes, extending [96].
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2.8 Results and Conclusions

Surfaces with creases and corners of various types are illustrated in Figures

2.12 and 2.13(b). All the surfaces in Figure 2.12 are generated from the same

control mesh by applying different tags. Note how convex and concave sectors

meet along the crease of the torus.

Figures 2.8 and 2.10 demonstrate normal interpolation for boundary, corner

and interior vertices; directions of normals are adjusted to obtain desired shapes

without modifying the control mesh. Other applications are possible: we have

applied normal modification to create certain surface characteristics: randomly

perturbing the top-level normals produces a wavy doughnut from a torus-like

control mesh; perturbing normals on the first subdivision levels creates a noisy

doughnut (Figure 2.13(c) and (d)).

Conclusions and future work. We have presented a simple modification of

the two most popular subdivision schemes that improves the behavior of the

generated surfaces on boundary and creases and provides additional controls

for surface modeling.

Even though the class of surfaces considered in this paper is quite general, we

have excluded many types of surface singularities. Future work might explore

which other singularities are useful for modeling purpose and how to construct

subdivision rules to create such features.
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(a) (b) (c)

Figure 2.6: Subdivision on meshes with boundaries: Beethoven’s face and hair

are modeled as separate meshes with identical boundaries. (a) and (b): the

rules of [36] result in a gap between the surfaces due to extraordinary vertices.

(b) A close-up on the gaps at the ear. (c) With our rules no gap is created.

(a) (b) (c) (d)

Figure 2.7: (a) Control mesh with a twist on the boundary. (b) Normal varies

rapidly near the point although the surface is formally smooth: there is a single

bright spot on the front-facing boundary. (c), (d) Our algorithm reduces the

variation: the highlights become larger.
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(a) (b) (c) (d)

Figure 2.8: Normal interpolation for quadrilateral subdivision. Prescribed di-

rections: (a) tilted downwards, (b) horizontal, (c) no modification, (d) vertical.

(a) (b) (c) (d)

Figure 2.9: Features: (a) concave corner, (b) convex corner, (c) smooth crease,

(d) corner with two convex sectors.

(a) (b) (c) (d)

Figure 2.10: Normal interpolation. (a) Surface with convex corners. (b) Pre-

scribed directions: at each corner we tilt the normal for one surface sector

slightly inwards. (c) Smooth surface. (d) Same control mesh but all normals

vertical.
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(a) (b) (c) (d) (e)

Figure 2.11: Concave corner rules. (a) A corner without flatness modification.

(b) Flatness modification lifts the surface into its tangent plane. (c-e) The

corner shape for different values of θk.

(a) (b) (c) (d)

Figure 2.12: Surface manipulation with corners. (a) Smooth boundary curves.

(b) Concave corners on top, convex corners on bottom. (c) Corners with convex

and concave sectors. (d) Creases and corners as for (c) but with prescribed

normal direction on concave sectors.
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(a) (b) (c) (d)

Figure 2.13: Manipulating a torus. (a) The original surface. (b) A surface with

creases and convex/concave corners. (c) Wavy torus: we deform the torus by

randomly perturbing normals of the control mesh. (d) Noisy torus: we perturb

the normals on the first four subdivision levels.
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Chapter 3

Sharp Features on

Multiresolution Subdivision

Surfaces

The contents of this chapter is going to appear in an article published in the

journal Graphical Models. An earlier version of the article was published in

the Proceedings of Pacific Graphics 2001 [8]. It describes an approach to

introducing sharp features into multiresolution surfaces on different resolution

levels. This approach extends some of the techniques described in the previous

chapter on multiresolution setting.

3.1 Introduction

Interactive editing is of great importance for creating geometric models for a

variety of applications, ranging from mechanical design to movie character cre-

ation. Often times, modeling begins with an existing object on which the user
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performs a sequence of editing operations that lead to the desired shape. Of par-

ticular interest are small-scale features such as engravings and embossed details

that are encountered on many real-life objects.

Traditionally, geometric modeling has relied on non-uniform rational B-

splines (NURBS) for surface design. However, NURBS have well-known limita-

tions such as the inability to address arbitrary topology, tedious cross-boundary

continuity management, and difficulty representing different resolution levels. In

addition, editing operations such as those considered in this paper typically re-

quire features to be aligned with iso-parameter lines or patch boundaries, or

other complex manipulations in parameter space.

While techniques such as free-form deformations [90], wires [95], and pro-

cedural modeling [76] offer alternative ways to edit three-dimensional objects,

typically they do not present a unified representation that includes both the

original surface and the edits. Thus, in many cases, the resulting representation

is not the same as the original, but an extension of it. The main drawback

of this approach is that algorithms that have been developed for the original

representation are not directly applicable to the result and special cases may

have to be considered.

The past few years have seen considerable advances in subdivision theory

and many common NURBS operations have been translated into the subdivision

setting. Subdivision theory [109], parametric evaluation [96], and applications

such as interactive editing [108, 42], trimming [59], boolean operations [5], and

geometry compression [39] have contributed to the increasing popularity of mul-

tiresolution subdivision surfaces. To date, they have been used in commercial

modelers (e.g., Alias/Wavefront’s Maya, Pixar’s Renderman, Nichimen’s Mirai,

and Micropace’s Lightwave 3D) and are currently making their way through in
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game engines and hardware implementations. Subdivision algorithms are at-

tractive because of their conceptual simplicity and efficiency with which they

can generate smooth surfaces starting from arbitrary meshes. Multiresolution

subdivision surfaces offer additional flexibility by allowing modeling of details

at different resolution levels and ensuring that fine-scale edits blend naturally

with coarse shape deformations.

In this paper, we address the problems of feature placement and feature

creation by providing a set of tools that allow fine-scale editing and trimming

operations to be applied anywhere on a surface. We use multiresolution subdi-

vision surfaces as our representation and we ensure that this representation is

preserved after editing. This gives us the flexibility to integrate our technique

with other algorithms developed for multiresolution subdivision surfaces. In our

implementation, we use a subdivision scheme for quadrilateral meshes, however

a similar algorithm can be developed for triangular meshes. Our contributions

include:

1. An algorithm to produce sharp features at arbitrary locations on a mul-

tiresolution surface without remeshing the control mesh. The sharp fea-

tures are created interactively, along curves drawn by the user on the

target surface.

2. An extended set of rules for the Catmull-Clark subdivision scheme that al-

low the creation of creases and boundaries along diagonals of quadrilateral

mesh faces.

3. A unified solution to offsetting and trimming operations. Using our tech-

nique, a sharp crease having a user-defined profile may be applied along
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a given curve. Alternatively, the portion of the surface delimited by the

curve can be trimmed off, creating a hole in the surface.

The remaining sections of the paper are organized as follows: in section 3.2

we overview surface modeling methods and we emphasize the main differences

between our approach and existing techniques. The core of our method is pre-

sented in section 3.3. In section 3.4 we present our results and we illustrate

applications. Finally, in section 3.5 we summarize our work and we point out

open issues.

3.2 Background and Related Work

Figure 3.1: Surface editing. Features are added to an initial surface (left).

Smooth and sharp features are fundamentally different: smooth features (cen-

ter) add bumps to the surface, while sharp features create tangent plane dis-

continuities (right).

Subdivision surfaces [17] efficiently represent free-form surfaces of arbitrary

topology. A subdivision surface is defined over an initial control mesh and a

subdivision scheme is used to recursively refine the control mesh by recomputing

vertex positions and inserting new vertices according to certain rules (masks).

Recursive subdivision produces a hierarchy of meshes converging to a smooth

limit surface. Most objects of interests to geometric design, however, are only

piecewise smooth and exhibit sharp creases and corners. To model them us-
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Figure 3.2: Smooth surface representations do not capture sharp features. Mul-

tiresolution Catmull-Clark surfaces can approximate sharp features by adding

detail coefficients at finer levels (left three pictures). Instead, we use piecewise-

smooth multiresolution surfaces to exactly represent sharp features without any

detail coefficients (right).

ing subdivision, special rules are needed to avoid smoothing of sharp details

(Figure 3.1 and 3.2). Previous work in this area has focused on defining such

special rules. Hoppe et al. introduce rules to create sharp features on subdivi-

sion surfaces in [36]. The work of DeRose et al. [18] extends Hoppe’s approach

to achieve creases of controllable sharpness by using subdivision rules param-

eterized by a sharpness factor. Our work builds upon subdivision schemes for

piecewise-smooth surfaces [6] where control mesh vertices and edges are tagged

in order to generate singularities, such as creases, darts, and corners. We also

draw upon the curve interpolation work of Nasri [72]. In all of these techniques,

there is the common requirement that features need to be aligned with the edges

of the underlying control mesh. Therefore, the control mesh has to be designed

with a particular feature in mind. However, a designer might want to first model

an initial shape and apply small scale features in later stages of the design. It

is our goal to support this kind of a modeling approach and to allow features

to be placed at arbitrary locations on the surface.

Multiresolution subdivision surfaces are a natural extension of subdivision
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surfaces that accommodates editing of details at different scales, allowing gen-

eral shape deformations as well as the creation of minute features. Multiresolu-

tion, however, does not solve the problem of sharp features as they can only be

placed along edges at discrete locations in the mesh hierarchy.

Our technique removes this constraint by allowing sharp features to be cre-

ated and edited along any user-defined set of curves on the mesh. The main idea

is to view subdivision surfaces as parametric surfaces defined over the coarsest-

level mesh similar to MAPS [49]. Similar to the approach in [5] we compute

the image of a given curve in the parametric domain and we reparameterize

the surface to align the parameterization with the curve on some level of the

multiresolution hierarchy. Subsequently, we apply special rules to generate non-

smooth features.

The closest work to the technique presented in this paper is that of Kho-

dakovsky and Schröder. In [38] they describe a method for interactive creation

of feature curves at arbitrary locations on a surface. To create a feature along

a curve, a perturbation according to a given profile is applied in the neigh-

borhood of the curve, while maintaining smooth boundary conditions. There

are no restrictions on the position of the curve with respect to the underlying

surface, however, the representation used is no longer a pure multiresolution

surface. In order to create a sharp feature with this technique, it is necessary to

enforce the feature profile at each level of the multiresolution hierarchy. Both

the surface and the feature curve are needed to represent the resulting surface.

Thus, one cannot directly use techniques developed for subdivision surfaces (i.e.,

evaluation). In our method, we address the issue of arbitrarily placed sharp fea-

tures within the multiresolution subdivision setting, thus allowing for greater

flexibility in combining feature editing with other existing subdivision tools.
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A by-product of our method is the ability to perform trimming of surfaces

by simply discarding the portion of surface inside a given curve. Trimming is

an important design operation that has been traditionally difficult to perform

on parametric surfaces. Our work is complementary to the trimming approach

of Litke et al. [59] where quasi-interpolation is used to approximate a trimmed

surface with a combined subdivision surface [54]. Similarly, quasi-interpolation

may be combined with our approach to obtain trimmed multiresolution surfaces

within a specified tolerance.

3.3 Feature Editing Algorithm

The input to our feature editing algorithm consists of a Catmull-Clark [11,

21] multiresolution subdivision surface, a set of feature curves on the surface,

and a user-selected profile to be applied along these curves. The result is a

multiresolution subdivision surface with offset or trim features along the given

curves.

The basic idea is to model sharp features with piecewise-smooth surfaces. We

view feature curves as boundaries between smooth surface patches. Sharp fea-

tures occur along patch boundaries where patches with distinct tangent planes

are joined.

Our multiresolution surface representation enables us to represent sharp fea-

tures as boundaries or creases by tagging the control mesh edges. In general,

the creases generated in this fashion do not coincide with the user specified fea-

ture curves. Moreover, it may not be possible to create topologically equivalent

curves due to the control mesh topology. Therefore, before we can represent a

feature, we need to change the surface parameterization.
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Our algorithm proceeds in two steps: Reparameterization and Feature Cre-

ation. We first reparameterize the surface by sliding the control mesh along the

surface in order to sample the feature curve with vertices of the mesh. Hence, we

are able to approximate the feature curve by edges or face diagonals of the con-

trol mesh. In the following subdivision step, we treat these edges and diagonals

as creases in the control mesh, and apply piecewise-smooth subdivision rules to

obtain a surface with a sharp feature. The surface patches on each side of the

feature may be controlled separately. This allows to shape the feature according

to a specified profile. Moreover, for trimming we can discard the surface on one

side of the feature without changing the surface on the other side.

3.3.1 Reparameterization

The goal of this step is to align the parameterization of the given surface with

a given feature curve. Recall that a multiresolution subdivision surface can be

naturally parameterized over the coarsest level control mesh (Figure 3.3).

Some notation is necessary to describe the reparameterization. Let c denote

an input curve defined on the parameter domain X of the surface, c : [0, 1] →
X. In general, c traverses the domain X at arbitrary positions. We want

to reparameterize the domain X such that c passes through the vertices of

X. Therefore, we compute a one-to-one mapping Π : X → X which maps

vertices of X to curve points: Π(vi) = c(ti), for some vertices {v0, v1, . . . } and

curve parameters {t0, t1, . . . }. The mapping Π is built to satisfy the following

approximation property (AP):

(AP): the piecewise linear curve [v0, v1, . . . ] has the same topology as c and

either follows along mesh edges or crosses mesh faces diagonally.
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Figure 3.3: Parametric domain and surface. Multiresolution subdivision sur-

faces can be parameterized over the coarsest level control mesh (left). The

subdivision operator maps vertices of the parametric domain to their image on

the surface (right).

The reparameterization algorithm proceeds iteratively, alternating Snapping

and Refinement steps. The snapping step moves mesh vertices onto the curve

if they are sufficiently close. In the refinement step we simply subdivide the

parameterization linearly. The algorithm terminates if the sequence of vertices

{v0, v1, · · · } along c satisfies the approximation property (AP). Property (AP)

is guaranteed to be satisfied after a finite number of steps for piecewise-linear

curves c. After the reparameterization, the surface is Resampled to reflect the

new parameterization.

Snapping. This step moves vertices onto the curve c if they are sufficiently

close to it. First, the algorithm traverses the mesh along the curve on a given

subdivision level. For all vertices of the traversed faces we compute the closest

points on the curve. Distances are measured by parameterizing each quad inter-

sected by c over the unit square and by computing distances to the curve in this
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Figure 3.4: Reparameterization matching a feature curve. The quad is recur-

sively split and vertices are snapped to the curve. After four subdivision steps,

the curve is approximated by a sequence of mesh vertices: The approximated

curve follows edges or passes through quads diagonally.

parameter space. This approach presents an advantage over computing geomet-

ric distances in that it does not undersample small quads. Vertices v within a

certain distance ε to the curve are snapped to the corresponding closest points

c(t) on the curve (see Figures 3.5 and 3.4). We assign Π(v) := c(t).

The parameter ε controls the distortion of the reparameterization: small

values keep vertices from moving too far, but require more snapping steps. In

ε

Figure 3.5: Snapping step. Vertices are snapped to closest curve vertex if the

distance is less than a certain ε. Note that distances are measured in parameter

space, where each face corresponds the unit square. A single snapping step

reparameterizes the neighborhood of the snapped vertex.
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all cases, ε is less than 0.5 to ensure that the snapping region around each

vertex is disjoint from the snapping regions of its neighbors. In our examples,

we obtained good results with ε = 0.3.

In some cases, it may be necessary to align specific points in the parameter

domain with mesh vertices. This is the case, for instance, where several curves

intersect in a corner. Due to the chosen surface representation, we need a mesh

vertex at the corner that connects the separate curve branches. Such constraints

are enforced during snapping: constrained curve points have higher priority than

unconstrained points. For a given vertex, the algorithm first tries to snap to

the unmatched constrained vertices. If no snapping is possible, unconstrained

points are considered as snap targets.

Refinement. The parameterization Π is piecewise linearly subdivided to in-

crease the resolution and allow future snapping. The subdivision is done simi-

larly to [49]. As in [49], local charts are used to refine the parameterization Π

where neighborhoods are mapped to different faces of the coarsest level control

mesh.

Resampling. After reparameterization, we resample the surface at the new

parameter positions. Intuitively, this moves the control mesh on the surface and

places mesh vertices on the feature curve. With the notation from above, we

iterate over the vertices of the finest level control mesh. For every vertex v of X,

we assign a new position by evaluating the input surface at parameter position

X(v). Finally, we apply multiresolution analysis to obtain a multiresolution

representation with detail coefficients.
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3.3.2 Feature Creation

The reparameterization step approximates the feature curves as chains of mesh

edges or diagonals and mesh diagonals. Our idea is to view these curves as

crease or boundary curves in the control mesh. In order to create surfaces with

sharp features, we apply crease subdivision rules along the feature curves. The

shape of the feature can be controlled by offsetting mesh vertices in the feature

neighborhood according to a user given profile.

The profiles shown in Figures 3.14 have been created by changing the posi-

tions of mesh vertices that are close to a feature curve. Vertices are displaced

normal to the surface and the displacement is determined by their distance to

the curve. Note that for closed curves different shape profiles may be used for

displacing points in the interior and points on the outside.

Trimming can also be performed by simply interpreting a feature curve as

a boundary of the mesh. The feature curve cuts the control mesh into separate

pieces. Each piece can be subdivided separately and processed further. The

resulting surfaces are independent from each other, moreover, their boundary

curves are cubic B-splines.

3.3.3 Subdivision Rules for Sharp Features

In this section, we explain how to subdivide control meshes with feature curves

(Figure 3.6). As in the standard Catmull-Clark subdivision, we iterate over the

mesh on a given level and we compute positions of the vertices on the next level

by refining the positions of existing vertices (vertex points) and by inserting

new vertices on edges (edge points) and in the faces centers (face points). We

apply special rules in the vicinity of the curves and standard rules everywhere
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Figure 3.6: Subdivision of a control mesh with a feature curve. The feature

curve is a sequence of mesh edges or mesh diagonals acting as a boundary in

the mesh. The resulting surface consists of two smooth patches joined along

a cubic B-spline boundary. Our subdivision scheme extends piecewise-smooth

subdivision with rules for diagonally split faces.

else. Our rules extend the piecewise-smooth subdivision of [6]. The idea is to

treat the feature curve as a crease and to refine the mesh on each side of the

curve independently to create a tangent-plane discontinuity. As feature curves

may pass through quads diagonally, we introduce new rules, that account for

such situations.

We use vertex tags to identify the subdivision rules to be applied when

traversing the mesh. Initially, we tag all vertices traversed by the feature curves

as crease vertices. Additionally, we mark the faces that are cut diagonally by

the curve.

Vertex points. A refined control point position corresponding to an untagged

vertex is computed as a weighted average of control points in its neighborhood.

For a vertex c with valence k (i.e., with k adjacent polygons), its new position

ci+1 is a linear combination of its old position weighted by (1− β − γ) and the

positions of the vertices in its 1-ring each weighted by β/k if situated on an

edge incident to c or by γ/k otherwise. We use coefficients β = 3/(2k) and

γ = 1/(4k).
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Figure 3.7: Special vertex rule in the neighborhood of a curve that passes

through some of the quads diagonally (gray line). Point qik−1 is on the op-

posite side of the curve from ci and it is not used in the computation of the

refined position ci+1. The reflection of ci across the diagonal (pik−1, p
i
0) is used

instead.

A special situation occurs when some of the quads in the 1-ring of c are split

by a curve (see Figure 3.7). The previous rule is modified to ignore vertices that

are not on the same side. We use q′ := pi0 + pik−1 − c.

ci+1 = (1− β − γ)ci +
1

k

(
βpik−1 + γq′ +

k−2∑
j=0

βpij + γqij

)

A crease vertex is refined as the average of its old position with weight 3/4 and

the two adjacent crease vertices with weights equal to 1/8.

Corner vertices (i.e., where two or more creases meet) require additional rules

depending on the neighboring topology, similar to our discussion of creases. For

the sake of brevity, we do not include them in this paper. Darts (i.e., smooth

transitions of a crease into a surface) require no special consideration, as the

standard rules are directly applicable at such points.

Face points. For faces that are not split diagonally by crease curves, we insert

a point in the centroid of each face. For faces with a diagonal on the curve, the
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Figure 3.8: Special rules for edge points on edges with one endpoint on a curve

(gray line). (a) Sector delimited by the curve consists of quads only: in this

case the rules from [6]. (b) Sector begins with a split quad and ends with a

full quad. In this case only pi0 is on the opposite side of the curve and the only

rule that needs to be modified is that for pi+1
1 . The reflection of ci across the

edge (pi1, q
i
0) is used. (c) Sector begins and ends with quads that are split by the

curve. Points pik and pi0 are on the opposite side of the curve. The rules that

would normally take into account these points to compute pi+1
1 and pi+1

k−1 are

modified to use the reflections of the points pi1 and pik across the curve instead.

center point is computed as the average of the two diagonal endpoints on the

crease.

Edge points. On an edge with both endpoints tagged, we insert a new vertex

as the average of the endpoints. When both endpoints are untagged, the stan-

dard edge mask applies. The remaining case is that of an edge with one vertex

tagged and the other untagged. A curve passing through a mesh vertex parti-

tions the mesh in the neighborhood of that vertex into two sectors. We select

the rule to be applied to an edge point adjacent to a tagged vertex c depending

on the topology of the sectors around the tagged vertex. We distinguish three

types of sectors:
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1. Consisting of quads only: in this case the curve follows two edges incident

to c and we can apply the crease rules described in [6]. This case is

illustrated in Figure 3.8(a). We choose θk = π/k, where k is the number

of polygons adjacent to c in the sector considered, and apply an edge rule

which is parameterized by γ = 3/8− 1/4 cos θk. The new edgepoints pi+1
j

(j = 1, · · · , k − 1) are computed as

pi+1
j = (

3

4
− γ)ci + γpij +

1

16
(pij−1 + pij+1 + qij−1 + qij).

2. Beginning with a triangle (i.e., a split quad) and ending with a quad or vice

versa: in this case the curve passes through the vertex following a mesh

edge and a mesh diagonal. This case is illustrated in Figure 3.8(b). We

use θk as above and apply the same edge rule to compute pi+1
2 · · · , pi+1

k−1.

The edge point pi+1
1 between the triangle and the first quad is obtained as

p1
i+1 = (

11

16
− γ)ci + (γ +

1

16
)pi1 +

1

16
(pi2 + 2qi0 + qi1).

3. Beginning and ending with triangles: in this case the curve follows two

diagonals incident to c (Figure 3.8(c)). We choose θk = k − 1 and apply

the edgerule of the first case to find pi+1
2 , . . . pi+1

k−2. The edge points pi+1
1

between first triangles and quads is computed as

p1
i+1 = (

13

16
− γ)ci + (γ − 1

16
)pi1 +

1

16
(pi2 + 2qi0 + qi1).

The rule for pi+1
k−1 is symmetric to this. In the special case of k = 2, we

use pi+1
1 = 1/4ci + 1/2pi1 + 1/8(qi0 + qi1).

Tangents and normals. Our subdivision scheme has well-defined limit and

tangent properties. We can efficiently evaluate limit positions of vertices and
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tangent directions by applying specific masks [33]. These masks correspond to

the left eigenvectors of the subdivision matrix used at a given vertex. The masks

are listed in appendix 3.6.

3.3.4 Discussion of the Subdivision Rules

In this section, we briefly discuss some properties of the previous subdivision

rules and we motivate our choice of the special rules for crease neighborhoods.

As we use cubic B-Spline subdivision along the features, the resulting curves

are B-Splines defined only in terms of control points along the curves. Moreover,

the surfaces on either side of the feature do not depend on each other. This is

a consequence of our rules, as no stencil uses vertices from the opposite side of

a feature.

Our rules have an easy geometric interpretation (Figure 3.8), but some sub-

division theory is needed to understand the rules in more detail. We follow

the usual eigen-analysis approach [21] to understand the asymptotic behavior

of the subdivision operation. Consider a neighborhood of a crease vertex c as

shown in Figure 3.8(a). Iterated subdivision contracts the neighborhoods to a

single point. We want to ensure a well-shaped limit configuration and design

rules which preserve a specifically chosen configuration. Technically speaking,

we design rules that have certain desired subdominant eigenvectors (see Ap-

pendix 3.6). We use geometric reasoning to reduce the cases of neighborhoods

with triangles to the case of neighborhoods without. The reflections previously

mentioned are chosen to map the desired eigenvectors to the eigenvectors of

the no-triangle case (Figure 3.8(a)). Thus, we can design subdivision rules

as follows: (i) apply reflection to complete triangles, (ii) subdivide using the
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usual no-triangle rules and (iii) discard the unnecessary points. The subdivi-

sion scheme defined in this way has the desired eigenvectors.

For a complete analysis a larger neighborhood and the corresponding subdi-

vision matrix need to be analyzed. This is beyond the scope of this paper, and

instead, we visualize here only the asymptotic behavior of the subdivision rules

with illustrations of the characteristic maps (Figure 3.9).

Figure 3.9: Characteristic map for crease vertex neighborhoods with a single

triangle. We show maps for valence 3 (left) and valence 6 (right). The maps

show the behavior near the curve vertex. Note that the maps are smooth and

one-to-one.

3.4 Applications and Results

Figure 3.13 illustrates the steps of the algorithm for a trimming sequence. The

creation of sharp features and trim regions is illustrated in figures Figures 3.10

and 3.11. Note the arbitrary position of the curves with respect to the underly-

ing meshes. The models were created interactively on a Pentium III workstation.

Figure 3.14 illustrates the creation of offset features along a curve according

to various user-specified profiles. The profiles are based on distance to the

curve. In general, computing distances on surfaces is a difficult problem [65].

In our examples (i.e., Figure 3.14), we measure the distance in space, which is
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a reasonable approximation for small distances on surfaces with low curvature.

Alternatively, one could use geodesic distances on the surface [38].

Also, we use our algorithm to create features on multiresolution surfaces

(Figure 3.12(a)). Feature curves with intersections are illustrated in Fig-

ures 3.13 and 3.12(b).

Finally, we demonstrate how our trimming approach approximates the result

of a precise trimming operation (Figure 3.15). It is the nature of our technique

that the resulting surface is different from the input surface (even for a flat

feature profile). The differences are due to resampling and the use of piecewise-

smooth base functions in the feature neighborhood. Also, the specified feature

curves are resampled only at vertices of the control mesh. However, we can

control the approximation by resampling surface and feature curves at different

levels in the hierarchy. In general, resampling on a finer level reduces the error,

but is computationally more expensive. In our implementation the user controls

the level on which the resampling takes place.

3.5 Conclusions and Future Work

In this paper we present an efficient method for creating sharp features along

an arbitrarily positioned set of curves on a Catmull-Clark multiresolution sub-

division surface. We view our surface as a parametric surface defined over the

initial control mesh and we change the parameterization to align it with the

pre-image of the feature curves in the parameter domain. The result is a sur-

face represented in the same way as the input surface with the curves passing

through mesh edges or face diagonals. This property allows us to apply special

subdivision rules along the curve to create sharp profiles. Another application
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Figure 3.10: Surface editing. Left: surface with user specified feature curves.

Closed curves are trim curves, the open curve indicates an offset feature. Center:

image of the feature curves in the parametric domain. Right: resulting surface

with sharp features and trimmed regions. The displacement of the points along

the offset curve is a quadratic function of the distance to the curve.

Figure 3.11: Surface shaping. A fish pin is cut from a disk using a trim curve

along its outer contour and shaped with offset curves in the interior.

47



(a) (b)

Figure 3.12: Left image pair: trim features on multiresolution surfaces. Right

image pair: offset features with intersections. The control mesh on the right

shows how reparameterization aligns the feature with edges and diagonals. Mesh

vertices are placed at curve intersections.

(a) (b) (c) (d) (e)

Figure 3.13: Steps of the algorithm. (a) Wireframe rendering of a surface with

feature curve. (b) The surface is parameterized over a cube. (c) Reparameteri-

zation aligns mesh edges with the feature. (d) Resampling with respect to new

parameterization. (e) Trimming by discarding a piece of the control mesh and

subsequent subdivision.
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Figure 3.14: Different offset profiles for a feature curve. In all three cases, the

interior profile is a quadratic function of the distance to the curve. Left: linear

exterior profile. Middle: linear exterior profile; the size of the neighborhood

altered is doubled with respect to the previous image. Right: Gaussian exterior

profile.
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Figure 3.15: Trim operations are applied on different levels of the hierarchy.

Top row: distance between the resulting surface and an analytically trimmed

surface. Bottom row: corresponding control meshes. The largest error occurs

where the surface boundary does not capture the intended trim curve. The

error of surface obtained by trimming on level 4 is less than 1% (of the length

of a base mesh edge).
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of this algorithm is trimming, which can be achieved simply by discarding the

portion of the mesh situated inside the trim curve.

Our algorithm takes as input arbitrarily shaped curves, with or without

self-intersections, as well as multiple intersecting curves. The number of curves

intersecting at a point, however, is limited by the number of connections avail-

able between a vertex and its neighbors along edges and diagonals (eight in the

regular case).

Multiresolution surfaces that allow for topology changes within the hier-

archy [29] could be used to resolve this restriction in future research. Other

research might combine quasi-interpolation or surface fitting with our trimming

approach and study the approximation along the lines of [59]. Also, we are

interested to see whether the special diagonal subdivision rules are useful in

a general geometric modeling context. For practical applications, it might be

useful to work out expressions for direct evaluation.

3.6 Eigenvectors

We list the right and left eigenvectors corresponding to the special subdivision

rules previously described. We denote the dominant left eigenvector by l0 and

the left subdominant eigenvectors by l1 and l2, respectively. We denote the

dominant right eigenvector by x0 and we use x1 and x2 for the right subdominant

eigenvectors. Recall that the eigenvector coefficients are applied to the control

points of a polygon ring/fan. The eigenvector l0 is used to compute the limit

position of a point, whereas l1 and l2 are necessary for computing the tangents.

The crease degree is the number of polygons adjacent to a crease or corner vertex

with respect to a specific sector. We use the following notation: k denotes
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the crease degree of a crease vertex, the subscript c denotes the coefficient

corresponding to the center vertex, we mark edgepoint coefficients with the

subscript p, and facepoint coefficients with q. The dominant right eigenvector

x0 is the vector consisting of ones. Unlisted coefficient values are null.

• Sector consisting of quads only. Let θk = π/k.

l0c = 2/3, l0p0 = l0pk = 1/6

For k = 1,

x1
c = 1/18, x1

p0 = −2/18, x1
p1 = −2/18, x1

q0 = −5/18

x2
c = 0, x2

p0 = −1/2, x2
p1 = 1/2, x2

q0 = 0

l1c = 6, l1p0 = −3, l1p1 = −3, l1q0 = 0

l2c = 0, l2p0 = −1, l2p1 = 1, l2q0 = 0

otherwise l2c = x1
c = x2

c = 0 and

x1
pi = cos iθk, x2

pi = sin iθk, i = 0, · · · , k

x1
qi = cos iθk + cos (i+ 1)θk, i = 0, · · · , k − 1

x2
qi = sin iθk + sin (i+ 1)θk, i = 0, · · · , k − 1

l2p0 = 1/2, l2pk = −1/2

α =
cos θk + 1

k sin θk(3 + cos θk)

l1c = 4α(cos θk − 1), l1p0 = l1pk = −α(1 + 2 cos θk)

l1pi =
4 sin iθk

(3 + cos θk)k
, i = 0, · · · , k − 1

l1qi =
(sin iθk + sin (i+ 1)θk)

(3 + cos θk)k
, i = 0, · · · , k − 1
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• Sector beginning and ending with triangles. Let θk = π/k.

l0c = 2/3, l0pk = l0q0 = 1/6, l1pk = 1/2, l1q0 = −1/2

x1
c = x2

c = 0

x1
pi = cos iθk − θk/2, x

2
pi = sin iθk − θk/2, i = 1, · · · , k − 1

x1
qi = cos iθk − θk/2 + cos (i+ 1)θk − θk/2, i = 0, · · · , k − 1

x2
qi = sin iθk − θk/2 + sin (i+ 1)θk − θk/2, i = 0, · · · , k − 1

l2c = −4 sin (θk/2)

l2pk
= l2q0 =

3(sin2 (θk/2)− 1)

sin (θk/2)

l2pi
= 4 sin (iθk − θk/2), i = 1, · · · , k − 1

l2qi
= sin (iθk − θk/2) + sin ((i+ 1)θk − θk/2), i = 1, · · · , k − 1

• Sector beginning with triangle, ending with quad.

Let θk = π/(k − 1).

l0c = 2/3, l0pk = l0q0 = 1/6, l1pk = −1/2, l1q0 = 1/2

x1
c = x2

c = 0, x1
q0 = 1, x2

q0 = 0

x1
pi = cos iθk, x2

pi = sin iθk, i = 1, · · · , k

x1
qi = cos iθk + cos (i+ 1)θk, i = 1, · · · , k − 1

x2
qi = sin iθk + sin (i+ 1)θk, i = 1, · · · , k − 1

α =
1

cos2 θk + k cos θk + 3k − 1

l2c = −4 sin θk

l2pk
= α

sin θk(2 + 5 cos θk − cos2 θk)

2(cos θk − 1)

l2q0 = α
sin θk cos θk(5 + cos θk)

2(cos θk − 1)

l2pi
= 4α sin iθk, l2qi

= α sin iθk + sin (i+ 1)θk, i = 1, · · · , k − 1
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Chapter 4

Analysis of Subdivision Schemes

For Surfaces with Boundaries

This chapter presents an analysis of the smoothness properties of the subdivision

rules introduced in Chapter 4. This is a preliminary version of a paper which

could not be completed due to the author’s illness.

4.1 Introduction

Subdivision is a way to construct smooth surfaces out of polygonal meshes used

in a variety of computer graphics and geometric modeling applications. Two

features of subdivision algorithms are particularly important for applications.

The first is the ability to handle a large variety of input meshes, including

meshes with boundary. The second is the ease of modification of subdivision

rules, which makes it possible to generate different surfaces (e.g. surfaces with

sharp or soft creases) from the same input mesh.

The importance of special boundary and crease rules has been recognized
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for some time [69, 70, 36, 88]. However, most of the theoretical analysis of

subdivision [86, 77, 106, 105] focused on the case of surfaces without boundaries

and schemes invariant with respect to rotations. The goal of this paper is to

develop the necessary theoretical foundations for analysis of subdivision rules

for meshes with boundary, and present analysis for rules for the boundary rules

extending several well-known subdivision schemes described in [6].

The starting point for our theory is a precise description of the class of sur-

faces that we would like to be able to model using subdivision. We introduce

the definition of surfaces with piecewise-smooth boundary. This class readily

extends to a broader class of piecewise-smooth surfaces, which is sufficiently

broad for many practical applications. We demonstrate how the standard con-

structions of subdivision theory (subdivision matrices, characteristic maps etc.)

generalize to the case of surfaces with piecewise-smooth boundary. Remarkably,

even at this abstract stage we make a simple, yet important observation, with

substantial practical implications: convex and concave corner singularities of

the boundary require separate subdivision rules.

We proceed to extend the techniques for the analysis of C1-continuity de-

veloped in [105] to the case of piecewise-smooth surfaces with boundary. While

we briefly consider Ck-continuity, we focus on C1-continuity conditions.

The result allowing one to analyze C1-continuity of most subdivision schemes

for surfaces without boundaries is the sufficient condition of Reif [86]. This

condition reduces the analysis of stationary subdivision to the analysis of a

single map, called the characteristic map, uniquely defined for each valence of

vertices in the mesh. The analysis of C1-continuity is performed in three steps

for each valence:
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1. compute the control net of the characteristic map;

2. prove that the characteristic map is regular;

3. prove that the characteristic map is injective.

We show that similar conditions hold for surfaces with boundary, and under

commonly satisfied assumptions injectivity of the characteristic map for schemes

for surfaces with boundary can be inferred from regularity. To avoid the need to

evaluate the characteristic map in closed form, we obtain convergence estimates

for subdivision schemes acting on regular grids with boundary. These estimates

allow us to use sufficiently close linear approximations to draw conclusions about

the regularity of the characteristic map. We describe the elements of the theory

of schemes acting on regular grids with boundary which we need to perform

C1-continuity analysis.

Subdivision schemes acting on grids with boundary were introduced in [109]

where they were referred to as crease subdivision schemes. A generalization of

this class of schemes was studied in [51] where they are referred to as quasi-

uniform subdivision schemes.

Finally, we use the theory that we have developed to derive and analyze

several specific boundary subdivision rules, initially proposed in [6].

Previous work The theory presented in this paper is based on the theory

developed for closed surfaces in [86, 106, 105]. As far as we know, analysis of

C1-continuity of subdivision rules for surfaces with boundary was performed

only in [88], where a particular choice of rules extending Loop subdivision was

analyzed.
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At the same time, a substantial number of papers proposed various boundary

rules, starting with the first papers on subdivision by Doo and Sabin, and

Catmull and Clark [11, 20, 69, 71, 36]. Most recently, a method for generating

soft creases was proposed in [18].

In our C1-continuity verification method we use estimates of the convergence

rate of quasi-uniform subdivision schemes, considered briefly in [109] and in

greater generality and detail in [51].

Our estimates of the errors of linear approximations rely on the work of

Cavaretta, Dahmen and Micchelli [12], and on the work of Cohen, Dyn and

Levin [15] on matrix subdivision.

Finally, we extensively use interval arithmetics (see, for example, [66]).

4.2 Surfaces with Piecewise-smooth Boundary

4.2.1 Definitions

In this section we define surfaces with piecewise-smooth boundaries. Unlike

the case of open surfaces, there is no single commonly accepted definition that

would be suitable for our purposes. We consider several definitions of surfaces

with boundaries and motivate the choice that we make (Definition 4).

The least restrictive definition of a closed surface with boundary is a closed

part of an open surface. This definition is too general for our purposes but

provides a useful starting point. More formally, we define a closed surface with

boundary as follows. Recall that an open Ck-continuous surface in Rp can be

defined as a topological space M with a map f : M → Rp such that for any

point x ∈ M there is a neighborhood Ux such that f(Ux) can be reparameterized
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over the open unit disk D using a Ck nondegenerate map g : D → f(Ux).

Definition 1. Let M be a closed topological space with boundary, and f a map

from M to Rp. We say that (M, f) is a closed Ck surface with boundary, if

there is an open Ck-continuous surface (M ′, f ′) and an injective inclusion map

ι : M → M ′, such that f ′ ◦ ι = f .

Note that this definition places very few restrictions on the boundary: for

example, any subset of the plane from this point of view is a Ck-continuous

surface for any k. Typically, additional restrictions are added. Most commonly

the boundary is required to be a union of nonintersecting Ck-continuous curves

(see [67],[22]). Assuming that the domains of these curves are separated in M ′,

this type of surfaces can be defined using two local charts, the open unit disk

D and the half-disk Q2 = H ∩ D, where H is the closed halfplane defined by

H = {(x, y)|y ≥ 0}.

Definition 2. Consider a surface (M, f) where M is a topological space, and f

is a map f : M → Rp. The surface (M, f) is called a closed Ck-continuous

surface with Ck boundary if for any x ∈ M there a neighborhood Ux and a

regular Ck-continuous parameterization h of f(Ux) over an open disk D (inter-

nal point) or a half-disk Q2 (boundary point).

This definition is too narrow for geometric modeling, as surfaces with corners

(e.g. surfaces obtained by smooth deformations of a rectangle) are quite com-

mon. To include corners, we have to allow isolated singularities for the boundary

curves. We consider a broader class of surfaces, which we call Ck-continuous

surfaces with piecewise Ck-continous boundary.
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Definition 3. let (M, f), f : M → Rp be a closed Ck-continuous surface with

boundary as defined above, Let γi : [0, 1] → M , i ∈ I, where I is finite, be a

set of curve segments, such that each endpoint is shared by exactly 2 segments,

and the curve segments intersect only at endpoints. Suppose the boundary of M

coincides with ∩iImγi, the curves f ◦γi are Ck-continuous. Then we call (M, f)

a Ck-continuous surface with piecewise Ck-continous boundary.

The definition implies exisitince of the tangents to the boundary curves at

the endpoints. However, these tangents may coincide for two adjacent curves,

and result in either a cusp of degree m or a Cm-continuous joint for m ≤ k.

In either case, k different charts are required to parameterize the surface, as

two curves with a contact point of order m are clearly not Ck-diffeomorphic

to two curves with a contact point of order n �= m, for n,m ≤ k. Moreover,

the boundary of the surface is not Lipschitz if it contains cusps, which means

that surfaces of this type require special treatment when we consider functions

defined on such surfaces (cf. [97]).

Transversality assumption. We assume that the adjacent boundary curve

segments intersect transversally, that is, their tangents are different at the

shared endpoint. We call such endpoints of boundary curve segments nonde-

generate corners. Thus, the surfaces that we consider do not contain cusps of

Cm-continuous joints for 0 < m < k, We leave analysis of surfaces with higher

degree contact points as future work. There are two reasons for this.

First, mathematical description of such surfaces is more complex and best

done separately, once the framework for surfaces with boundaries with non-

degenerate corners is established.

Second, it appears that this type of features in most cases is best modeled

59



using degenerate configurations of control points rather than special subdivi-

sion rules. In the paper we consider only the behavior of surfaces for generic

configuarations of control points.

It is clear, however, that higher-order boundary singularities are useful in

applications, a simple example being a surface filling a gap between a cylinder

and a tangent plane.

Once we exclude the higher-order contact cases, we can use a more construc-

tive equivalent definition of surfaces with piecewise Ck-continuous boundary

with nondegenerate corners. We use four charts for all possible types of points of

the surface. In addition to the diskD and the halfdiskQ2, we use a quarter of the

disk Q1 and three quarters of the disk Q3. The domains Qi i = 1, 3 are defined

as follows: Q1 = {(x, y)|y ≥ 0 and x ≥ 0}∩D, Q3 = {(x, y)|y ≥ 0 or x ≥ 0}∩D.

Now we can give an alternative definition of a Ck-continuous surface with

piecewise smooth boundary with nondegenerate corners:

Definition 4. Consider a surface (M, f) where M is a topological space, and

f is a map f : M → Rp. The surface (M, f) is called Ck-continuous with

piecewise Ck-continuous boundary with non-degenerate corners if for

any x there is a neighborhood Ux and a regular Ck-continuous parameterization

of f(Ux) over one of the domains Qi, i = 1, . . . 3, or over the disk D. In the

first case, we call the point x a boundary point, in the second case an interior

point. We distinguish two main types of boundary points: if Ux is diffeomorphic

to Q2, the boundary point is called smooth; othwise it is called a corner. There

are 2 types of corners:

• convex corners (Ux is diffeomorphic to Q1);

• concave corners (Ux is diffeomorphic to Q3);
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For brevity, we will also use the term Ck-continuous surface with piecewise-

smooth boundary.

The equivalence of Definitions 4 and 3 with degenerate corners excluded

is straightforward to show using the well known facts about existence of the

extensions of functions defined on Lipschitz domains to the plane.

Surfaces satisfying Definition 4 can be used to model a large variety of fea-

tures; for example, by joining the surfaces along boundary lines, we can obtain

surfaces with creases. However, in addition to boundary cusps, a number of use-

ful features such as cones cannot be modeled, unless degenerate configurations

of control points are used.

4.2.2 Tangent Plane Continuity and C1-continuity

As we will see in Section 4.3, analysis of subdivision focuses on the behavior

of surfaces which are known to be at least C1-continuous in a neighborhood of

a point, but nothing is known about the behavior at the point. In this case,

it is convenient to split the analysis into several steps, the first being tangent

plane continuity. In the definition below, we use ∧ to denote the exterior

product (vector product for p = 3) and [·]+ to denote normalization of a vector.

Definition 5. Let D be the unit disk in the plane. Suppose a surface (M, f) in

a neighborhood of a point x ∈ M is parameterized by h : U → Rp, where U is a

subset of the unit disk D containing 0, which is regular everywhere except 0, and

h(0) = f(x). Let π(y) = [∂1h ∧ ∂2h]+. where ∂1h and ∂2h are derivatives with

respect to the coordinates in the plane of the disk D. The surface is tangent

plane continuous at x if the limit limy→0 π(y) exists.

For an interior point x for which the surface is known to be C1-continuous
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in a neighborhood of the point x excluding x, the surface is C1-continuous at

x if and only if it is tangent plane continuous and the projection of the surface

into the tangent plane is injective ([106], Proposition 1.2). The proof of this

proposition does not assume that the surface is defined on an open neighborhood

of x. C1 continuity for an interior point x is inferred from existence and C1

continuity of two indepenent derivatives of reparameterization of the surface

over the tangent plane. This fact alone is not sufficient to guarantee that the

surface has piecewise continuous bounary with nondegenerate corners: we need

to impose an additional condition on the boundary curve. We will say that the

boundary of (M, f) has a nondegenerate corner at x if there is a neighborhood

Ux such that f(Ux) ∩ f(∂M) admits a parameterization by two C1-continuous

curves γi : (0, 1] → Rp, i = 1, 2, such that γ1(1) = γ2(1) = f(x), and the

tangents to the curves are different at the common endpoint x.

Proposition 1. Suppose a surface (M, f) is C1-continuous with C1-continuous

boundary in a neighborhood Ux of a boundary point x excluding x. The surface

is C1-continuous at x with piecewise C1-continuous boundary if and only if it is

1. tangent plane continuous,

2. the projection of the surface into the tangent plane is injective,

3. the boundary either has a nondegenerate corner at x or is C1-continuous

at x.

Proof. Necessity of these conditions is straightforward. Most of the proof of

sufficiency coincides with the proof of Proposition 1.2 from [106]: if we assume

only that the surface is tangent plane continuous and the projection into the

tangent plane is injective, we can show that the derivatives in two independent
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directions of π, the inverse of a projection of the surface into the tangent plane,

exist and are continuous at point x.

It remains to be shown that the surface is C1-diffeomorphic to one of the

domains Qi, i = 1, 2, 3.

As the boundary curves γi are C1-continuous, and their tangents are in the

tangent plane to the surface at all points, their projections Pγi into the tangent

plane at x are also C1-continuous. At the point x the tangents to the curves are

in the tangent plane at x, and coincide with the tangents to the projections. By

construction, the domain of π, the image of the projection of the surface into the

tangent plane, is homeomorphic to a halfdisk. We have shown that the image of

the boundary diameter of the halfdisk is a C1-continuous or C1-continuous with

a nondegenerate corner at x. The neighborhood Ux can be chosen in such a way

that Pf(∂Ux \ ∂M), the image of the part of the boundary of Ux which is not

the boundary of M , is a semicircle centered at x and intersects the curves Pγi

only at a single point each. (We omit the somewhat tedious but straightforward

proof of this fact.)

Thus, our surface can be parameterized in a neighborhood of x over a planar

domain Pf(Ux) which is a subset of an open disk DPf(x) bounded by two C1

curve segments connecting the center Pf(x) to to the boundary. Let l1 and l2

be the rays along tangent directions to γ1 and γ2 at x (possibly collinear). Then

for sufficiently small radius of the neighborhood, we can assume that orthogonal

projections of γi to li is injective. Note that l1 ∩ l2 split the disk DPf(x) into

two parts D1 and D2; either both parts are half-disks, or one part is convex and

the other concave. Now we can directly construct a C1-diffeomorphism of the

domain Pf(Ux) to one of the domains D1 and D2. For example, in the simplest

case of l1 and l2 being collinear, we can use a coordinate system (s, t) in which l1
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and l2 form the s axis, and γ1 and γ2 form a graph of a function γ(s). Assuming

that the disk DPf(x) has radius 1 the formula

(s, t) →
(
s,
√
1− s2

t− γ(s)√
(1− s2)− γ(s)

)

defines the desired diffeomorphism.

We have shown that the surface has a parameterization g over one of the

domains Qi i = 1, 2, 3 in the neighborhood of x, which has C1-continuous deriva-

tives everywhere on Qi with nowhere degenerate Jacobian.

This proposition provides a general strategy for establishing C1-continuity

of surfaces, which is particularly convenient for subdivision surfaces. Moreover,

as we shall see, in most cases of practical importance we can infer the injectivity

of the projection from the other two conditions, so only local tests need to be

performed.

4.3 Subdivision Schemes on Complexes with

Boundary

In this section we summarize the main definitions and facts about subdivision

on complexes that we use; more details for the case of surfaces without bound-

aries can be found in [106, 104]. The changes that have to be made to make the

constructions work for the boundary case are relatively small. We restrict the

presentation to the case of schemes for triangle meshes to avoid making the no-

tation excessively complex. However, the results equally apply to quadrilateral

schemes; only minor changes in notation are necessary.
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Simplicial complexes. Subdivision surfaces are naturally defined as func-

tions on two-dimensional polygonal complexes. A simplicial complex K is a set

of vertices, edges and planar simple polygons (faces) in RN , such that for any

face its edges are in K, and for any edge, its vertices are in K. We assume

that there are no isolated vertices or edges. |K| denotes the union of faces of

the complex regarded as a subset of RN with induced metric. We say that two

complexes K1 and K2 are isomorphic if there is a homeomorphism between |K1|
and |K2| that maps vertices to vertices, edges to edges and faces to faces.

A subcomplex of a complex K is a subset of K that is a complex. A 1-

neighborhood N1(v,K) of a vertex v in a complex K is the subcomplex formed

by all faces that have v as a vertex. The m-neighborhood of a vertex v is

defined recursively as a union of all 1-neighborhoods of vertices in the (m− 1)-

neighborhood of v. We omit K in the notation for neighborhoods when it is

clear what complex we refer to.

Recall that a link of a vertex is the set of edges of N1(v,K) that do not

contain v. We consider only complexes with all vertices having links that are

connected simple polygonal lines, open or closed. If the link of a vertex is an

open polygonal line, this vertex is a boundary vertex, otherwise it is an internal

vertex.

In the analysis of schemes for surfaces without boundary the regular complex

R and k-regular complexes Rk are are commonly used [106]. We are primarily

interested in schemes that work on quadrilateral and triangle meshes, and we

consider k-regular complexes with all faces being identical triangles or quads;

however, similar complexes can be defined for the remaining regular tiling, with

all faces being hexagons, and more generally for any Laves tiling. For schemes

acting on meshes with boundary we use regular and k-regular complexes with
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boundary. A regular complex with boundary is isomorphic to a regular tiling of

the upper half-plane.A k-regular complex Rα
k with apex angle α is isomorphic to

the regular tiling of a sector with apex angle α, consisting of identical polygons,

with all internal vertices of equal valence and all vertices on the boundary of

equal valence, excluding the vertex C at the apex which has valence k + 1. For

triangle meshes, this valence of regular interior vertices is six, and for boundary

vertices it is three.

Note that the complex is called k-regular, when the number of faces sharing

the vertex C is k. In the case of complexes without boundary these numbers

are equal, but for complexes with boundary the number of edges sharing C is

k + 1.

Tagged complexes. The vertices, edges or faces of a complex can be assigned

tags or, more formally, a map can be defined from the sets of vertices, edges

or faces to a finite set of tags. These tags can be used to choose a type of

subdivision rules applied at a vertex. In this paper, we use tags in a very

limited way: specifically, a boundary vertex can be tagged as a convex or concave

corner, or a smooth boundary vertex. However, as is discussed below, the tags

can be used to create creases in the interior of meshes and for other purposes.

Subdivision on tagged complexes merits a separate detailed consideration in a

future paper.

Isomorphisms of tagged complexes with identical tag sets can be defined as

isomorphisms of complexes which preserve tags, i.e. if a vertex has a tag τ its

image also has a tag τ .
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Subdivision of simplicial complexes. We can construct a new complex

D(K) from a complex K by subdivision. For a triangle scheme, D(K) is con-

structed by adding a new vertex for each edge of the complex and replacing each

old triangular face with four new triangles. If some faces of the initial complex

are not triangular, they have to be split into triangles first. For a quadrilateral

scheme, D(K) is constructed by adding a vertex for each edge and face, and

replacing each n-gonal face with n quadrilateral faces. Note that k-regular com-

plexes and k-regular complexes with boundary are self-similar, that is, D(Rk)

and Rk, as well as D(Rα
k ) and Rα

k , are isomorphic.

We use notation Kj for j times subdivided complex Dj(K) and V j for the

set of vertices of Kj. Note that the sets of vertices are nested: V 0 ⊂ V 1 ⊂ . . ..

If a complex is tagged, it is also necessary to define rules for assigning tags

to the new edges, vertices and faces. For our vertex tags, we use a trivial rule:

all newly inserted boundary vertices are tagged as smooth boundary.

Subdivision schemes. Next, we attach values to the vertices of the complex;

in other words, we consider the space of functions V → B, where B is a vector

space over R. The range B is typically Rl or Cl for some l. We denote this

space P(V,B), or P(V ), if the choice of B is not important.

A subdivision scheme for any function pj(v) on vertices V j of the complex

Kj computes a function pj+1(v) on the vertices of the subdivided complex

D(K) = K1. More formally, a subdivision scheme is a collection of opera-

tors S[K] defined for every complex K, mapping P(K) to P(K1). We consider

only subdivision schemes that are linear; that is, the operators S[K] are lin-

ear functions on P(K). In this case the subdivision operators are defined by

equations
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p1(v) =
∑
w∈V

avwp
0(w)

for all v ∈ V 1. The coefficients avw may depend on K.

We restrict our attention to subdivision schemes which are finitely sup-

ported, locally invariant with respect to a set of isomorphisms of tagged com-

plexes and affinely invariant.

A subdivision scheme is finitely supported if there is an integer M such that

avw �= 0 only if w ∈ NM(v,K) for any complex K (note that the neighborhood

is taken in the complex Kj+1). We call the minimal possible M the support size

of the scheme.

We assume our schemes to be locally defined and invariant with respect to

isomorphisms of tagged complexes.

Together these two requirements can be defined as follows: there is a con-

stant L such that if for two complexes K1 and K2 and two vertices v1 ∈ V1 and

v2 ∈ V2 there is a tag-preserving isomorphism ρ : NL(v1, K1) → NL(v2, K2),

such that ρ(v1) = v2, then av1w = av2ρ(w). In most cases, the localization size

L = M .

The final requirement that we impose on subdivision schemes is affine in-

variance: if T is a linear transformation B → B, then for any v Tpj+1(v) =∑
avwTpj(v). This is equivalent to requiring that all coefficients avw for a fixed

v sum up to 1.

For each vertex v ∈ ∪∞
j=0V

j there is a sequence of values pi(v),. . . where i is

the minimal number such that V i contains v.

Definition 6. A subdivision scheme is called convergent on a complex K, if for

any function p ∈ P(K,B) there is a continuous function f defined on |K| with
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values in B, such that

lim
j→∞

sup
v∈V j

∥∥pj(v)− f(v)
∥∥

2
→ 0

The function f is called the limit function of subdivision.

Notation: f [p] is the limit function generated by subdivision from the initial

values p ∈ P(K).

It is easy to show that if a limit function exists, it is unique. A subdivision

surface is the limit function of subdivision on a complex K with values in R3.

In this case we call the initial values p0(v) the control points of the surface.

Assuming the trivial rule for assigning tags to the newly inserted boundary

vertices, we observe that locally any surface generated by a subdivision scheme

on an arbitrary complex can be thought of as a part of a subdivision surface

defined on a k-regular complex or a k-regular complex with boundary.

Note that this fact alone does not guarantee that it is sufficient to study

subdivision schemes only on k-regular complexes and k-regular complexes with

boundary [106]. If the number of control points of the initial complex for a k-

gonal patch is less than the number of control points of the central k-gonal patch

in the k-regular complex, then only a proper subspace of all possible configura-

tions of control points on the subdivided complexes can be realized. Although

it is unlikely, it is possible that for such complexes almost all configurations of

control points will lead to non-smooth surfaces, while the scheme is smooth on

the k-regular complexes.

Subdivision matrices. Consider the part of a subdivision surface f [y] with

y ∈ U j
1 = |N1(0,R

j
k)|, defined on the domain formed by faces of the subdivided

complex R
j
k adjacent to the central vertex. It is straightforward to show that
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the values at all dyadic points in |N1(0,R
j
k)| can be computed given the initial

values pj(v) for v ∈ NL(0,R
j
k). In particular, the control points pj+1(v) for v ∈

NL(0, R
j+1
k ) can be computed using only control points pj(w) for w ∈ NL(0,R

j
k).

Let p̄j be the vector of control points pj(v) for v ∈ NL(0,R
j
k). Let p+ 1 be the

number of vertices in NL(0,Rk). As the subdivision operators are linear, p̄j+1

can be computed from p̄j using a (p+ 1)× (p+ 1) matrix Sj: p̄j+1 = Sj p̄j

If for some m and for all j > m, Sj = Sm = S, we say that the subdivision

scheme is stationary on the k-regular complex, or simply stationary, and call S

the subdivision matrix of the scheme.

Eigenbasis functions. let λ0 = 1, λi, . . . λJ be different eigenvalues of the

subdivision matrix in nonincreasing order, the condition λ0 > λ1 is necessary

for convergence.

For any λi let J i
j , j = 1 . . . be the complex cyclic subspaces corresponding

to this eigenvalue.

Let nij be the orders of these cyclic subspaces; the order of a cyclic subspace

is equal to its dimension minus one.

Let bijr, r = 0 . . . nij be the complex generalized eigenvectors corresponding

to the cyclic subspace J i
j . The vectors bijr satisfy

Sbijr = λib
i
jr + bij r−1 if r > 0, Sbij0 = λib

i
j0 (4.1)

The complex eigenbasis functions are the limit functions defined by f ijr =

f [bijr] : U1 → C

Any subdivision surface f [p] : U1 → R3 can be represented as
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f [p](y) =
∑
i,j,r

βijrf
i
jr(y) (4.2)

where βijr ∈ C3, and if bijr = bklt, βijr = βklt, where the bar denotes complex

conjugation.

One can show using the definition of limit functions of subdivision and (4.3)

that the eigenbasis functions satisfy the following set of scaling relations:

f ijr(y/2) = λif
i
jr(y) + f ij r−1(y) if r > 0, f ij0(y/2) = λif

i
j0(y) (4.3)

Real eigenbasis functions. As we consider real surfaces, it is often conve-

nient to use real Jordan normal form of the matrix rather than the complex

Jordan normal form. For any pair of the complex-conjugate eigenvalues λi, λk,

we can choose the complex cyclic subspaces in such a way that they can be

arranged into pairs J i
j , J

k
j , and bijr = bkjr for all j and r. Then we can intro-

duce a single real subspace for each pair, with the basis cijr, c
k
jr, r = 0 . . . nij,

where cijr = �bijr, and ckjr = �bijr. We call such subspaces Jordan subspaces.

Then we can introduce real eigenbasis functions gijr(y) = f ijr(y) for real λi, and

gijr(y) = �f ijr(y), g
k
jr(y) = �f ijr(y) for a pair of complex-conjugate eigenvalues

(λi, λk). For a Jordan subspace corresponding to pairs of complex eigenval-

ues the order is the same as the order of one of the pair of cyclic subspaces

corresponding to it.

Similar to (4.2) we can write for any surface generated by subdivision on U1:

f [p](y) =
∑
i,j,r

αi
jrg

i
jr(y) (4.4)
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Now all coefficients αi
jr are real. Eigenbasis functions corresponding to the

eigenvalue 0 have no effect on tangent plane continuity or Ck-continuity of the

surface at zero. From now on we assume that λi �= 0 for all i.

We can assume that the coordinate system in R3 is always chosen in such

a way that the single component of f [p] corresponding to eigenvalue 1 is zero.

This allows us to reduce the number of terms in (4.4) to p.

4.3.1 Reduction to universal surfaces

In [106] we have shown that for surfaces without boundary the analysis of

smoothness of subdivision can be reduced to analysis of universal surfaces.

Moreover, if a subdivision scheme is C1, almost any surface produced by sub-

division is diffeomorphic to the universal surface. In this section, we introduce

the universal surfaces for neighborhoods of boundary vertices, and show that a

similar reduction can be performed in this case.

This fact is of considerable practical importance for design of subdivision

schemes for surfaces with piecewise-smooth boundary: as we have observed

in Section 4.2, convex and concave corners are not diffeomorphic; therefore, a

convex and a concave corner inR3 cannot be diffeomorphic to the same universal

surface, and cannot be generated by the same subdivision rule.

Universal map. The decomposition (4.4) can be written in vector form. Let

hijr be an orthonormal basis ofRp. Let ψ be
∑

i,j,r g
i
jrh

i
jr; this is a map U1 → Rp.

Let α1, α2, α3 ∈ Rp be the vectors composed of components of coefficients αi
jr

from (4.4) (each of these coefficients is a vector in R3). Then (4.4) can be

rewritten as

f [p](y) =
(
(ψ, α1), (ψ, α2), (ψ, α3)

)
(4.5)
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This equation indicates that all surfaces generated by a subdivision scheme on U1

can be viewed as projections of a single surface in Rp. We call ψ the universal

map, and the surface specified by ψ the universal surface. In [106], it was

demonstrated that the analysis of tangent plane continuity and Ck continuity of

subdivision can be reduced to analysis of the universal surface. Not surprisingly,

we will see that this also holds for subdivision schemes with boundary.

In the chosen basis the matrix S is in the real Jordan normal form. Note

that by definition of S for any a ∈ Rp

(a, ψ(y/2)) = (Sa, ψ(y))

Using the well-known formula for inner products (Su, v) = (u, STv), we get

(x, ψ(y/2)) = (x, STψ(y)), for any x

This means that the scaling relations can be jointly written as

ψ(y/2) = STψ(y) (4.6)

The universal map ψ is only piecewise Ck, even if we assume that subdivision

produces Ck limit function on regular complexes and regular complexes with

boundary: derivatives have discontinuity at the boundaries of polygons of U1.

However, one can easily construct a map κ (see [106]) such that ϕ = ψ ◦ κ−1 is

C1-continuous away from the center.

We will impose the following condition on the subdivision schemes that we

consider: Condition A. For any y ∈ U1

∂1ψ(y) ∧ ∂2ψ(y) �= 0 for all y ∈ U1, y �= 0

This condition holds for all known practical schemes.
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Reduction theorem. Our goal is to relate tangent plane continuity and Ck-

continuity of the universal surface in Rp and tangent plane continuity of the

subdivision scheme. The following theorem holds under our assumptions:

Theorem 2. For a subdivision scheme satisfying Condition A to be tangent

plane continuous on a k-regular complex with boundary, it is necessary and

sufficient that the universal surface be tangent plane continuous; for the sub-

division scheme to be Ck-continuous with p.w. Ck-continuous boundary, it is

necessary and sufficient that the universal surface is Ck-continuous with p.w.

Ck-continuous boundary. Almost all surfaces generated by a subdivision scheme

on a k-regular complex with boundary are locally diffeomorphic to the universal

surface.

Proof. Sufficiency is clear as any surface is a linear projection of the universal

surface. To prove necessity, we use Proposition 1, and show that

• if the universal surface is not tangent plane continuous then a set of sub-

division surfaces of non-zero measure is not tangent plane continuous;

• if the universal surface has non-injective projection into the tangent plane

same is true for a set of subdivision surfaces of non-zero measure;

• if the projection of the universal surface into the tangent plane is not Ck,

same is true for a set of subdivision surfaces of non-zero measure;

• if the boundary of the universal surface is not Ck-continuous, or is not Ck-

continuous with nondegenerate corner, same is true for a set of subdivision

surfaces of non-zero measure.
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The proof of the first three statements coincides with the proof for the surface

without boundary presented in [106].

We only need to consider the fourth statement. By assumption, the bound-

ary of the surface is C1-continuous away from zero. Let the two pieces of the

boundary be γi : (0, 1] → Rp, i = 1, 2, with γ1(1) = γ2(1). We can assume

both pieces to be C1-continuous away from one. Suppose γ1 does not have a

tangent at 1; then there are at least two directions τ1 and τ2 which are lim-

its of sequences of tangent directions to γ1(t) as t approaches 1. There is a

set of three-dimensional subspaces π of measure non-zero in the space of all

three-dimensional subspaces, for which the projections of both vectors τ1 and

τ2 to the subspace are not zero. If we project the universal surface to any of

these subspaces, the boundary curve of the resulting surface will not be tangent

continuous. For curves tangent continuity is equivalent to C1-continuity. For

Ck-continuity the proof for curves is identical to the proof for surfaces. We

conclude that the curves γ1 and γ2 should be Ck-continuous. Similarly, if the

curves are joined with continuity less than k, then almost all curves obtained

by projection into R3 will have the same property. Finally, if the tangents to

the curves coincide, same is true for almost all projections of the curves, which

means that almost all projections do not have a non-degenerate corner.

The following important corollary immediately follows from Theorem 2:

Corollary 3. Almost all surfaces generated by a given Ck-continuous subdivi-

sion scheme on a k-regular complex are diffeomorphic.

Indeed, as any subdivision surface f : Uk → R3 is obtained as a projec-

tion of the universal surface, for almost any choice of projection it defines a

diffeomorphism of the universal surface and f .
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This corollary implies in particular that the same subdivision rule cannot

generate convex and concave corners simultaneously in a stable way, and sep-

arate rules are required for these cases. It should be noted that surfaces with

convex and concave corners can be alternatively produced using standard rules

and degenerate configurations of control points. We believe, however, that

the best approach is to use special rules and not require special constraints on

control points. However, it appears to be more natural to use degenerate config-

urations for producing surfaces with 0 and 2π corners. Analysis of the behavior

of subdivision on degenerate and constrained configurations of control points is

not considered in this paper and remains an open problem.

4.4 Criteria for tangent plane and C1 continu-

ity.

Tangent plane continuity criteria of [106] do not use the fact that only interior

points of a surface are considered. Similarly, C1-continuity criteria use only the

fact that C1-continuity is equivalent to tangent plane continuity and injectiv-

ity of the projection into the tangent plane. Therefore, C1-continuity criteria

also hold for boundary points. We only need to establish the conditions that

guarantee that the boundary curves are C1-continuous, possibly with corners.

We focus on a sufficient condition for C1-continuity ([106] Theorem 3.6 and

Theorem 4.1), which is most relevant for applications. More general necessary

and sufficient conditions (e.g. [106] Theorem 3.5) can be extended in a similar

way.

To state the sufficient condition, we need to define characteristic maps, which
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are commonly used to analyze C1 continuity of subdivision surfaces. We use a

definition somewhat different from the original definition of Reif [86].

Characteristic maps.

Definition 7. The characteristic map Φ : U1 → R2 is defined for a pair of

cyclic subspaces Ja
b , J

c
d of the subdivision matrix as

1. (fa0, fa1) if J
a
b = J c

d, λa is real,

2. (fa0, fc0) if J
a
b �= J c

d, λa, λc are real,

3. (�fa0,�fa0) if λa = λ̄c, b = d.

The domain of a characteristic map is the neighborhood U1, consisting of k

faces of the regular complex; we call these faces segments. We assume that the

subdivision scheme generates C1-continuous limit functions the regular com-

plexes, and the characteristic map is C1-continuous inside each segment and

has continuous one-sided derivatives on the boundary.

Characteristic map satisfies the scaling relation Φ(t/2) = TΦ(t), where T is

one of the matrices

Tscale =


 λa 0

0 λc


 , Tskew =


 λa 1

0 λa


 ,

Trot = |λa|

 cosϕ − sinϕ

sinϕ cosϕ


 ,

where ϕ is the argument of a complex λa.
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Sufficient condition for C1-continuity. The following sufficient condition

is a special case of the condition that was proved in [106]. Although all our

constructions apply in the more general case, we state the only a simplified

version of the criterion to simplify the presentation. This form captures the main

idea of the sufficient condition. This condition generalizes Reif’s condition [86].

Define for any two cyclic subspaces ord
(
J i
j , J

k
l

)
to be nij +nkl , if J

i
j �= Jk

l ; let

ord
(
J i
j , J

i
j

)
= 2nij − 2; note that for nij = 0, this is a negative number, and it

is less than ord for any other pair. This number allows us to determine which

components of the limit surface contribute to the limit normal (see [106, 104]

for details). We say that a pair of cyclic subspaces Ja
b , J

c
d is dominant if for

any other pair J i
j , J

k
l we have either |λaλc| > |λiλk|, or |λaλc| = |λiλk| and

ord (Ja
b , J

c
d) > ord

(
J i
j , J

k
l

)
. Note that the blocks of the dominant pair may

coincide.

Theorem 4. Let bijr be a basis in which a subdivision matrix S has Jordan

normal form. Suppose that there is a dominant pair Ja
b , J c

d. If λaλc positive

real, and the Jacobian of the characteristic map of Ja
b , J c

d has constant sign

everywhere on U1 except zero, then the subdivision scheme is tangent plane

continuous on the k-regular complex.

If the characteristic map is injective, the scheme is C1-continuous.

In the special case when all Jordan blocks are trivial, this condition reduces

to an analog of the Reif’s condition.

Criterion for piecewise C1-continuity of the boundary. Assuming that

the scheme at a boundary vertex satisfies the conditions of Theorem 4, we

establish additional conditions which guarantee that the scheme for almost all
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control meshes generates C1-continuous surfaces with piecewise C1-continuous

boundary with nondegenerate corners.

Define I1, I2 to be two segments of the boundary of the domain of a boundary

characteristic map which with zero as an endpoint.

Theorem 5. Suppose a subdivision scheme satisfies conditions of Theorem 4

for boundary vertices of valence k. Then the scheme is p.w. C1-continuous

with nondegenerate corners for boundary vertices of valence k if and only if the

following conditions are satisfied.

1. λa and λc are positive real.

2. Suppose λa > λc, or a = c and order of Ja
b is greater than order of

J c
d (diagonal scaling matrix, asymmetric scaling). Then the scheme is

boundary C1-continuous if and only if ∂1f1 �= 0 and has the same sign on

I1 and I2 or ∂1f1 ≡ 0 on I1 and I2.

The scheme is a nondegenerate corner scheme, if and only if ∂1f1 �= 0 on

I1 and ∂1f1 ≡ 0 on I2. Same is true if I1 I2 are exchanged.

3. Characteristic map of Suppose Ja
c = J b

d (scaling matrix is a Jordan block

of size 2), and ∂f1 does not vanish on I1 and I2. Then the scheme is

boundary C1-continuous. Nondegenerate corners cannot be generated by

a scheme of this type.

4. Suppose a = c and order of Ja
b is equal to the order of J c

d (diagonal scaling

matrix, symmetric scaling). The boundary id C1-continuous if and only if

there is a nontrivial linear combination α1∂1f1 + α2∂2f2 identically van-

ishing on I1 and I2, and any other independent linear combination has the
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same sign on I1 and I2. The scheme is a corner scheme if and only if

there is a linear combination α1∂1f1 + α2∂2f2 identically vanishing on I1

and a different linear combination β1∂1f1 + β2∂2f2 identically vanishing

on I2 with [α1, α2] and [β1, β2] linearly independent.

Proof. For each of the boundary segments defined on I1 and I2 we need to show

that the limit of the tangent exists at the common endpoint. If these limits

coincide then the boundary curve of the universal surface is C1-continuous; if the

limits have different directions, then the universal surface has a nondegenerate

corner.

First, we observe that by assumption the characteristic map has non-zero

Jacobian on the boundary. This means that one of the components has nonzero

derivative along the boundary ∂1f1(t) �= 0 or ∂1f2(t) �= 0 at any point t ∈ I1∪I2.

Consider the tangent to the boundary of the surface defined by the characteristic

map. It is a two-dimensional vector v(t) = (∂1f1(t), ∂1f2(t)), where t is a point

of I1 or I2.The tangent satisfies the scaling relation of the form v(t/2) = 2Tv(t),

where T is the scaling matrix for the characteristic map. The direction of the

tangent has a limit if and only if T is is either Tscale or Tskew and its eigenvalues

are positive (Lemma 3.1, [106]). As the projection of the universal surface is

arbitrarily well approximated by the characteristic map, or coincides with it

for simple Jordan structure of the subdivision matrix, we conclude that for the

universal surface boundary to have well-defined tangents at zero, the eigenvalues

of the characteristic map have to be positive and real. However, this condition

is not sufficient for existence of tangents.

Diagonal scaling matrix, asymmetric case. In the first case that we con-

sider the dominant cyclic subspace pair Ja
b , J

c
d a �= c (different eigenvalues) or
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a = c, b �= d, nab �= ncd (same eigenvalue, subspaces of different sizes); These two

cases are unified by the fact that the sequences ∂1f1(t1/2
m) and ∂1f2(t2/2

m), for

∂1f1(t1), ∂1f2(t2) �= 0, change at a different rate. This can be easily seen from the

scaling relation. Moreover, the ratio ‖∂1f2(t1/2
m)‖/‖∂1f1(t2/2

m)‖ approaches

zero as m → ∞.

Suppose at some points t1, t2 of I ∂1f1(t1) �= 0 and ∂1f1(t2) = 0. Then

∂2f2(t2) �= 0 and the tangents at points t/2m all point in the direction ±e2,

where e2 is the unit vector along the coordinate axis corresponding to f2.

‖∂1f2(t1/2
m)‖/‖∂1f1(t1/2

m)‖ → 0 as m → ∞, thus, at points t1/2
m the di-

rection of the tangent approaches ±e1. We conclude that there is no limit,

unless ∂1f1 is either nowhere or everywhere nonzero I1. Same applies to I2.

Conversely, if ∂1f1 is nowhere zero, then the limit tangent direction at the cen-

ter is ±e1. If it is zero everywhere, then by assumption about the characteristic

map, ∂1f2 is nowhere zero, and the limit tangent direction is ±e2. The choice

of sign in each case depends on the sign of ∂f1 or ∂f2.

If f1 is not zero and has the same sign on both I1 and I2 then the tangent

is continuous, and the boundary curve is C1-continuous. If it is zero on I1 and

nonzero on I2, then the tangents are not parallel, and the surface defined by the

characteristic map has a corner; this proves the second part of the theorem.

Scaling matrix is a Jordan block of size 2. The second condition of the

theorem applies if the characteristic map components are correspond to a cyclic

subspace of size 2, i.e. satisfy f1(t/2) = λaf1(t) + f2(t). Thus, ∂1f1 ≡ 0 implies

∂1f2 ≡ 0 on I1 or I2. If ∂1f1(t1) = 0 at some point t1 on I1 or I2, then the tangent

at t1/2
m will converge to ±e2 as m → ∞, where e2 is the unit coordinate vector

for the second coordinate. However, ∂f1 has to be nonzero at some other point
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t2, and the tangent converges to ±e1 at t2/2
m. Therefore, if the limit tangent

exists and is equal to ±e1 if and only if ∂1f1 is nowhere zero. Two cases are

possible now: either the limit tangents coincide on I1 and I2 or have opposite

directions. In the latter case we have a degenerate corner, in the former a

C1-continuous boundary.

Diagonal scaling matrix, symmetric case. In the symmetric case, a = b,

c �= d and nab = ncd, the components of the characteristic map correspond to the

subspaces of equal order. This means that the sequences defined above change

at the same rate, and any linear combination α1f1 + α2f2 is also an eigenbasis

function. Suppose f1 and f2 come from different cyclic subspaces of the same

eigenvalue which have the same size. Suppose α1∂1f1 + α2∂1f2 does not van-

ish identically on I1 for any nontrivial choice of α1 and α2. Pick two linearly

independent combinations g1 = α1∂1f1 + ∂1α2f2 and g2 = β1∂1f1 + β2∂1f2

which do not vanish at points t1 and t2 of I1 respectively. Then the vec-

tors ∂1Φ(ti) = [∂1f1(ti), ∂1f2(ti)] are linearly independent and the sequences

∂1Φ(t1/2
m) and ∂1Φ(t2/2

m) converge to different limit directions. Therefore, for

the limit tangents at zero to exist, there should be a nontrivial linear combina-

tion of ∂1f1 and ∂1f2 which vanishes on I1. If α1∂1f1α2∂1f2 is such combination,

it is easy to see that the limit tangent direction is, up to the sign,the direction

of the vector [−α2, α1]. For the boundary to be C1-continuous, the direction

should be the same on two sides. Finally, the tangents on two sides exist and

do not coincide if the vectors (α1, α2) for I1 and I2 are linearly independent.

An interesting corollary of this theorem is that in the symmetric case it

is necessary for p.w. C1-continuity of the boundary that the images of Φ(I1)

and Φ(I2) are straight line segments. Note that this is not necessary if the
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eigenvalues λa and λb are different.

4.4.1 Analysis of Characteristic Maps

To verify conditions of Theorem 4 we need to establish that the characteristic

map is regular and injective, and verify that it has the expected behavior on

the boundary. Typically, analysis of the boundary behavior is relatively easy,

as in most cases the boundary curve is independent from the interior. In this

section we focus on regularity and injectivity of the characteristic map.

Regularity of the characteristic map. Just as in the case of interior points

we we use self-similarity of the characteristic map to verify the regularity con-

dition of Theorem 4: for any t ∈ U1, the Jacobian J [Φ](t/2) = 4λaλb[Φ](t).

It is immediately clear that to prove regularity of the characteristic map it is

sufficient to consider the Jacobian on a single annular portion of U1 as shown in

Figure 4.1. As all vertices of such a ring are either regular or boundary regular,

we can estimate the Jacobian of the characteristic map using tools developed for

analysis of subdivision on regular grids. However, there is a significant differ-

ence from the case of interior vertices: to esatblish regularity on a single ring, in

general, we have to consider subdivision schemes not just on regular meshes but

on regular meshes with boundary, which makes the estimates for the Jacobians

somewhat more complex.

Injectivity of the characteristic map. Even if the Jacobian of a map is

nonzero everywhere, only local injectivity is guaranteed. However, for interior

vertices, self-similarity of the characteristic maps allows one to reduce the injec-

tivity test to computing the index of a closed curve around zero [106]. This is
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Figure 4.1: The k-gon without origin U1 {0} can be decomposed into similar

rings, each two times smaller than the previous ring. The size of the ring is

chosen in such a way that the control set of any ring does not contain the

extraordinary vertex. In this figure the control set is assumed to consist out of

the vertices of the triangles of the ring itself, and of a single layer of vertices

outside the ring.

a relatively simple and fast operation: for example, the index can be computed

counting the number of intersections of the curve with a line. This test cannot

be applied for boundary points, as there are no closed curves around zero.

For boundary points, a different simple test (Theorem 6) suffices, which in all

cases that we have considered is even easier to apply. However, unlike the curve

index test, it does not immediately yield a general computational algorithm.

The characteristic map can be extended using scaling relations to a complete

k-regular complex with boundary. In the following theorem we assume that the

characteristic map is defined on the whole complex |Rα
k |.

Theorem 6. Suppose a characteristic map Φ = (fa, fc) satisfies the following

conditions:

1. the preimage Φ−1(0) contains only one element, 0;
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2. the characteristic map has a Jacobian of constant sign at all points where

it is defined.

3. The boundary of the image of the characteristic map does not intersect

itself;

4. the image of the characteristic map is not the whole plane.

Then this characteristic map is injective.

Proof. As in [105] we can show that the the characteristic map is continuous at

infinity, and if the P is the stereographic projection of the sphere to the plane,

Φ̃ = P−1ΦP is a continuous mapping of a subset D = P−1(|Rα
k |) of the sphere

into the sphere, with poles mapped to poles; Φ̃ is a local homeomorphism away

from poles.

We observe that the points of the boundary of the image Φ̃(D) can be images

only of the boundary of D. Suppose the boundary of the image is not empty; we

show that the image of the boundary curve Φ̃(∂D) coincides with the boundary

of the image ∂
(
Φ̃(D)

)
. Let y1 be a point of the boundary of the image. We

already know that ∂
(
Φ̃(D)

)
⊂ Φ̃(∂D). The image of the boundary has no self

intersections. It is easy to see that the boundary of the domain is a simple closed

Jordan curve, and so is its image Φ̃(∂D). Suppose ∂
(
Φ̃(D)

)
�= Φ̃(∂D). Then

there is a point y on the image of the bounadry Φ̃(∂D) which is an interior point

of Φ̃(D). As Φ̃(∂D) separates the sphere into two linearly connected domains,

we can connect each point in either domain to point y with a continuous curve

which does not intersect Φ̃(D). Thus, any two points on the sphere can be

connected by a continuous curve which does not intersect ∂Φ̃(D). We conclude

that the image Φ̃(D) is the whole sphere. Therefore, either ∂
(
Φ̃(D)

)
= Φ̃(∂D),
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or the image is the whole sphere. The latter option contradicts the last condition

of the theorem. In the former case, If we exclude the poles of the sphere, the

mapping is a local homeomorphism of one simply connected domain to another.

We can easily prove it is a covering: consider an interior point y of the domain,

and the set Φ̃−1(y). Suppose it is infinite. Then it has a limit point, which

cannot be an interior point of D (otherwise, Φ̃ is not a local homeomorphism

at that point). Similarly, it cannot be a boundary point, unless it is one of the

poles. It cannot be the south pole xs for which P (xs) = 0, because then ˜Φ(xs)

has to be y which contradicts the assuption Φ(0) = 0. Similar fact holds for

the opposite pole. We conclude that Φ̃−1(y) is finite for each point. Similar

is true for boundary points away from the poles. Φ̃ is a local homeomorphism

and maps the boundary exactly to the boundary. Let y be a point of the image

away from poles, and let x1, x2, . . . xn be points of Φ̃−1(y). Then for each xi

there is a sufficiently small neighborhood Ui which maps homeomorphically to

a neighborhood of xiinΦ̃(D). Then the inverse image of ∩iΦ̃(Ui) is a finite union

of disjoint diffeomorphic subsets of D. We conclude that Φ̃ is a covering on D

with poles excluded. However, we have observed that the image of D is simply

connected. Therefore, the covering has to be injective. We conclude that the

characteristic map is injective.

4.5 Smoothness criteria

In [106] we have derived general necessary and suficient conditions for tangent

plane continuity and Ck-continuity of subdivision surfaces. The conditions for

tangent plane continuity require practically no modification: we have to exend

the definition of the universal surfaces, characteristic and parameteric maps in a
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straighforward manner to handle the boundary case. e do not need to make any

distinction between the 3 possible cases of boundary vertices (smooth, concave

and convex corners).

Criteria for Ck continuity for boundary vertices are more or less straightfor-

ward extension of the criteria of [106]. The criteria are based on the following

propositions.

Proposition 7. A function f : X → Rp where X = Q1, Q2 is Ck-continuous

and regular if and only if there is an

Theorem 8. For a subdivision surface to be C1-continuous at a vertex v on the

boundary it is sufficient that the characteristic map is regular and injective and

the image of the of the closed boundary under the characteristic map consists

of two C1 segements, joined at the point 0 which do not form a cusp. If the

tangents two the two segments coincide, the vertex is a smooth boundary vertex.

Otherwise, it is a convex or concave corner, dependingon the angle spanned by

the image of the half k-gon under the chaacteristic map.

4.6 Verification of C1-continuity

To apply the criteria we have established for C1-continuity on the boundary to

specific schemes, we need to analyze the eigenstructure of the subdivision matri-

ces and then verify the assumptions of the theorems for suitable characteristic

maps. The first step is the only one that needs to be performed for each scheme

individually. The second step is identical to the process described in [105] and

is identical for all schemes, so we do not describe the details of the computation

here. For the two schemes that we consider additional conditions on the bound-
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ary hold trivially as the boundary rules coincide with B-spline rules. Thus we

only focus on the analysis of the structure of the subdivision matrices which is

in this case is substantially more complex than the analysis for interior rules.

4.6.1 Loop scheme

In this section we describe the structure of the boundary subdivision matrices

for the Loop scheme. Some parts of our analysis are similar to the analysis

performed by Jean Schweitzer [88].

The control mesh for a boundary patch surrounding an extraordinary vertex

is shown in Figure 4.2. There are 3 different types of vertices in the control mesh,

shown in the same figure. A different subdivision mask is used for each type.

There are two masks for the vertices of types 1 and 2, one for boundary vertices

and one for interior vertices. We consider these vertices to have the same type

for notational convenience.

The figure also shows the masks of the rules that we consider. Our family

of schemes includes all schemes satisfying the following conditions:

1. The support for each mask is the same as for the the Loop scheme or for

the cubic B-spline on the boundary;

2. The only masks that are modified are the masks for odd vertices adjacent

to the central vertex, and for the central vertex itself (types 0,1).

3. The masks for interior edge vertices of type 1 are all identical and sym-

metric with respect to the edge connecting the vertex with the central

vertex. The masks for two boundary vertices of type 1 are also identical.
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Figure 4.2: Control mesh for a boundary patch of a Loop subdivision surface

and masks of the subdivision rules. 1. The rule for the odd vertices on the

boundary adjacent to the central vertex (type 1). 2. The rule for the interior

odd vertices adjacent to the central vertex (type 1 ). 3. The rule for the

central vertex (type 0). The rules for vertices of type 2 (interior) and 3 are the

standard Loop rules; the rule for the vertex of type 2 (boundary)is the standard

one-dimensional cubic spline rule.

We assume that all coefficients in the masks are positive. This choice is suffi-

ciently general to construct a variety of schemes; on the other hand, complete

eigenanalysis can be performed for all schemes from this family. We show that

no scheme from this family can produce a rule for a convex corner. There are

reasons to believe that this is true for any scheme with positive coefficients or

small support.

For the specific schemes that we consider the boundaries do not depend on

the control points in the interior. Potentially, the boundary can depend on

the valence of a boundary vertex, this is the case with the scheme presented in

[36]. However, we believe that this is best avoided, and present a set of schemes

for which the boundary rules are simply cubic spline rules, except at vertices

marked as corners, where the interpolation is forced.

89



Subdivision matrix. We assume that k > 1; we will consider the case k =

1 separately. The subdivision matrix for a boundary vertex with k adjacent

triangles has the form shown in Figure 4.3

In block form this matrix can be written as




1−2α α α

1−β β

1−β β

a1 A10 A11

a2 A20 A21
1

8
Ik

1/8 3/4 1/8

1/8 3/4 1/8

a3 A31 A32
1

16
Ik−1




(4.8)

The vectors a1 and a3 have length k − 1, the vector a2 has length k, Ik and

Ik−1 are unit matrices of sizes k and k − 1. Note that the eigenvalues of the

matrix are 1/8 1/16, the eigenvalues of the upper-left 3 × 3 block A00 and the

eigenvalues of the matrix A11. The matrix A11 is tridiagonal, of size k−1×k−1.

The eigenvalues of a00 are A11, and two more eigenvectors that correspond to

eigenvalues β and β − 2α, with the first entry equal to zero.

Following [88], we observe that k− 1× k− 1 tridiagonal symmetric matrices

have the following eigenvectors, independent of the matrix, j = 1 . . . k − 1:

vj = [sin jθk, sin 2jθk, . . . sin (k − 1)jθk] (4.9)

where θk = π/k. Multiplying the matrix A11 by the vectors, we see that the
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


1−2α α α

1−β β

1−β β

ε δ γ δ

ε δ γ δ

· · · ·

ε δ γ δ

ε δ δ γ

1/8 3/8 3/8 1/8

1/8 3/8 3/8 1/8

· · · ·

· · · ·

1/8 3/8 3/8 1/8

1/8 3/8 3/8 1/8

1/8 3/4 1/8

1/8 3/4 1/8

1/16 1/16 5/8 1/16 1/16 1/16 1/16

1/16 1/16 5/8 1/16 1/16 1/16 1/16

· · · · ·

1/16 1/16 5/8 1/16 1/16 1/16 1/16

1/16 1/16 1/16 5/8 1/16 1/16 1/16




(4.7)

Figure 4.3: We use ε to denote 1− 2δ − γ.
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eigenvalues are λj = 2δ cos jθk + γ.

If α �= 0, Out of two remaining eigenvectors, only the eigenvector vβ cor-

responding to β is typically of interest to us. It has the form [0, 8C,−8C,(
βI − A−1

11

)
[C, 0 . . .−C]], where C is a constant, if βI −A11 is nondegenerate.

A more revealing expression for the components can be found if we regard

the eigenvector as a solution to the recurrence

δ
(
vβi−1 + vβi+1

)
+ (γ − λ)vβi = 0, i = 1 . . . k − 2

(the numbering of entries in vβ was chosen to be 0, k, 1, 2, . . . k − 1 to make

the equations uniform equations). In addition, we have an additional condition

vβ0 = −vβk , to ensure that
[
0, v0

β, v
1
β

]
is the eigenvector of A00.

The behavior of the solution of the recurrence depends on the ratio r =

(γ−λ)/δ, assuming δ �= 0 ( otherwise, the matrix is diagonal with all eigenvalues

equal to γ). The additional condition v0
β = −v1

β determines a unique solution

up to a constant multiplier, even if the matrix βI−A11 is degenerate. Solutions

are listed in Table 4.1.

If α = 0, the eigenvalue β has a two-dimensional eigenspace. Two eigenvec-

tors vβ and v′β satisfying conditions vβ0 = 0 and vβk = 0 are shown in Table 4.2,

for the cases when the matrix βI − A11 is not degenerate, i.e. when for all

1 ≤ j ≤ k − 1, r �= 2 cos jθk.

Finally, suppose α = 0 and r = −2 cos(jθk) for some j. In this case β =

γ− δr is an also an eigenvalue of A11, and, therefore, has multiplicity 3. In this

case it has a Jordan block of size 2, and only 2 eigenvectors which can be taken

to be vβj = sin jθk and v′βj = cos jθk, j = 0 . . . k.
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r > 2, k odd (−1)icosh

(
i− k

2

)
θ, r =2 cosh θ

r > 2, k even (−1)isinh

(
i− k

2

)
θ, r =2 cosh θ

r = 2, k odd (−1)i

r = 2, k even (−1)i
(
n− k

2

)
,

− 2 < r < 2 sin

(
i− k

2

)
θ, r =−2 cos θ

r = −2 i− k

2

r < −2 sinh

(
i− k

2

)
θ, r =−2 cosh θ

Table 4.1: The eigenvector corresponding to the eigenvalue β for α �= 0.

r > 2, (−1)i sinh iθ, (−1)i sinh (i− k) θ, r =2 cosh θ

r = 2, (−1)ii, (−1)i(i− k)

− 2 < r < 2 sin iθ, sin (i− k) θ, r =−2 cos θ

r = −2 i, i− k

r < −2 sinh iθ, sinh (i− k) θ, r =−2 cosh θ

Table 4.2: The pair of eigenvectors corresponding to the eigenvalue β for α = 0.
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Summary of the eigenstructure. We have determined that the eigenvalues

of the subdivision matrix are 1,β,β − 2α, 1/8, 1/16, and λj = 2δ cos jθk + γ,

j = 1 . . . k − 1. The eigenvectors corresponding to the eigenvalues λj do not

depend on the matrix and are given by (4.9). The eigenvectors corresponding to

the eigenvalue β depends on the ratio r = (γ−β)/δ; its entries are given by the

formulas in Table 4.1. For α �= 0, there is a single eigenvector. For α = 0, there

is a pair of eigenvectors ( Table 4.2) for the case when β is not an eigenvalue of

A11. If β is an eigenvalue of A11, it has a nontrivial Jordan block of size 2.

The case k = 1. The matrix in this case has eigenvalues β, β − 2α, and a

triple eigenvalue 1/8. The eigenvectors can be trivially computed.

Coefficients for smooth boundary vertices. One possible choice was given

by Hoppe et al. [36] and examined in detail in [88]. In our notation, this choice

corresponds to β = 5/8, α = 1/8, γ = 3/8, δ = 1/8. For extraordinary vertices,

and β = 1/2 for other vertices. Remarkably, the ratio r is −2. The disadvantage

of this choice is that the shape of the boundary curve depends on the valence of

the vertices on the boundary, hence it becomes impossible to join two meshes

continuously along a boundary if extraordinary vertices on two sides do not

match.

If we require the boundary curve to be a cubic spline, β has to be 1/2 and

α has to be 1/8. We have two degrees of freedom left: γ and δ. It turns out

to be sufficient to use only one, and we fix δ at the value corresponding to the

regular valence, i.e. 1/8.

We consider the cases k > 2, k = 2 and k = 1 separately.

Case k > 2. Once α, β and δ are fixed, the eigenvalues of the subdivision matrix
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become 1, β = 1/2, β − 2α = 1/4, 1/8, 1/16, and λj = (1/4) cos jθk + γ.

The tangent vector on the boundary of the surface corresponds to the eigen-

vector of the subdivision matrix with eigenvalue β = 1/2. This vector should

be one of the subdominant eigenvectors. The second subdominant eigenvector

is likely to correspond to the largest of the eigenvalues λj, i.e. to the eigenvalue

λ1 = γ + (1/4) cos θk. In order for the eigenvalue 1/2 to be subdominant, we

choose γ in such a way that |λj| < 1/2 for j > 1, i.e. λ2 < 1/2 and λk−1 > −1/2.

For positive γ, the second condition is satisfied automatically. We also would

like λ1 > β − 2α = 1/4. This leads to the following range for γ:

1

4
(1− cos θk) < γ <

1

2
− 1

4
cos 2θk (4.10)

In this range we also have |λ1| > |λj| for j > 1. There are two choices of γ that

we find particularly interesting: γ = 1/4 and γ = 1/2− 1/4 cos θk.

The first choice, γ = 1/4, is the maximal value of γ independent of k for

which it is in the correct range for all k > 2. Note that in this case r = −2 again.

The second choice, leads to equal subdominant eigenvalues β = λ1 = 1/2. In

this case, r = −2 cos θk, that is, we can choose θ to be θk. The expressions for

the subdominant eigenvectors are v1
j = sin θk and vβj = cos θk, i.e. form a half

of a regular 2k-gon.

In both cases, the characteristic map defined by these eigenvectors is regular.

By convex hull property of subdivision with positive coefficients, the image of the

characteristic map is entirely contained in one half-plane, so the characteristic

map has to be injective.

The choice of γ = 1/2 − 1/4 cos θk, although being slightly more complex,

appears to be more natural. It has the additional advantage of coinciding with
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Figure 4.4: The control mesh for the characteristic map in the case k = 1.

the regular value γ = 3/8 for k = 3.

Case k = 2. In this case, the eigenvalues are 1, 1/2, 1/4, 1/8, 1/16, and λ1 = γ.

Thus, we need to pick 1 > γ > 1/4, to get the same eigenvectors as in the case

k > 2. It is interesting to note however, that the choice of γ = 1/4 also results

in C1 surface, although the behavior of the scheme becomes less desirable.

Case k = 1. The subdominant eigenvalues are 1/2 and 1/4. They define a

configuration of eigenvectors shown in Figure 4.4. The characteristic map is

also regular and injective in this case.

Coefficients for corner vertices. Separate rules have to be defined for cor-

ners. The interpolation conditions for corners require α = 0. Therefore, the

block A00 has a double eigenvalue β. For a corner, the tangent plane is defined

by the two tangents at the non-C1-continuous point of the boundary. Unlike

the case of the smooth boundary points, there is no need to fix all rules on the

boundary – parameter β still can be used to ensure smoothness of the limit

surface. Hence the rules of Hoppe et al. [36] can be used. One can see [88]

that the characteristic map has a convex corner. Therefore, this scheme cannot

produce concave corners. It turns out that in fact no scheme from the class that

we have defined can produce smooth concave corners.
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The explicit knowledge of eigenvectors and the convex hull property allows

us to determine quickly if a scheme can possibly produce convex or concave

corner. If β has multiplicity 3 with Jordan blocks of size 2 and 1 which happens

when it is an eigenvalue of A11, the scheme is likely to be non tangent plane

continuous; we assume that this is not the case. Then the eigenvectors of interest

can be found in Table 4.2 for various values of r = (γ − β)/δ.

It is easy to see that positive values of r are of little interest to us, because

the components of the vectors alternate signs in these cases, and are likely to

produce nonregular characteristic maps. Also, for r ≤ −2 we are guaranteed to

get a convex configuration of control points for the characteristic map. As the

characteristic map interpolates the boundary curve, it cannot have a concave

corner. We conclude that we have to use r from the range (−2, 0). We have

seen that in this case the eigenvectors corresponding to the eigenvalue β can be

taken to be sin iθ, sin (i− k) θ, r = −2 cos θ. The triangular fan generated by

these two vectors spans the angle kθ. This means that the corner is convex if

θ < θk, and concave otherwise. In other words, r = −2 cos θ < −2 cos θk, or

γ < β − 2δ cos θk (4.11)

In addition, we need to ensure that the double eigenvalue β is actually

subdominant. To achieve this, we choose δ and γ large enough so that

2δ cos jθk + γ < β, j = 1 . . . k − 1. As 2δ cos jθk + γ decreases as a function if

j, and we assume that γ > 0, it is sufficient to require that 2δ cos θk + γ < β,

which coincides with the convexity condition. We conclude that for r < 0 the

subdivision scheme can generate only convex smooth corners).

One can show that this is true even if we do not assume that α = 0.

97



In the case k = 1, one can also immediately see that the corner produced by

subdivision is convex.

Coefficients for concave corner vertices. We assume that k > 1. It is

impossible to have stationary subdivision rules for a triangular mesh producing

a concave corner for k = 1. As we have observed, concave corners cannot be

produced simply by changing some of the coefficients using the same stencil.

One can also show that no scheme with positive coefficients can produce inter-

polating smooth concave corners. It is possible to construct rules to produce

C1-continuous surface with concave corners, but negative coefficients and larger

support have to be used.

Our approach to deriving the rules is based on the idea of reduction of the

magnitudes of all eigenvalues, excluding 1 and β = 1/2. It turns out that this

approach leads to a particularly simple rules for subdivision.

For the scheme to produce smooth surfaces at a corner vertex the eigenvec-

tors xβ, x′β of the eigenvalue β = 1/2 should be subdominant. If we choose these

eigenvectors to be xβ = [0, 0, 1, vβ/ sin kθ, . . .], x′β = [0, 0, 1, v′β/ sin kθ . . .] (cf.

Table 4.2), corresponding left eigenvectors are very simple: l = [−1, 0, 1, 0, . . .],

l′ = [−1, 1, 0, 0, . . . 0]. The left eigenvector l0 for the the eigenvalue 1 is

[1, 0, . . . 0]. Consider the following modification of the vector of control points

p̃ = (1− s)p+ s
(
(l0, p)x0 + (l, p)xβ + (l′, p)x′β

)
where x0 is the eigenvector [1, . . . 1] of the eigenvalue 1. Substituting expressions

for the left eigenvectors we get

p̃ = (1− s)p+ s
(
p0x0 +

(
p1

0 − p0
)
xβ +

(
p1
k − p0

)
x′β
)

(4.12)
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The effect of this transformation is to scale all components of p in the eigenbasis

of the subdivision matrix by (1 − s) except those corresponding to the eigen-

values 1 and β. If repeated at each subdivision step, it is equivalent to scaling

all eigenvalues except 1 and β by (1− s).

To simplify the rules, we observe that it is unnecessary to scale multiple

eigenvalues 1/16 and 1/8 of the lower-right blocks of the subdivision matrix.

If we apply the rules (4.12), not to the whole vectors of control points p, but

to a truncated part, modifying only control points of type 1, as a result, the

eigenvalues 1/8 and 1/16 will not change. This observation leads us to the

following choice of rules:

p̃1
i = (1− s)pbi + s

(
p0 +

(
p1

0 − p0
)sin (k − i)θ

sin kθ
+
(
p1

0 − p0
) sin iθ

sin kθ

)
(4.13)

In the matrix form, this transformation can be written as

T =


 M 0

0 I




Multiplying this matrix by the subdivision matrix on the left, we see that the

eigenvalues of the product ST are eigenvalues of the blocks B00M and B11.

By construction. eigenvalues of B00M are 1, 1/2, (1 − s) (2δ cos jθk + γ), j =

1 . . . k − 1. As we have seen before, the eigenvalues of B11 are 1/8 and 1/16.

By choosing the value of s so that (1 − s) (2δ cos θk + γ) < 1/2, we can

ensure that the β = 1/2 is the subdominant eigenvalue. The parameter s can

be viewed as a tension parameter for the corner, which determines how flat the

surface is near the corner.
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Figure 4.5: Control mesh for a boundary patch of a Catmull-Clark subdivision

surface and masks of the subdivision rules. 1. The rule for the boundary odd

edge vertices adjacent to the central vertex (type 1). 2. The rule for the interior

odd edge vertices adjacent to the central vertex (type 1 ). 3. The rule for the

central vertex (type 0). 2. The rule for the odd face vertices adjacent to the

central vertex (type 2 ). The rules for vertices of type 4, 5 and 6 are the standard

Loop rules; the rule for the vertex of type 3 is the standard one-dimensional

cubic spline rule.

4.6.2 Catmull-Clark scheme

The analysis of the eigenstructure of the boundary subdivision matrices becomes

more complex in the case of the Catmull-Clark scheme. Using the Catmull-Clark

scheme as an example, we describe a technique that can be used to analyze

schemes with larger support.

The control mesh for a boundary patch surrounding an extraordinary vertex

is shown in Figure 4.5.

There are 6 different types of vertices in the control mesh, shown in the

same figure. For two types (1 and 3) there are two different masks that are used

for boundary and interior vertices respectively. As we did in the case of the

Loop scheme, we introduce a number of undefined coefficients into the masks
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and find eigenvalues and eigenvectors of the subdivision matrix as functions of

coefficients. The choice of the parameters is guided by the same considerations

as for the Loop scheme.

Various types of boundary behavior (smooth convex corner, smooth bound-

ary) can be obtained by choosing appropriate values of the parameters. Again,

we can show that no scheme from this class can generate surfaces with smooth

concave corners.

Subdivision matrix. Subdivision matrix has somewhat more complex struc-

ture for the Catmull-Clark scheme. The general form is shown in Figure 4.6.

Note that a few of the blocks of the matrix are not symmetric, or even square,

and it is not immediately clear how to diagonalize the matrix.

In the block form, the matrix can be written as




A00

A10
1
8
I2

A20 A21 A22

A30 A31 A32
1
64
Ik




where the diagonal blocks are
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


1−2α α α

1−β β

1−β β

ε1 δ1 γ δ1 δ2 δ2

ε1 δ1 γ δ1 δ2 δ2

· · · · ·
ε1 δ1 δ1 γ δ2 δ2

ε2 η2 η2 η1

ε2 η2 η2 η1

· · · ·
· · · ·
ε2 η2 η2 η1

b1 b2 b1

b1 b2 b1

c2 c1 c3 c1 c2 c2 c2 0 c1 c1

c2 c1 c3 c1 c2 c2 c2 c1 c1

· · · · · · · · ·
c2 c1 c1 c3 c2 c2 c2 c1 c1 0

e1 e2 e1 e2 e1 0 e1

e1 e2 e1 e2 e1 e1

· e2 · · e1 ·
· · e1 · · ·
e1 e1 e2 e2 e1 e1

e1 e1 e2 e2 e1 e1

e1 e1 e2 e2 e1 e1

· e1 · · · ·
· · e2 · e1 ·
e1 e2 e1 e2 e1 0 e1

c1 c2 c2 c3 c1 c1 c2 c2 c1

c1 c2 c2 c3 c1 c1 c2 c2 c1

· c2 · · c1 · · · ·
· · c2 · · c1 · · c1

c1 c2 c2 c3 c1 c1 c2 c2 c1




Figure 4.6: The subdivision matrix for the Catmull-Clark scheme.
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A00 =




1− 2αα α

1− β β

1− β β

ε1 δ1 γ δ1 δ2δ2

ε1 δ1 γ δ1 δ2δ2

· · · · ·
ε1 δ1 δ1 γ δ2δ2

ε2 η2 η2 η1

ε2 η2η2 η1

· · · ·
· · · ·
ε2 η2 η2 η1




A22 =




c2 0 c1 c1

c2 c1 c1

· · ·
c2 c1 c1 0

0 e1

e1 e1

e1 ·
· ·
e1 e1

e1 e1

e1 e1

· ·
e1 ·
0 e1




(4.14)

Note that all eigenvalues of A22 are guaranteed to be less than 1/8 (the sum

of the magnitudes of the entries on any line does not exceed 1/8). Thus, only

the eigenvalues of A00 are of interest to us. Next, we observe that the matrix

A00 itself has two blocks on the diagonal; the first 3× 3 block is identical to the

block that we have considered for the Loop scheme; it has eigenvalues 1, β and

β − 2α. The only remaining block that we have to consider is
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Ā00 =




γ δ1 δ2 δ2

δ1 γ δ1 δ2 δ2

· · · · ·
δ1 γ δ2 δ2

η2 η1

η2 η2 η1

· · ·
· · ·

η2 η1




This matrix acts on control points of types 1 and 2, excluding boundary

control points of type 1.

Transformation of the subdivision matrix. Assume k > 1 (we will con-

sider the case k = 1 separately). The eigenvalues and eigenvectors of Ā00 can be

found directly from the recurrences derived from the subdivision rules. We take

a somewhat different approach, similar to the DFT analysis used for interior

extraordinary vertices. This approach have somewhat greater generality and

potentially can be applied to analyze subdivision schemes with larger supports.

To find the eigenvalues of Ā00, we introduce a new set of control points. We

replace control points p2
i , i = 0 . . . k − 1, with k + 1 control points p̃2

i satisfying

p2
i =

1

2

(
p̃2
i + p̃2

i+1

)
(4.15)

for i = 0 . . . k − 1. Also, let p̃1
i = p1

i . Note that we increase the number of

control points. These equations clearly do not define the new control points
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uniquely. However, it is not relevant for our purposes. In the matrix form, the

relation between the original vector of control points of types 1 and 2 and the

transformed vector p̃ can be written as p = T p̃, where T is a 2k + 1 × 2k + 2

matrix.

In addition, we define the subdivision rules for the new control points. We

choose the rules for p̃ in such a way that the relations 4.15 also hold after the

subdivision rules are applied to p and p̃. Let S̃ be the subdivision matrix for p̃.

Then our choice of rules means that

STp = T S̃p̃

If λ is an eigenvalue of S̃, then S̃p̃λ = λp̃λ where p̃λ is the corresponding

eigenvector, and

ST p̃λ = T S̃p̃λ = λT p̃λ

Therefore, λ is also an eigenvalue of S, unless Tpλ = 0. Note that the nullspace

of T has dimension 1 and and contains the vector p1
i = 0, p̃2

i = (−1)i. Hence

a complete set of eigenvalues and of S can be obtained from eigenvalues and

eigenvectors of S̃ once we exclude the eigenvalue corresponding to this vector,

if it happens to be an eigenvector.

We choose the subdivision rule for p̃2
i as follows:

[S̃p̃]2i = ε2p
0 + 2η2p

1
i + η1p̃

2
i (4.16)

In terms of new control points, the rule for control points of type 1 becomes

[Sp]1i = ε1p
0 + δ1

(
p1
i−1 + p1

i+1

)
+ γp1

i +
δ2

2

(
p̃2
i−1 + 2p̃2

i + p̃2
i+1

)
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The matrix Ā00 is transformed into

Ã00 =




γ δ1
δ2
2

δ2
δ2
2

δ1 γ δ1
δ2
2

δ2
δ2
2

· · · · · ·
δ1 γ δ2

2
δ2

δ2
2

η1

2η2 η1

2η2 η1

· η1

2η2 η1

η1




(4.17)

Note that p̃2
0 and p̃1

k depend on p1
0 and p1

k which are outside this matrix.

Rearranging the entries, we get the matrix




η1

η1

δ2
2

γ δ1 δ2
δ2
2

δ1 γ δ1
δ2
2

δ2
δ2
2

· · · · · ·
δ2 δ1 γ δ2

2
δ2

2η2 η1

2η2 η1

· η1

2η2 η1




which has 4 diagonal or tridiagonal subblocks of size k − 1 × k − 1. This
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matrix has a double eigenvalue η1. The rest of the eigenvalues are eigenvalues

of the matrix A consisting only of the 4 tridiagonal subblocks. We have already

observed that three diagonal matrices have eigenvectors independent from the

entries of the matrix. Denote H the matrix with entries sin ijθk, with θk =

π/k as before, i, j = 1 . . . k − 1. This matrix to some extent has the same

role in the analysis of subdivision matrices of boundary vertices as the DFT

matrix has in the analysis of subdivision matrices of interior vertices. The

transform H is defined as diag (H,H). The inverse of this matrix is H−1 =

diag ((2/k)H, (2/k)H).

HAH−1 =
2

k


 H 0

0 H




 B00 B01

B10 B11




 H 0

0 H




=
2

k


 HB00H HB01H

HB10H HB11H




(4.18)

each block HBijH is a diagonal matrix. Finally, we apply a the following

permutation to the components of the vector:
[
p1

1, p
1
2, . . . p

1
k−1, p̃

2
1, p̃

2
2, . . . p̃

2
k−1

]→[
p1

1, p̃
2
1, p

1
2, p̃

2
2 . . . p

1
k−1, p̃

2
k−1

]
. Let P be the corresponding permutation matrix.

The matrix A is reduced to the block diagonal form

PHAH−1P−1 =




B(1)

B(2)

·
B(k − 1)




(4.19)

where the blocks B(i), i = 1 . . . k − 1, are 2× 2 matrices
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B(i) =


 γ + 2δ1 cos

iπ

k
δ

(
1 + cos

iπ

k

)
2η2 η1


 (4.20)

The explicit expressions for the eigenvalues are not particularly enlightening

in the general case and we omit them here.

Case k = 1. In this case, the eigenvalues and eigenvectors can be computed

directly. The eigenvalues are β, β − 2α, η2, 1/8, 1/16 and 1/64.

Eigenvectors. We start with eigenvectors of the matrix A00. We assume that

η1 �= 0 and δ1 �= 0 and none of the eigenvalues of the blocks B(i) coincide with

η1. In this case, the eigenvectors corresponding to each block B(i) can be taken

to be [0, . . . 0, 1, r, 0, . . . 0], where the only two nonzero entries are in positions

2i− 1 and 2i, r = −2η2/(η1 − λ), and λ is the eigenvalue. Applying the inverse

permutation and transform H, we get eigenvectors of the form [vi, rvi], with vi

being a vector of length k − 1 with entries sin(jθk), j = 1 . . . k − 1. The entries

of the eigenvector of A00 corresponding to p̃2
0 and p̃k are zero. The remaining

possible eigenvalues of A00 are β, β− 2α and η1. Once the eigenvalue is known,

the expressions for the eigenvectors can be found directly from the subdivision

rules. Keeping in mind that for all eigenvectors except the eigenvector of the

eigenvalue 1 p0 = 0, an interior control point of type 1 p1
i and for a control point

of type 2 p2
i from an eigenvector p with eigenvalue λ should satisfy

λp1
i = δ2

(
p1
i−1 + p1

i+1

)
+ δ1

(
p2
i + p2

i−1

) |γ1
i i = 1 . . . k − 1

λp2
i = η2

(
p1
i + p1

i+1

)
+ η1p

2
i i = 0 . . . k − 1

λp1
0 = βp1

0

λp1
k = βp1

k

(4.21)
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For λ �= η1, this leads to the following system of equations for p1
i , i =

1 . . . k − 1,

(
δ2 + δ1

η2

λ− η1

)(
p1
i−1 + pii+1

)
+

(
γ − λ+

2δ1η2

λ− η1

)
p1
i (4.22)

Denote η̃ = δ1η2/δ1. Then, if λ = η1 − η̃1, The equation is reduced to p1
i (γ −

η1 + η̃1 − 2δ2) = 0, which has nontrivial solutions only if (γ− η1 + η̃1 − 2δ2) �= 0.

Now we can find expressions for the eigenvectors. We start with the eigen-

vector of the eigenvalue η1. Two cases are possible:

1. β = η1. Then there are two eigenvectors which both have p1
i = (−1)i,

and for the first one p2
i = (λ− γ + 2δ2)(−1)ii/δ1, and for the second one

p2
i = (λ− γ + 2δ2)(−1)i(i+ 1)/δ1.

2. β �= η1. In this case, p1
i = 0, and p2

i = (−1)i.

If one of the eigenvalues β or β − 2α coincides with η1, its eigenvectors are

described by the same formulas. Suppose β �= η1. Then three cases are possible

for the eigenvector of β.

1. β = η1− η̃1, γ+β−2δ2 = 0. In this case, the eigenvalue β has multiplicity

k + 1, and the components p1
i , i = 0 . . . k can be chosen arbitrarily.

2. β = η1− η̃1, γ+β−2δ2 �= 0. In this case, the eigenvalue β has multiplicity

2, the components p1
i , i = 1 . . . k − 1 are zero, and p1

0, p
1
k can be chosen

arbitrarily.

3. β �= η1 − η̃1, γ + β − 2δ2 �= 0. This is the most useful case. Let

r(λ) =
γ − λ+ 2δ1η2

λ−η1
δ2 + δ1

η2
λ−η1

(4.23)
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then (4.22) reduces to p1
i−1 + p1

i+1 + r(β)p1
i = 0. We have already explored

the possible solutions of these equations in Section 4.6.1. The most useful

range of r(β) is (−2, 0), in which case the eigenvector can be chosen to be

sin ((i− k/2)θ), with r(β) = −2 cos θ.

Finally, for β − 2α there are two possibilities.

1. β − 2α = η1 − η̃1, γ + β − 2α − 2δ2 �= 0. In this case, the eigenvalue β

has multiplicity k − 1, the components p1
i , i = 1 . . . k − 1 can be chosen

arbitrarily, p1
0 = p1

k = 0.

2. β − 2α �= η1 − η̃1, γ + β − 2α− 2δ2 �= 0. This case is similar to the third

case for the eigenvalue β, with r(β) replaced with r(β − 2α).

If α = 0, then in the case β �= η1 − η̃1, γ + β − 2δ2 �= 0, the eigenvalue β has

two eigenvectors that can be chosen to be sin iθ and sin(i− k)θ (see Table 4.1).

Coefficients for smooth boundary vertices. As it was discussed in Sec-

tion 4.6.1, it is desirable to use β = 1/2 and α = 1/8 for smooth boundary

vertices. This choice of coefficients leads to a cubic spline boundary curve. It

is easy to see that we need only a single parameter in this case to ensure C1-

continuity. We choose the parameter γ, using the standard values for all other

parameters: η1 = η2 = 1/4, δ1 = δ2 = 1/16. In this case, the expression for the

eigenvalues λj, λ
′
j simplifies to

λj, λ
′
j =

1

2
η̃ +

1

8
± 1

8

√
16η̃2 − 8η̃ + 1 + 2 (1 + cos jθk) j = 1 . . . k − 1

Note that for any k, j and any 0 < γ < 1, |λj| < λ1 and |λ′
j| < λ1.

From the formulas for the eigenvectors we can tell that it is desirable to have
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subdominant eigenvalues β = 1/2 and λ1. For λ1 to be equal to 1/2, we can take

γ = 3/8− (1/4) cos θk. Note that for the regular case k = 2 we get the standard

value γ = 3/8. In general, for 1/2 to be one of the subdominant eigenvalues, it

is necessary that γ < 3/8− (1/4) cos 2θk. If one wishes to use a single value of

γ for all valences, then the maximal possible choice of γ is 1/8.

Case k = 1. For the regular choices of parameters, the subdominant eigenvalues

are 1/2 1/4, and 1/4 has a Jordan block of size 2. The resulting scheme is C1,

although the normals converge to the limit slower than in other cases due to

the presence of the Jordan block. In this case the parametric map does not

coincide with the characteristic map. The parametric map can be informally

characterized as the map approximating, up to affine invariance, any subdivi-

sion surface generated near the central control point. Typically, it coincides

with the characteristic map, but in the case when one of the subdominant

eigenvalues has a nontrivial Jordan block, these maps can be different. The

tangent vectors are actually determined by the control vectors of the para-

metric map. The control net of the characteristic and parametric maps for

k = 1 and the standard choice of coefficients is shown in Figure 4.7. Assuming

the ordering of components x1 = [p0, p1
0, p

1
1, p

2, p3
0, p

3
1, p

4
0, p

5
0, p

6
0], the eigenvec-

tors defining the maps are x′2 = [0, 1,−1, 0, 2,−2, 1,−1, 0] (eigenvalue 1/2),

x2 = [1, 2, 2, 5, 11, 11, 1, 10, 10, 51/5] (eigenvalue 1/4, generalized eigenvector),

and [0, 0, 0, 1, 0, 0, 2, 2, 4]. The characteristic map is defined by the pair (x1, x2),

the parametric map is defined by the pair (x1, x′2).

Coefficients for convex corner vertices. For the corner vertices we choose

α = 1, β = 1/2. In this case, we have to ensure that the two eigenvectors of the

double eigenvalue β are the subdominant eigenvectors. The necessary condition
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Figure 4.7: The control mesh for the parametric and characteristic maps in the

case k = 1.

for this is λ1 < β. In addition, we have to verify that the resulting corner is

indeed convex. As it was the case for the Loop scheme, if the characteristic map

is regular, for convexity it is sufficient that the control mesh of the characteristic

map has a convex corner at the central vertex. As the subdominant eigenvectors

for the eigenvalue β can be chosen to have components p1
i sin iθ and cos iθ, with

−2 cos θ = r(β) with r(β) defined by (4.23), the condition for convexity is

r < −2 cos θk. As it was the case for the Loop scheme, this condition turns out

to be exactly equivalent to the condition for the eigenvalue β to be subdominant.

We arrive at the same conclusion: no scheme from the class that we have defined

can produce smooth concave corners.

Coefficients for concave corner vertices. To obtain coefficients that would

allow us to generate surfaces with smooth concave corners, we use the same

approach that we used for the Loop scheme: we modify the coefficients in such

a way that all eigenvalues of the matrix A00 except 1 and β = 1/2 are scaled by

constant s < 1. Recall that the idea is to use subdivision rules with γ chosen in

such a way that the eigenvectors of the eigenvalue β = 1/2 produce a concave
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configuration, and use additional modification of control points to ensure that

β are subdominant. The additional rules were derived from the expression

p̃ = (1− s)p+ s
(
(l0, p)x0 + (l, p)xβ + (l′, p)x′β

)
where x0 is the eigenvector [1, . . . 1] of the eigenvalue 1, xβ and x′β are eigen-

vectors of the eigenvalue β, and l0, l and l′ are corresponding left eigenvectors.

The left eigenvectors l, l and l′ are exactly the same as for the Loop scheme:

l = [−1, 0, 1, 0, . . .], l′ = [−1, 1, 0, 0, . . . 0] and l = [1, 0, . . . 0]. The eigenvectors

xβ and x′β coincide with the eigenvectors for the Loop scheme when restricted

to the vertices of type 1. To obtain the desired scaling of eigenvalues we also

need to modify vertices of type 2. The components of the eigenvectors corre-

sponding to the vertices of type 2 are easily computed using subdivision rules

(cf. (4.21)):

p2
i =

η2

λ− η1

(
p1
i + p1

i+1

)
=
(
p1
i + p1

i+1

)
Therefore, the analog of rules (4.13) for the Catmull-Clark subdivision is

[Sp]1i = (1− s)p1
i + s

(
p0 +

(
p1

0 − p0
)sin (k − i)θ

sin kθ
+
(
p1
k − p0

) sin iθ

sin kθ

)

[Sp]2i = (1− s)p2
i + s

(
p0 +

(
p1

0 − p0
)sin (k − i)θ + sin (k − i+ 1)θ

sin kθ

+
(
p1
k − p0

)sin iθ + sin (i+ 1)θ

sin kθ

)
(4.24)

4.7 Conclusions

The type of subdivision schemes considered in this paper is quite broad, and

covers most important cases. It is important to note that our analysis applies
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not only to surfaces with piecewise smotoh boundary, but to a more general class

of surfaces with creases, which can be obtained by stiching together patches with

p.w. smooth boundary. However, as it was pointed out in Section 4.2 a few

useful cases are left unconsidered. Practically most important are the cases of

higher-order corners (cusps), cone-like surface features. Because of diversity of

cases, we believe that step-by-step approach is appropriate for analysis.

One important aspect of theory, only briefly covered in Section 4.6 is the

general analysis of the convergence rates for the regular case. This analysis and

its applications to interpolating subdivision will be considered in greater detail

in a future paper.

Finally, while the techniques described in the paper allow one to analyze a

broad class of schemes in a uniform manner, substantial effort is still required

for each scheme, including apporximation of the characteristic map. An ideal

smoothness criterion would link the subdivision scheme coefficients and smooth-

ness of the limit surfaces more directly.
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Chapter 5

Boolean Operations On

Multiresolution Surfaces

The contents of this chapter were published in the SIGGRAPH 2001 Conference

Proceedings [5]. It presents algorithms for performing approximate boolean

operations on solids bounded by piecewise-smooth multiresolution subdivision

surfaces introduced in Chapters 2. The result of the operation is represented in

the same form, which is one of the major advantages of the proposed approach.

5.1 Introduction

Boolean operations are a natural way of constructing complex solid objects

out of simpler primitives. This approach is very common in computer-aided

geometric design, as many artificial objects can be constructed out of simple

parts, such as cylinders, rectangular blocks, and spheres.

Few computational representations of solids are closed with respect to

boolean operations. This means that the result of a boolean operation can-
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not be represented precisely in most cases. One way to avoid this problem is

to use a tree of boolean operations as the object representation and implement

various algorithms directly on such representation. This approach is referred

to as constructive solid geometry (CSG) [34]. However, for many applications

CSG is not the most efficient or appropriate. Most commonly, boundary rep-

resentations (B-Reps) of solids are used and boolean operations have to be

implemented in B-Rep framework. Such an implementation is quite difficult for

higher-order B-Reps as it requires intersecting parametric surfaces, separating

them into pieces and constructing new surfaces out of these pieces.

Existing systems typically treat a B-Rep as a collection of trimmed spline

patches, sharing the boundaries. The boundaries of individual patches are of-

ten matched only approximately, as it is difficult to ensure that two trimming

curves in different parametric domains are identical in space. Each intersection

operation leads to increasingly complex and difficult to handle trimming curves.

It is difficult to apply smooth deformations to the resulting models, since special

care must be taken to avoid cracks, etc. An elementary operation required for

this surface representation is to intersect two trimmed NURBS patches, which is

a difficult problem by itself. As a result, boolean operations are often slow and

not fully robust, although excellent results are achieved by some solid modeling

cores.

For many computer graphics and animation applications such high-precision

and complex techniques are not essential. The most difficult cases such as the

case of two identical, but slightly rotated intersecting objects are often of little

relevance. At the same time, keeping the calculations efficient and robust is

important, as well as ensuring the complexity of the model is manageable.

In this paper, we present a new approach to computing the result of boolean
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Figure 5.1: “Venus with drawers” (after S. Daĺı) is created using union, inter-

section and difference operations.

operations on B-Rep solids. We represent the boundary surfaces as piecewise-

smooth subdivision surfaces, described in greater detail in Section 5.2. For

brevity, we are going to call such solids free-form solids. The advantage of

this representation is its simplicity: the surface is defined by a control mesh

with tagged creases and corners, as well as sets of details added at finer levels.

Continuity and smoothness of the surface are guaranteed automatically. Rep-

resentations of this type are increasingly popular, as they considerably simplify

modeling complex free-form objects.

While the problem we are solving is similar to the traditional CAGD prob-

lem, our work is primarily motivated by requirements of applications in com-

puter animation and conceptual design. We aim at fast and robust approximate

calculations; it should be possible to mix boolean operations with free-form

deformations and other types of surface manipulation.

These goals radically change the set of problems that we need to solve:
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surface-surface intersection, usually regarded as the central part of an imple-

mentation of boolean operations, becomes secondary. In particular, we relax the

requirement that the topology of the intersection curve is computed precisely.

Our primary emphasis is on algorithms for construction of the approximating

multiresolution surface for the result. Rather than adjusting our representa-

tion to the needs of boolean operations, e.g. by introducing trimming curves,

we develop algorithms that allow us to keep the representation of the results

simple.

Our main contributions include:

• an algorithm for constructing a coarse control mesh for the result of a boolean

operation;

• algorithms for defining and optimizing a parameterization of one multiresolu-

tion subdivision surface (result) over another (one of the original surfaces).

• a hierarchical fitting procedure for a surface parameterized over another sur-

face.

5.1.1 Previous Work

Our work is most closely related to, and was done in parallel with, the work of

Litke et al. [59] on trimming subdivision surfaces. A few similar issues have to

be addressed in both cases. In particular, the connectivity of the control mesh

for the trimmed subdivision surface has to be changed, and the new surface

needs to be parameterized over the original. However, for trimming there is no

need to merge the control meshes of two separate surfaces, and in our case there

is no need to use a special combined subdivision scheme [52] for representing the

intersection curve. [59] does not optimize parameterizations and surface fitting

118



issues are resolved differently.

Linsen [57] has developed a technique for blending of subdivision surfaces.

While [57] presents a construction of a combined control mesh for a blend of

two subdivision surfaces, the issues of matching the geometry of the intersection

curve and approximation of the result of boolean operations are not considered.

Multiresolution subdivision surfaces were introduced in [61, 84, 108]; we use

piecewise smooth subdivision rules of [6] to be able to represent sharp features on

multiresolution surfaces. Fitting of subdivision surfaces is discussed in [33, 36].

Our work can be contrasted with the work of Rappoport et al. [85] and

earlier work of Goldfeather et al. [28] and Rossignac [24] on efficient rendering

CSG objects. While boolean operations on CSG objects are straightforward,

substantial effort is required to render them and interactive rendering is possible

only for simple objects. On the other hand, it is much more difficult to imple-

ment boolean operations on multiresolution surfaces, but interactive rendering

is straightforward for surfaces of substantial complexity.

Extensive literature exists on solid modeling with B-Reps (surveys can be

found in [1, 87]). The emphasis there is on accuracy and correct and consistent

handling of degenerate cases, issues that we avoid by replacing the requirement

of topological correctness of the result with the weaker requirement of topolog-

ical consistency.

To compute approximate intersection curves we use perturbation techniques

of [92].

The part of our work on parameterization optimization builds on the tech-

niques used in mesh optimization community [25, 27]. Different methods to

solve similar problems were proposed in [64] and [49].
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5.1.2 Overview of the algorithm

We apply a boolean operation (intersection, difference or union) to two free-form

solids bounded by parametric surfaces (Figure 5.2). The details of our surface

representation are discussed in Section 5.2. We assume that each bounding

surface is an orientable closed surface embedded in R3. A surface M of this

type separates the space into a bounded and an unbounded connected volume.

The free-form solid defined by M is the bounded volume.

The main steps of our procedure are illustrated in Figure 5.3.

A B

A∩B A-B B-A A∩B

Figure 5.2: Elementary boolean operations on simple subdivision surfaces.

Step 1. Compute an approximate intersection curve, finding its images in each

of the two parametric domains of the original surfaces.

Step 2. Construct the connectivity of the control mesh for the result, and an

initial parameterization of parts of the resulting surface over the domains of the

original surfaces.

Step 3. Optimize the parameterization of the result over the original domains.

Step 4. Determine geometric positions for the control points of the result using

hierarchical fitting.
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Figure 5.3: Left to right: Two separate surfaces intersected. Images of the

intersection curve in the parametric domains. Parametric domains after cutting.

Parametric domain for the result after optimization. Final result after fitting.

Notation. All quantities with index 1 refer to the first solid, and all quantities

with index 2 refer to the second solid. The parametric domains of the surfaces of

the solids are denoted M1 and M2, the maps defining the surfaces are fi :Mi →
R3 (Figure 5.4). Greek letters are reserved for arbitrary points in the parametric

domains; e.g. α = (u, v, w, i) where i is the triangle index and (u, v, w) are the

barycentric coordinates, u+ v + w = 1.
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Mi domains for original surfaces

fi :Mi → R3 evaluation maps for the original surfaces

c(t) : I → R3 spatial intersection curve

ci(t) : I →Mi images of the intersection curve in the domains of original

surfaces

M ′
i parts of the domains Mi to be combined into a new do-

main

p′i : M
′
i →Mi parameterization of M ′

i over the domain of the original

surface Mi

c′i(t) : I →M ′
i images of the intersection curve in domains M ′

i

M̃ domain for the result formed by merging M ′
i

M̃i subdomains of M̃ parametrized over Mi

p̃i : M̃i →Mi parameterizations of M̃i

c̃(t) : I → M̃ image of the intersection curve in M̃

pj
v control point at a vertex v of a parameter domain at

refinement level j

5.2 Multiresolution Subdivision Surfaces

Before describing the algorithm in greater detail, we briefly review subdivision

surfaces with a special focus on parameterization. Subdivision surfaces are

defined by an initial control mesh. We use a variant of Loop’s subdivision

scheme for triangular meshes with rules for corners and creases [6].

Multiresolution surfaces extend subdivision surfaces by introducing details

at each level. Each time a finer mesh is computed, it is obtained by adding

detail offsets to the subdivided coarser mesh. The process of reconstructing a

122



f1

M1

~
M2

~

M
~

M1’ M2’

c2’(t)
c1’(t)

c1(t) c2(t)

c(t)

 c(t)~

M1 M2

f2

p1 p2

Figure 5.4: Maps used in the algorithm.

surface from the coarse mesh and details is called synthesis. Formally, let S be

the subdivision operator (a matrix mapping control points on a coarser level to

a finer level) let pl be the vector of control points on level l. Given the detail

coefficients dl+1 for the next subdivision level, the rule for computing the control

points on the finer level is pl+1 = Spl + dl+1.

analysis synthesis

smooth

subdivide

coarse level

subdivide

+

4

fine level
details

Figure 5.5: Synthesis and analysis diagrams for multiresolution surfaces.

The inverse process of converting the data specified on a fine resolution level

to the sequence of detail sets and the coarsest level mesh is called analysis.
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For analysis, we need a way of obtaining the coarse mesh from the fine mesh.

This can be done in a number of ways: simple Laplacian smoothing or Taubin’s

smoothing[100], quasi-interpolation [59] or least-squares fitting. The synthesis

and analysis diagrams are shown in Figure 5.5. Figure 5.6 shows smooth surfaces

corresponding to different levels of resolution.

Figure 5.6: Multiresolution surface. Upper row: coarse-to-fine hierarchy of

control meshes. Lower row: corresponding surfaces.

For the purposes of this work, a specific choice of analysis method is irrele-

vant; it is important to note that given a multiresolution mesh represented as

the coarsest mesh and details on finer levels one can reconstruct the surface

uniquely, without knowing what analysis method was used. In the areas on the

surface resulting from a boolean operation where the details need to be recom-

puted we use fitting and quasi-interpolation to obtain the details, as described

in Section 5.5.

Parameterization over the initial control mesh. Suppose the initial con-

trol mesh is a simple polyhedron, i.e., it does not have self-intersections. (We

do not need this assumption, but it simplifies the presentation.) Suppose each

time we apply the subdivision rules to compute the finer control mesh, we also

apply midpoint subdivision to a copy of the initial control polyhedron.
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Note that each control point that we insert in the mesh using subdivision

corresponds to a point in the midpoint-subdivided polyhedron. Another im-

portant fact is that midpoint subdivision does not alter the control polyhedron

regarded as a set of points; and no new vertices inserted by midpoint subdivision

can possibly coincide.

Figure 5.7: Dyadic parameterization: the surface is parameterized over the

coarsest level control mesh.

As we repeatedly subdivide, we get a mapping from a denser and denser

subset of the control polygon to the control points of a finer and finer con-

trol mesh. In the limit, we get a map from the control polygon to the surface

(Figure 5.7). This parameterization permits direct evaluation at arbitrary pa-

rameter position following the approach of [96], which trivially generalizes to

multiresolution setting.

We use the term parametric domain of a surface for the top-level control

mesh when we discuss parameterizations. The triangles of the top-level control

mesh are referred to as parametric triangles. Parametric position of a point

is defined by an index of the triangle in which it is located, together with

barycentric coordinates in the triangle.

We reserve the term vertices for the vertices of triangles in the parametric

domain; the vertices of the three-dimensional control meshes are referred to as

control points. Multiple control points (one for each level l ≥ i) correspond to

the vertices on levels finer than i.
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Linear vertex charts. Quite often, we need to move points continuously in

the parametric domain of a subdivision surface. In this case, it is convenient

to use local charts, i.e. maps of parts of the parametric domain (the control

mesh) to the plane. We use one of the simplest types of charts, piecewise linear

charts. A piecewise linear chart maps one ring of triangles N1(v) around a

vertex v of valence k of the control mesh to a regular k-gon Πk in the plane.

Let g : N1(v) → Πk be the map from the neighborhood of a vertex to the chart.

We can move a point p in one of the triangles in N1(v) anywhere within the

neighborhood: we map it to the plane using the map g, apply a transformation T

in the plane, and map it back to get the new position p′: p′ = g−1◦T ◦g(p). The
point p′ can end up in any triangle of N1(v). We use this simple procedure to

move points in the parametric domains in two cases: intersection curve snapping

(Section 5.4) and parameterization optimization (Section 5.5).

5.3 Intersection Curve

For simplicity, we assume in the exposition that the objects intersect along a

single curve; in the case of multiple intersection curves, all considerations apply

to each curve individually.

The goal of the first step of our algorithm is to find a piecewise-linear ap-

proximation to the intersection curve c : I → R3, where I is an interval, along

with its images in the domains M1 and M2, ci : I →Mi, i = 1, 2.

The problem of intersecting two surfaces has received a lot of attention (e.g.

[4], [37], [89], [46]). The main difficulty is that the topology of the intersection

is unknown in general and may be unstable with respect to small perturbations

of the surfaces.
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However, we observe that the cases where the problem is ill-conditioned are

typically of least interest to us. It is relatively unlikely that it is necessary

to find intersections of two slightly touching objects precisely. Thus, we can

weaken the requirements of our algorithm and only require that it produces

intersections with valid topology rather than correct topology. In other words,

we require that there are small perturbations of the original surfaces such that

the intersection curve has that topology. This allows us to replace the problem

of intersecting smooth surfaces with the problem of intersecting approximating

meshes. Intersecting polyhedra is a substantially simpler problem, although

some effort has to be invested to obtain a fast and robust algorithm.

It should be noted that one can theoretically obtain true intersection topol-

ogy in all cases excluding degenerate (e.g. single point of contact) by using adap-

tive refinement following an approach similar to [44]. However, as the topology

of the intersection curve can be highly complex even for simple surfaces, many

levels of refinement can be required in certain areas, which is contrary to our

goals of efficiency and robustness.

The naive mesh intersection algorithm (intersect each pair of triangles from

two meshes; construct intersection curves as connected sequence of triangle pair

intersections) is inefficient and is not robust. We address these problems with

bounding box hierarchies and control point perturbation.

Bounding box hierarchies. To accelerate the algorithm we use axis-aligned

bounding box hierarchies for each mesh. This appears to be the most efficient

approach for our data. Using tighter bounding volumes, such as nonaligned

bounding boxes or higher order volumes which are useful for collision detection

(see [56]) does not necessarily lead to major improvements in performance for
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computing intersections. Most collision algorithms are optimized for quick ex-

clusion testing, but in our case we are expecting collisions. Using axis-aligned

bounding boxes allows each collision test to be executed quickly, each one lo-

calizing the collision further.

Perturbation method for computing intersections. The polyhedral in-

tersection algorithm relies crucially on the test whether an edge is intersected

by a triangle. Usually, this test is implemented with the above-predicate, which

determines whether a point p0 is above or below the plane of a triangle. Con-

sider a triangle with points p1, p2, p3 ∈ R3. A point is above the triangle if the

determinant det[p0, p1, p2, p3] is positive, where the points pi are represented in

homogeneous form. The evaluation of this determinant is error-prone due to

rounding errors in floating point arithmetic.

One can find a tight bound for the error [94], and if it leads to an undeter-

mined result, resort to exact or arbitrary precision arithmetic [9, 94].

We use a simpler approach based on the perturbation scheme of [92]. In the

case of a determinant sign uncertainty, we abort the intersection computation,

perturb the input points by a small amount (depending on the triangle size)

and perform the test again for all triangles affected by the perturbation. This is

consistent with our goal of finding a consistent approximate intersection reliably

and efficiently. Nevertheless, we note the concern about perturbation schemes in

geometric modeling: parallel edges and other degeneracies are often intentional

design decisions [19, 10, 98, 92].

Specifically we replace each point pi with a linear function pi(ε) = pi + εri,

where ri is a random direction. To determine the sign for the original data, we
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use

lim
ε→0+

sign det[pi(ε), pj(ε), pk(ε), pl(ε)].

We can easily determine the sign of the expression: the determinant is a

cubic polynomial in ε, and the sign is determined by coefficient of the linear

term, if its sign can be computed reliably. If it can not, we choose a different

perturbation, and recompute affected points. A more satisfying way of dealing

with the problem is to use accurate calculations on the determinant.

Figure 5.8 shows some examples of intersections where degenerate cases are

resolved with perturbation.

(a) (b) (c)

Figure 5.8: Degeneracies resolved by perturbation. (a) Two cubes with incident

edges and vertices. (b) Intersection curves. (c) Intersection of two identical

icosahedra. The polyhedra are rendered with perturbation to illustrate the

topologically valid intersection.

5.4 Cutting and Merging Parametric Domains

Once the intersection topology is determined, we proceed to cut the parametric

domains of the original solids and combine them into a single parametric domain

for the resulting object. At this stage we do not determine the positions of the

control points for the new object; nor do we establish a final correspondence

between the points of the new parametric domain and the original domain.

We do assign initial values for this parameterization to provide initialization
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for optimization later. We used three main considerations when choosing the

algorithm for cutting the domains:

• the topology of the cut should be the same as the topology of the intersection

curve;

• as few as possible vertices should be added to the mesh representing the do-

main;

• the valence of the inserted vertices should be kept small.

The last two requirements often conflict with each other. For example, it

might be necessary to split a single edge of the original domain into many

pieces to capture the topology of the intersection curve. If we do not insert any

additional vertices and simply connect all the points on the edge to the opposite

vertex, this will considerably increase its valence. We prevent such situations by

inserting vertices using only quadrisection of a triangle. This operation has to

be followed by bisections of adjacent triangles to keep the mesh of the domain

conforming; as a result, the valence of vertices may still increase, but much more

slowly.

It should be noted that our algorithm intentionally ignores the geometry of

the intersection curve and of the original surfaces to the extent it is possible

without violating the first requirement.

There are two steps in constructing the domain for the result of a boolean

operation: cutting each of the original domainsM1 andM2 using the intersection

curve, and merging relevant parts into a single domain. At the first stage, several

pieces are produced for each of the initial meshes; depending on the operation,

one or the other piece has to be discarded. We assume that the normals of the

surfaces bounding the solids are oriented outwards, which allows us to identify
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the part of the mesh to be discarded locally.

More formally, the output of this algorithm is a new parametric domain M̃ ,

separated into two parts M̃1 and M̃2, such that M̃1∩M̃2 is a single chain of crease

edges forming a piecewise-linear curve c̃(t) along with maps pi, i = 1, 2 from

vertices of M̃i to Mi. Note that on the curve c̃(t) both maps pi are defined.

The additional property that we require is that pi(c̃) is in the image of the

intersection curve ci in the parametric domain Mi, i = 1, 2, and for every point

α on the curve c̃ pi(α) = ci(t), i = 1, 2, for some t. The last condition ensures

that the common curve c̃ of subdomains M1 and M2 is mapped one-to-one to

the spatial intersection curve c(t).

5.4.1 Cutting

The result of cutting is a set of two domains M ′
1 and M ′

2 that are combined

into the resulting domain M̃ in the next stage. Simultaneously, a map p′i is

constructed for each of the domains that maps it to the original domainMi, and

the image of the boundary p′i(∂M
′
i) is contained in the image of the intersection

curve ci(t).

Each of the domains is constructed gradually by refining a copy of one of

the original domainsMi. Initially, M
′
i is just a copy of Mi, and p

′
i maps vertices

of M ′
i to the corresponding vertices of Mi. For the intersection curve we also

maintain two temporary images c′i(t) which define the position of the intersection

curve in the new domains. Again, these images are initialized to copies of ci(t).

The cutting algorithm has two alternating steps: refinement and snapping

(Figure 5.9). The goal of snapping is to identify points of the intersection curve

c′i(t) with nearby vertices of the parametric domain. Snapping is optional, but
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important for obtaining domains of low complexity. The goal of refinement is

to reduce the size of triangles to simplify the shape of the intersection of the

curve c′i(t).

(a) (b) (c) (d)

Figure 5.9: Refinement and snapping. (a) and (b) Refinement steps. (c) Curve

in one of the domains M̃i, i=1,2. (d) Snapping the curve to vertices.

Refinement. A triangle containing a part of the intersection curve (a curve

triangle) is refined if the curve intersects the triangle boundary more than twice,

does not intersect it at all, or intersects it twice but on the same side. We call

such a triangle bad. When a triangle is refined, the maps p′i are assigned values

in the domain Mi for new vertices using midpoint subdivision of barycentric

coordinates in the corresponding triangle of Mi. On each refinement step the

positions of the images of the intersection curve c′i in the new domain M ′
i are

recomputed by converting the barycentric coordinates in the parent triangle to

the coordinates in the new triangles.

Figure 5.10: Left: Before snapping, all parameter values for curve vertices are

mapped to chart; Right: After snapping, all chart coordinates are mapped back

to triangles and barycentric coordinates for a new parameterization of the center

vertex.
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Snapping. We snap the curve c′i to a vertex of M ′
i if there is a point α on

the curve for which one of the barycentric coordinates is larger than a snapping

constant in the range 0 to 1. For most of the organic surfaces we used a snap-

ping constant of 0.8, snapping to the curve if one of its sample’s barycentric

coordinates was 0.8 or greater. For the more mechanical shapes we effectively

turned off snapping by setting this constant to 1.0, creating a closer match to

the curve at the cost of a finer triangulation.

Snapping moves the curve to the vertex in two steps (Figure 5.10). First,

we move the image of the vertex in the vertex chart gv(v) to the image of the

curve gv(c
′
i(t)); a piecewise linear map r maps the k-gon Πk to itself, with the

point gv(v) mapped to a point g(α) on the curve. Then we apply the inverse

transformation r−1 to each point of the curve to move it inside Πk. Finally, we

apply the inverse of the parametric map gv to obtain new positions of the curve

points in the parametric domain Mi. As a result, the point α of the curve c′i

is mapped to v, and the curve is continuously shifted in the domain. Snapping

may produce new bad triangles, forcing us to refine again. The complete cutting

algorithm is given by the following pseudo-code.

Algorithm Snap and Refine

do

foreach triangle vertex v on the curve

find closest curve point α to v

snap v to α if possible

if there are bad triangles

refine bad triangles
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while there are bad triangles

Upon termination, one can easily find a sequence of edges which is topolog-

ically equivalent to the intersection curve: one simply has to split the triangles

intersected by the curve in two (Figure 5.11). The values in the intersection

curve images c′i(t) are used to set the initial parametric positions p′i(t) for the

vertices on the edges along which we cut the domain M ′
i .

Once the domain is cut, the part which is not required to construct the result

of the boolean operation is removed. Note that in the resulting domain M ′
i the

parametric positions in Mi of all interior vertices are determined by midpoint

subdivision of barycentric coordinates. Only the positions on the boundary are

shifted towards the image of the intersection curve; this may create folds in the

initial parameterization, which are removed at later stages.

Figure 5.11: Left: curve in the parametric domain. Right: topologically equiv-

alent strip of edges.

The procedure we have described is used for all vertices except for crease

vertices. These vertices are constrained to snap only to the points on c′i(t) which

are also on the same crease.

5.4.2 Merging

Next, the domains M ′
1 and M ′

2 are joined along their boundaries (Figure 5.12).

The output of this stage is the domain M̃ for the result, with the intersection
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curve corresponding to a sequence of crease edges. We describe the algorithm

for a single connected intersection curve to simplify the presentation, but it can

be applied to multiple intersection curves without any changes.

Initially, correspondence between points of the boundaries of the domains

M1 andM2 is specified indirectly: points α1 and α2 on the boundaries ofM1 and

M2 are identical, if p′i(αi) = ci(t) for some t and i = 1, 2, i.e. they correspond to

the same position on the intersection curve. However, it is not true in general

that if α1 is a vertex, corresponding α2 is a vertex.

In order to match the vertices on corresponding boundaries, we will use

similar snapping and refinement steps as before, modifying the domainsM ′
1 and

M ′
2, and the parameterizations p′1 and p′2. If one domain is lacking a boundary

vertex, we can create a new one using refinement. Boundary vertices which

almost coincide can be snapped together.

Figure 5.12: Domain merging. Left: Boundary vertices do not match up. Mid-

dle and Right: Triangle split matching a vertex on the other domain.

The algorithm has two phases and is entirely symmetric for both domains

M ′
1 and M ′

2. The first phase is an iteration where close pairs of unmatched

boundary vertices are snapped together. Suppose the domainM ′
1 has a vertex v1

with p′1(v1) = c1(t1), and the other domain M ′
2 a vertex v2 with p′2(v2) = c2(t2),

and |c(t1)−c(t2)| < ε for a choice of snapping constant ε. Then we adjust p′(v1)
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and p′(v2) so that p′i(vi) = ci((t1 + t2)/2). ε is chosen to be a fraction of the

minimal spatial distance between sequential vertices on the curve taken from

the same side.

The second phase creates new vertices by refinement. Consider a boundary

edge e of M ′
1 that corresponds to an intersection curve segment from t0 to t1.

Assume that this segment contains a boundary vertex of the other domain at

curve parameter t for t0 < t < t1. In this case we split edge e to get a new

vertex v and assign a parametric value p′(v1) to be c1(t). We repeat the steps

until all vertices are matched.

Finally, we are in a situation when the boundaries of M ′
1 and M ′

2 can be

trivially identified, to produce the domain M̃ for the resulting surface. The

subdomains M̃1 and M̃2 are simply images of M ′
1 and M ′

2 in the joined domain,

and parameterizations p̃i over the original domains are given by reassigning

values of p′i on M
′
i to corresponding vertices in M̃ .

During the merging process, we also take care to mark the intersection as a

crease, and mark as corner vertices any vertex formed by the intersection of a

crease with the intersection curve. We further mark concave and convex sectors

for subdivision rules of [6] based on the angle of a sector on the new surface in

the limit, evaluated on the original surfaces.

5.5 Parameter Optimization

The snapping and merging steps guarantee that every vertex of the newly con-

structed domain M̃ can be located in one of the original domains M1 and M2.

This allows us to evaluate the corresponding surface positions for any point α

in M̃ as fi(pi(α)) for i = 1 or 2. However, the maps pi are not one-to-one and
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can introduce substantial distortion into the surface shape.

As the next step of our algorithm, we optimize the parameterizations p̃i of

M̃i. No new maps or domains are created. This step has two goals:

• ensure that the parameterization is one-to-one;

• and that images of the triangles M̃ have aspect ratios not too far from one.

We used two methods to optimize the parameterization, widely used Lapla-

cian smoothing (e.g. [25]) and area-to-perimeter ratio maximization [2], com-

bined with the optimization technique of [27].

The advantage of Laplacian smoothing is that it is relatively easy to eval-

uate and accelerate. However, it is known to produce results with flipped or

extremely thin triangles, especially near boundaries with concave corners. Such

boundaries are common in the meshes produced by taking differences of free-

form solids. The second, slower, method is used to improve the parameterization

and eliminate flipped triangles.

Optimization functionals . We define the distortion measures that we min-

imize for a vertex of a planar mesh, and then explain how we compute these

quantities for a vertex of a parametric domain mapped into another parametric

domain.

Laplacian smoothing minimizes the difference between the position of a ver-

tex q(v) and the barycenter of surrounding vertices:

ELaplace(v) =
∑

w∈N1(v)

‖q(v)− q(w)‖2

To obtain the functional to minimize we simply sum ELaplace(v) over all ver-

tices.
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The second distortion measure that we use is equivalent to area-to-perimeter

ratio, which favors equilateral triangles [2]. Instead of computing the perimeter,

we use the sum of squares of edges, to make it a smooth function of point

positions.

Eap(v) =

− min
[u,v,w]

Area([q(u), q(v), q(w)])

‖q(u)− q(v)‖2 + ‖q(u)− q(w)‖2 + ‖q(v)− q(w)‖2

where [a, b, c] denotes a triangle with vertices a, b, c and [u, v, w] ranges over

the triangles of N1(v). It is easy to show that the minimal value of the functional

is attained for an equilateral triangle. In this case, to obtain the functional we

take the maximal value over all vertices, which amounts to taking the max-

imal value over all triangles. The two distortion measures are compared in

Figure 5.13.

Figure 5.13: Left: Parameter optimization in a single chart. The boundary

of the parameterization has concavities. Upper right: Laplacian smoothing

produces a fold on the boundary (red). Lower right: Area-to-perimeter ratio

optimization punishes for flipped triangles and produces a one-to-one parame-

terization.

Computing the distortion measures in a parametric domain. The sim-

plest approach to compute one of the distortion measures for a vertex v of the
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p~i(v)
p~i(u)

p~i(w)

α

Figure 5.14: Area-to-perimeter ratio optimization. Left: initial ring; the tri-

angle with worst aspect ratio is highlighted. Middle: position p̃i(v) of vertex

v is moved along the dotted line segment towards optimal position α. Right:

the optimal position is marked with star. For this position distortion of two

highlighted triangles is the same.

domain M̃ is to map the positions p̃i(w) of the vertices w of M̃ adjacent to v to

the plane, and evaluate the functional here. As long as the distortion introduced

by the map is small, we can safely use the distortion measure computed in this

way for optimization. Linear charts described in Section 5.2 can be used to map

points to the plane if we assume that all points p̃i(w) involved in computing a

single term in the functional are contained in a single triangle ring of one of the

original domains Mi. In other words, the following condition holds:

Single-ring condition. The parametric image p̃i(N1(v)) of a ring of triangles

centered at a vertex v of M̃i ⊂ M̃ is contained in a ring of triangles N1(w) for

some vertex w.

However, after the initial step (cutting and merging of the original domains)

one cannot guarantee that images of all triangles of M̃ are contained in a single

ring of triangles in one of the domainsMi. Snapping may spread a few triangles

between rings (Figure 5.15). We use adaptive subdivision of positions p̃i of

vertices of M̃ in the parametric domain to refine the mesh M̃ until the condition
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is satisfied.

Subdivision in parametric domain. As the vertices of a triangle of M̃i may

map to different triangles of Mi it is not immediately clear how to subdivide

parametric values at these vertices. We use the following approach:

Suppose v1 and v2 are two vertices in M̃i such that p̃i(v1) and p̃i(v2) are in

different nonadjacent triangles ofMi. Dijkstra’s shortest path algorithm is used

to find the chain of triangles between v1 and v2. The vertex w in M̃i inserted

on the edge connecting v1 v2 is assigned position p̃i(w) which is the center of

the middle triangle on the path, if there is one. We apply subdivision until all

vertices in M̃ satisfy the single-ring condition.

Figure 5.15: Left: Each one-ring is contained within a single chart from original

mesh. Right: The dark one-ring is no longer contained in any chart.

Optimization procedures. A single step of Laplacian smoothing consists

of moving the position p̃i(v) of a vertex v of M̃i to the average of the po-

sitions of surrounding vertices. This can be done using the linear charts as

described above; we move the position of each vertex as far as possible towards

the barycenter without violating the single-ring condition for any of the rings

depending on it.

For the area-to-perimeter ratio, the distortion is minimized by the follow-

ing procedure (Figure 5.14). We pick the triangle [v, w, u] in the ring N1(v)

with maximal distortion and move the position p̃i(v) of the vertex v along the

140



segment connecting the old position with a point α, such that the triangle

[α, p̃i(w), p̃i(u)] is equilateral. We do a search on the segment for the position

that would minimize the area-to-perimeter distortion for the triangle, while

keeping distortion of all other triangles lower, and respecting the single-ring

condition for surrounding triangles (Figure 5.13).

5.6 Fitting

The previous stages of the algorithm yield the domain M̃ for the resulting

surface and parameterizations p̃i of all vertices in subdomains M̃i i = 1, 2 over

the domains of the original surfaces. Furthermore, these parameterizations have

the single-ring property. This allows us to compute the positions inMi not only

for top-level vertices of M̃ , but also for any vertex added to M̃ by subdivision.

For this we only need to be able to assign parametric coordinates to the new

vertices, which we do using linear charts as in Section 5.5.

However, no geometry is computed for the resulting surface. We fix the

parameterizations and regard the new surface and parts of the old surfaces

as functions on the newly constructed domain (Figure 5.16). Our goal is to

compute the positions of control points for an approximation to the result,

avoiding introducing details on fine levels. This is achieved by fitting surfaces

defined by the control points to the original surfaces. The fitting procedure can

be performed adaptively, increasing resolution where necessary. We consider the

simplest version: we fit a subdivision surface with the control mesh obtained

by subdividing M̃ m times, to the original surface. We perform the fit in a

hierarchical top-down manner, to obtain a multiresolution representation in the

process.
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Figure 5.16: Surface fitting: We minimize the difference between the new and

original surfaces.

Observe that we can evaluate the old surface fi at any vertex at any sub-

division level of the result domain M̃ using the composition fi ◦ p̃i. We use a

generalization of Stam’s technique [96] to piecewise smooth subdivision surfaces

to evaluate fi at arbitrary points of the domains Mi, i = 1, 2.

Let Vm be the set of vertices of the M̃ after m subdivision steps. Then the

difference between two surfaces can be measured by the following functional:

∑
i=1,2

∫
Mi

‖fi(p̃i(α))−
∑
v∈Vm

pm
v B

m
v (α)‖2dα

where pv are the control points for the resulting surface on subdivision level

m and Bm
v (α) are the basis functions at vertices of level m. This functional is

quadratic in pm
v . The integrals can be computed explicitly, but we found that

the results are not substantially different from replacing the continuous integrals

with differences of control points n levels below the level being fitted (we use

n = 3). As a result, (5.6) is replaced with a different functional:
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∑
i=1,2

∑
v∈V m+n

‖fi(p̃i(v))−
∑

v∈Vm+n

[Snpm]v‖2

where [Snpm]v is the control point at vertex v obtained as a result of subdividing

control mesh pm n times. In vector notation, the expression above can be written

as
∑

i=1,2

∑
v∈V m+n ‖qn+m − Snpm‖2, with qv = fi(p̃i(v)).

It is possible to show that the relative difference between the continuous and

discrete functionals is bounded and derive accurate bounds using estimates on

the magnitude of subdivision basis functions. The discrete form is a standard

least-squares fit problem, which can be solved by a number of efficient methods

(e.g. conjugate gradient). However, we have found that visually better results

are obtained by imposing additional constraints on movement of the control

points: on level m we allow the points to move only in normal direction to the

surface constructed by the fit on level m − 1. In this way, we obtain a mesh

similar to the normal mesh of [31]. While the accuracy of the fit in the mean

square sense decreases, the visual surface quality improves, as this approach

prevents forming folds and ripples. At this time, we have no formal justification

for imposing such constraints. It should be noted that the area that needs to

be fitted grows when fitting finer levels of the multi-resolution mesh. This area

grows by the size of the subdivision mask on the previous level, but this is not

a large concern since it only adds a layer of vertices around the perimeter while

the number of vertices internal to the optimized area grows exponentially at

each subdivision level.

If high-accuracy approximation of the result is desired, once a good ap-

proximation is achieved by the fit, we switch to quasi-interpolation to compute

further details on the surface ([59]). This is done solely for efficiency.
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A careful examination of (5.6) reveals that it is possible to optimize not only

the positions of the control points pm, but also the parameterizations p̃ to obtain

a better approximation; our optimization of the parametric maps described in

Section 5.5 tends to work in this direction. However, we make no attempt to

optimize (5.6) directly; this is a possible direction for future research.

5.7 Results

We have tested our algorithm on various closed multiresolution surfaces. Fig-

ure 5.2 shows all the operations possible with two objects A and B. Figure 5.22

shows the coarsest level triangulation. Note the low valence of the new vertices

near the curve. Figure 5.1 also used all three boolean operations in its con-

struction. The remaining figures show useful operations possible with boolean

operations on free-form solids.

Figure 5.17: Subtracting a cylinder from the mannequin head.

5.8 Conclusion and Future Work

While our work addresses a classical problem in geometric modeling, our empha-

sis is quite different from most of the work we are familiar with. The algorithms
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Figure 5.18: Union of the head and the body. Left: Original solids. Right: New

solid obtained by union.

that we have developed primarily address the problem of constructing a valid

and usable model for the result of the boolean operation, rather than comput-

ing precisely all geometric objects characterizing the result (i.e. the intersection

curve and parametric images of the intersection curve in the domains of the

objects). Thus our algorithms can be viewed as complimentary to work on

surface-surface intersections. Any accurate algorithm can be used to compute

the intersection curve instead of our approximate algorithm. As future work,

we plan to explore integration of precise surface-surface intersection algorithms

into our framework. The algorithms described in Section 5.5 typically improve

parameterizations. However, even defining rigorously measures of quality of the

parameterization of one surface over another requires additional research. In

Euclidean domains efficient techniques such as multigrid dramatically acceler-

ate convergence of linear methods such as Laplacian smoothing. It is unclear
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Figure 5.19: Modeling with multiresolution surfaces. The earring is assembled

from a sphere and a torus. The ear is pierced with an enlarged version of the

torus. The ear and the pierced ear are represented as multiresolution surfaces.

Figure 5.20: Unions and differences of piecewise-smooth surfaces. The resulting

surfaces have creases and corners.

Figure 5.21: Sequence of difference operations: Subtracting two boxes and a

cylinder from a sphere. The result has convex and concave corners. The subdi-

vision scheme that we use [6] represents these features explicitely.
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how to apply similar techniques to functions with values in parametric domains.

Boolean operations on meshes with significantly different complexity can

result in high valence vertices on the resulting mesh. Any algorithm that signif-

icantly increases the number of regular vertices would result in a better surface.

It appears that we are able to approximate the results of boolean operations

arbitrarily well, assuming that the topology of the intersection curve was re-

solved correctly. However, there is no guarantee that this is the case, and our

algorithms require further analysis.

Our current implementation is not optimized for speed; the time required

for operations is typically short: from real time to about five seconds for objects

with larger control meshes such as the head/cylinder difference. We believe that

for simple objects, boolean operations can be performed instantaneously.
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Figure 5.22: Difference of objects of different scale. Left: input surfaces. The

patches of the box are much larger than the ones of the sphere. Middle: control

mesh for the difference. The patch size changes gradually. Right: resulting

surface.
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Chapter 6

Cut-and-Paste Editing of

Multiresolution Surfaces

The contents of this chapter were published in the SIGGRAPH 2002 Confer-

ence Proceeedings [7]. It describes a set of algorithms based on multiresolution

subdivision surfaces that perform at interactive rates and enable intuitive cut-

and-paste operations. The algorithms allow one to select an arbitrary geometric

feature on one object and transfer it to another object.

6.1 Introduction

Pasting and blending of images are among the most common operations imple-

mented by image manipulation systems. Such operations are a natural way to

build complex images out of individual pieces coming from different sources. For

example, photographs can be easily combined with hand-drawn and computer-

generated images. In contrast, pasting and blending tools are hardly available

for surfaces. Most geometric modeling systems expect the user to manipu-
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late control points of NURBS, individual mesh vertices and polygons, or use

conventional, higher-level operations such as volume deformations and boolean

operations. In an image processing system, vertex and control point manipula-

tion would be equivalent to painting an image pixel-by-pixel. While it may be

useful to have access to such low-level operations in certain cases, most image

manipulations are done using higher-level tools.

In this paper we describe a technique for interactive cut-and-paste editing

of surfaces, an important instance of a natural operation on a surface (see Fig-

ure 6.1 for an example). The algorithms we propose enable a number of useful

design scenarios which are difficult to perform using existing technology. For ex-

ample, in the design of automobile body parts, it is common to work in parallel

on a digital mock-up and on a clay model. Using the cut-and-paste technique,

a designer can paste a logo obtained by 3D scanning onto a digitally-modeled

surface, import features from a library of predefined shapes, or copy parts of a

design from a different project.

The basic idea of pasting is quite simple. The user selects an area of interest

on the source surface. Both the source and the target surfaces are separated

into base and detail, such that the detail surface represents a vector offset over

the base surface. Next, the user specifies a location and an orientation on the

target surface where the source feature is to be pasted and interactively adjusts

the position, orientation, and size of the pasted feature. The main questions we

address in this paper are:

• How to separate a surface into base and detail ?

• How to identify an area on the target surface where the feature should be

pasted and how to establish the necessary mappings between the source
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Figure 6.1: An example of a pasting operation.

and the target ?

• How to implement the process efficiently to allow for interactive pasting

of complex features ?

We use multiresolution subdivision surfaces as our underlying representation

[61, 107]. The actual computer representation is a semi-regular control mesh for

the surface and most operations are performed on this mesh. The associated

limit surface is used for computing quantities such as tangents and normals, as

well as for additional refinement when necessary for antialiasing. This is similar

to pixel representations of images: when images are scaled or rotated, they are

typically assumed to be sampled representations of smoothly varying continuous

images (e.g., obtained by cubic interpolation).

The regular and hierarchical structure of this surface representation makes

it possible to perform operations on detailed surfaces at interactive rates as dis-

cussed in Section 5.2. In many ways, using this representation makes surface

manipulation similar to image manipulation: almost everywhere the connec-
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tivity of the mesh approximating the surface is locally regular. At the same

time, many common problems specific to geometry have to be addressed: the

lack of a common parameterization domain for separate surfaces, the lack of

a unique best parameterization domain for the surfaces, the separation of sur-

face features. While our algorithms can be applied to a broad class of surfaces,

there are limitations on the source and target geometry for which the pasting

paradigm is appropriate (see Section 6.9 for a discussion).

6.2 Previous Work

The concept of surface pasting was introduced in the work of Bartels, Mann

and co-workers in the context of hierarchical splines [3, 13, 16, 62, 101]. We

are using similar ideas, but most of the technical details are different. Most

importantly, we consider more general surface types and we do not assume that

separate detail and base surfaces are given: they need to be extracted from the

input surfaces.

Moving existing features on a mesh was explored by Suzuki et al. [99]. The

advantage of their approach is that no resampling of the repositioned feature is

performed. However, continuous remeshing is required, which limits the com-

plexity of the objects and features that can be handled. The issues of pasting

features between surfaces and the separation into base and detail surfaces are

not considered by these authors.

The task of base/detail separation is similar to the construction of dis-

placed subdivision surfaces [48]. One of the elements of our approach, i.e.,

mesh smoothing to extract a base surface, was described by Kobbelt et al. [42]

in the more general context of arbitrary meshes. An alternative approach was
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proposed by Guskov et al.[30]. We discuss the advantages and disadvantage of

restricting the class of surfaces to semiregular meshes in Section 6.3.2. Part of

our construction of base surfaces is closely related to the work of Kobbelt et al.

on variational subdivision [43, 41]. It also draws upon the work of Polthier et

al. [78, 73].

Parameterization techniques are important in many geometric modeling and

texturing applications and a variety of algorithms have been proposed, including

general parameterization methods [26, 27] for reparameterization (i.e., changing

connectivity to semi-regular) [23, 31, 45, 49] and texture mapping [55, 80, 63].

In [47], Kuriyama and Koneko use local parameterizations to add offsets to

a surface. The work of Pedersen [74, 75] on interactively placing textures on

implicit surfaces is also relevant as it requires dynamic reparameterization of

surface areas similar to pasting.

However, the problem of parameterizing a surface area over a plane with

minimal visual distortion is far from solved. As explained in Section 6.6, until

recently no algorithms combining several crucial properties for our application

were available. We use a variation of the remarkable algorithm by Sheffer and

Sturler [93] which satisfies our requirements.

6.3 Pasting Surfaces

We begin with a formalized description of pasting operations on surfaces. At this

point we discuss continuous surfaces and mappings without considering their

discrete representations. This framework applies to a wide class of manifold

surfaces, ranging from splines to implicit surfaces. Precise descriptions of all

basic mathematical concepts that we use can be found in any standard textbook
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(e.g., [102]).

6.3.1 Formulation of the Problem

For simplicity, we restrict our attention to parts of surfaces parameterized over

planar domains: M ⊂ R2. Furthermore, we assume that these parameteriza-

tions are sufficiently smooth. Given two surfaces (M1, f1) and (M2, f2), where

f1 and f2 are their parameterizations, we would like to paste a feature from one

surface to the other (see Figure 6.1). Such an operation requires separating

each surface into two parts: the base surface and the detail surface. The goal is

to replace the detail part of the second surface with the detail part of the first.

The key question is how to transfer correctly the details from one surface to the

other.

Base and detail surfaces. The base surface b(x) is typically a smoothed

or flattened version of the original surface (we discuss appropriate choices in

Section 6.5). The detail surface d(x) can be defined as f(x) − b(x). However,

to ensure that the offset direction is at least invariant with respect to rigid

transformations of the base, it must be represented in a local frame. The local

frame is a triple of vectors (nb, ∂1b, ∂2b), including the normal and two tangents

(two partial derivatives of the parameterization). It is convenient to think about

these derivatives together as a map Db (differential of b) which maps vectors

in the plane to vectors in the tangent plane of the surface. The detail surface

is thus defined by the triple dn, dt1, dt2, which can also be thought of as a scalar

displacement along the normal dn and a tangential displacement in parametric

coordinates dt = (dt1, dt2). The equation relating the original surface, the base,

and the details can be written as: f(x) = b(x) + Db(x)dt(x) + nb(x)d
n(x),
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where x is a point in the domain.

Surface pasting. With both surfaces separated into base and detail parts,

we can formulate a precise definition of pasting. All quantities with index 1

refer to the source surface from which we extract the details and all quantities

with index 2 refer to the target surface on which the details are pasted.

Suppose the part of the surface we want to paste is defined over G1 ⊂ M1.

Let p be a map from G1 to M2, which defines how the surface is pasted. We

discuss separately how p is chosen (Section 6.6).

The result of a simple pasting operation is a new surface coinciding with f2

outside p(G1), which has the same base as f2 but for which the details are taken

from the source surface:

fpasted = b2 +
(
Db2Dpd

t
1 + nb2d

n
1

) ◦ p−1

where all functions are evaluated at a point x2 ∈ p(G1), and ◦ denotes function

composition.

Note that we use the composition of differentials Db2 ◦ Dp to transform

the tangential component of details. This establishes the natural map between

the local frames on the source and target surfaces. Figure 6.2 illustrates the

different maps involved.

Using this formulation, there are two main choices to be made: the separa-

tion of both source and target surfaces into base and detail and the definition

of a pasting mapping p, identifying the domain G1 with a part of the domain

M2.

The map p has to satisfy two conditions: it has to be one-to-one and it

should minimize distortion of the mapped feature. An important consideration
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Figure 6.2: A diagram of surface maps involved in pasting.

is whether the mapping p from the domain of one surface to the domain of the

other surface is constructed directly or by using an intermediate planar domain.

We favor the latter approach as it considerably simplifies three tasks: making

sure that the mapping is visually smooth, minimizing distortion, and resampling

the source over the target sampling pattern. To explain our choices, we need to

be more specific about the surface representation we are using.

6.3.2 Multiresolution Subdivision Surfaces

The representation that we use was introduced in various forms in [61, 84, 108].

Subdivision defines a smooth surface recursively as the limit of a sequence of

meshes.1 Each finer mesh is obtained from a coarse mesh by using a set of

fixed refinement rules, e.g., Loop [60] or Catmull-Clark [11] subdivision rules.

In our implementation we use Catmull-Clark rules. Multiresolution surfaces

1To be more accurate, we should say that the limit surface is the pointwise limit of a

sequence of piecewise linear functions defined on the initial control mesh.
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extend subdivision surfaces by introducing details at each level. Each time a

finer mesh is computed, it is obtained by adding detail offsets to the subdivided

coarse mesh. If we are given a semi-regular mesh, i.e., a mesh with subdivision

connectivity, we can easily convert it to a multiresolution surface if we define

a smoothing operation to compute vertices on a coarse level from a finer level.

The details are then computed as differences between levels (see Section 6.5).

An aspect of multiresolution surfaces important for modification operations

is that details are represented in local coordinate frames, which are computed

from the coarser level. This is analogous to representing the detail surface in

the frame computed from the base surface.

For our purposes, it is important to interpret the multiresolution surface as

a function on a domain. A multiresolution surface can be naturally viewed as

a function on the initial mesh as shown in Figure 6.3.

Figure 6.3: Natural parameterization of the subdivision surface. Each time we

apply the subdivision rules to compute the finer control mesh we also apply

midpoint subdivision to a copy of the initial control mesh. As we repeatedly

subdivide, we get a mapping from a denser and denser subset of the control

polygon to the control points of a finer and finer control mesh. In the limit we

get a map from the control polygon to the surface.

157



Advantages and disadvantages of the representation. The main reason

behind our choice of representation is efficiency. There are a number of reasons

why semiregular meshes allow for highly efficient algorithms:

• Connectivity information only needs to be stored for the coarsest level.

Geometric data is stored in a regular and space-coherent manner. Both

factors are important for computer architectures for which bad cache be-

havior results in poor performance. In addition, regularly sampled patches

can be rendered very efficiently.

• Our meshes have a built-in natural hierarchy that can be exploited by nu-

merical solvers. These are used, for example, to define a family of smooth

surfaces for base surface selection by hierarchical fitting and for parame-

terization, when an initial approximation of the fine level solution can be

obtained by solving the system on a coarse level, followed by refining the

solution by subdivision.

• Compact representation for smooth surfaces: for example, the initial vase

in Figure 6.1 is completely defined by the initial mesh, and the smooth

surface can be recomputed on the fly. When details are added, additional

refinment is needed only in the region with details.

• Local frames can be computed in a simple, fast, and reliable way, consis-

tently across resolution levels (i.e., refining the mesh for the base surface

does not change the frames computed for the surface at existing vertices).

Our experiments with solvers that take advantage of the regular structure

and generic solvers that use a sparse matrix representation suitable for arbitrary

meshes show that the former yield speedups by a factor of 2 to 4. Furthermore,
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using a hierarchical solver for an arbitrary mesh would require building a hier-

archy by simplification, a step entirely omitted in our construction.

The main disadvantage of representing surfaces using semiregular meshes is

having to convert surfaces represented by arbitrary meshes to this format. For-

tunately, considerably progress has been made in this area [45, 49, 31] and com-

mercial software (e.g., Paraform, Raindrop Geomagic) typically includes such

conversion tools. All of the scanned models used in this paper were converted

to semiregular meshes using Raindrop Geomagic. We believe that, in all cases

when surface data is extensively modified, conversion is the best approach, as

reparameterization is almost inevitable if the surface is texture-mapped. Hoppe

et al. provide a detailed study of the benefits of a conversion to a similar

representation (i.e., the geometric image).

6.3.3 Pasting with an Intermediate Plane

A direct construction of the pasting mapping p is difficult to make efficient.

Visual smoothness and minimization of distortion are typically achieved by

minimizing appropriate functionals. In the case of a direct mapping of the

source region to the target surface domain, the values of the mapping are not

a part of any affine space. Indeed the domain of the surface is a collection of

faces of the coarse-level control mesh, so each point needs to be characterized

as (i, u, v) where i is the face id, and (u, v) are coordinates within the face.

Unless the whole surface can be reparameterized on a plane, there is no simple

way to compute linear combinations of two arbitrary points (e.g., the midpoint

of the interval connecting the points), which makes the application of most

common computational techniques very difficult. Even a simple operation such
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as computing angles of a triangle given three vertices becomes a complicated

task, an important consideration for the angle-based flattening technique we

consider.

To avoid these difficulties, we parameterize the corresponding areas of the

source and target over the plane. The idea is to map each surface onto the plane

as isometrically as possible and then align the two planar parameterizations,

using a linear transformation to compensate for the first-order distortion. In

this case, the pasting map is restricted to a simple class of maps (i.e., linear

transformations), but new parameterizations p1 and p2 are constructed for the

parts of surfaces of interest for every pasting operation.

There is a similarity between the idea of our approach and the method

of Praun et al. [81] for establishing correspondences between different meshes.

In [81] the correspondence is established by reparameterizing each mesh on the

same base domain. Given our disk topology assumption, we can use the plane

as the common domain.

Our approach has two main disadvantages. First, it makes it difficult to

generalize our technique to pasting regions with topology different from that of

a subset of a plane (e.g., pasting all details from one sphere to another). Second,

it may result in higher distortion than a direct mapping from one surface to the

other. The higher is the Gaussian curvature of the base surface, the more likely

it is that additional distortion is introduced. A direct mapping method similar

to the one used in [5] might produce better results in this case, but it would

make pasting of complex surfaces at interactive rates difficult, if at all possible.
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feature selection        base surface        parameterization
feature

target region         source and target          final result
     finding             parameterizations

Figure 6.4: Main steps of the pasting algorithm, row-wise from top left: (a)

selected feature on the source surface, (b) base source surface, (c) source pa-

rameterization onto the plane, (d) target region finding by geodesic walking,

(e) source and target parameterizations superimposed in the plane, (f) source

feature pasted onto the target surface.
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6.4 Overview of the Algorithm

The main steps of our algorithm are illustrated in Figure 6.4:

1. The user marks a region on the source surface and optionally specifies

a spine. A spine of a region is a collection of curves which capture the

general shape of the region. It approximates the medial axis of the region

and it can be used by the system for mapping the source to the target

(see also Figure 6.8).

2. The details are separated from the base for the source surface. The user

interactively selects a base surface from a continuous range interpolating

between a zero level given by a membrane surface and the actual surface

(Section 6.5).

3. The source region is parameterized over the plane (Section 6.6).

4. The boundary of the source region is parameterized by distance and di-

rection from the spine and a covering by disks is computed.

5. The user positions at least one point of the spine on the target, and

specifies an orientation.

6. A target region for pasting is determined on the surface using geodesic

disks (Section 6.7).

7. The target area is mapped to a common plane with the source and the

source is resampled over the target sampling pattern (Section 6.8).

8. The resulting surface is computed by blending the target base surface,

the source surface resampled details, and the target details. The user can
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specify different blending modes.

6.5 Separating Base Surface from Detail

An important step in the pasting process is the definition of which features of

the source surface region constitute details that the user wants to paste over

the target surface, as opposed to the larger-scale surface shape that should be

ignored. Separating the base surface from the details depends on the semantics

of the operation and has to be user-guided. For example, one may want to

extract only the texture-like geometry of the skin on the nose of a head model,

or to paste the entire nose onto a different model. Different choices for base-

detail separation result in different pasting effects (Figure 6.6).

Our approach is to provide a continuum of base surface choices guided by

a single parameter which can be thought of as the flatness of the base surface.

A natural way to obtain a smooth base surface given our multiresolution data

representation is to remove or reduce the multiresolution details present in the

multiresolution hierarchy on the finer levels. The degree to which this approach

works depends on the way the coarser levels were obtained when the hierarchy

was constructed. By comparing several approaches (Taubin’s smoothing, quasi-

interpolation, and fitting), we found that fitting works best for pasting.

Least-Squares Fitting. The fitting procedure minimizes a functional that

measures how well the smooth surface fits the vertices of the original mesh

subdivided to the finest level M . While fitting of subdivision surfaces is not

new (e.g., [58]), there appears to be no detailed description of it in the literature

and we present it here for completeness. The minimization problem for level m
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of the smooth surface hierarchy can be stated as:

min
p

∑
w∈V M

||pM
w − [SM−mpm]w||2 (6.1)

where the minimum is computed over all possible choices of control points pm

for the smooth mesh, V M is the set of vertices of the finest-level mesh, pM are

the corresponding control points, SM−m is the subdivision matrix for M − m
subdivision steps, and []w means that the resulting smooth surface is evalu-

ated at parameter values corresponding to vertices w of the control mesh. The

minimization problem is equivalent to finding solutions for the linear system

ATAx = AT b, with A = SM−m, b = pM and x = pm, and can be solved by using

the Conjugate Gradient method. To apply this method, the only operations

needed aside from linear combinations of vectors and dot products, are matrix-

vector multiplications for the SM−m matrix and its transpose. As the matrix

is obtained by iterative application of the subdivision matrix, there i sno need

to represent or store it explicitly: applying A corresponds to the application of

M −m subdivision steps. Applying AT to a vector can be interpreted in similar

terms. More specifically, as shown in Figure 6.5, the mask for each vertex v

on level m − 1 contains all vertices on level m which are affected by v when

subdivision is performed. If vertex v has coefficient α in the subdivision rule

used to compute the control point for vertex w, then vertex w has coefficient α

in the transpose averaging rule for v.

Once the sequence of levels is computed, a continuum of base surfaces can

be obtained by interpolation as shown in Figure 6.6. The user can select one

interactively by moving a slider.

An alternative approach to fitting is to use the quasi-interpolation approach
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Figure 6.5: The mask for local averaging used for transpose subdivision. Coeffi-

cients αi and βi are the Catmull-Clark vertex rule coefficients for corresponding

vertices. γ = 1 − nα − nβ, where n is the valence of the central vertex and α

and β are the vertex rule coefficients.

of Litke et al.[58]. This approach is somewhat faster, but results in larger errors.

We use the more accurate fitting approach as it does not constitute a bottleneck

in our system.

Boundary constraints. The technique previously described explains how to

produce smoother approximations of the surface globally. This approach is

quite fast as the base surfaces on different levels can be precomputed and only

interpolation is required after that. However, when we separate the feature

from the surface, we need a base surface only near the feature. Even more

importantly, in most cases the details should gradually decay in magnitude as

we approach the boundary of the feature. To adapt the global base surfaces to

our needs, we use the following simple blending approach: the local base surface

is computed as a blend of the source surface and a global base surface. The

region in the interior of the feature is assigned alpha values 0 and all vertices

outside the region are given values 1. Next, relaxation is applied for values in
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  source                               base surface choice

target                    result of  pasting the source feature

Figure 6.6: Depending on the choice of base surface, different scales of shape

details are transferred to the target.

the interior while keeping the values outside constant. The amount of relaxation

is user-controllable and allows to change the way features blend into the target.

The resulting alpha values are used to interpolate between the global base and

the source surface (Figure 6.10).

Minimal base surface. Base surfaces defined by fitting and blending cannot

be flatter in the area of the feature than the base surface obtained by fitting

on the coarsest level. This might be not appropriate for some applications

where it is necessary to retain more of the feature shape (e.g., Figure 6.13).

In such cases, it is best to define the base surface as a smooth, relatively flat

surface that fills the hole remaining after the feature is cut off. To obtain such

a surface, we optimize the membrane energy of the surface inside the feature

curve while constraining its boundary to remain fixed. We use a multigrid-type

approach [43], which is a natural choice in the context of our multiresolution

representation. Similarly, the transition between the feature and the base is
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handled by assigning alpha values. This allows us to extend the range of possible

base surfaces beyond the coarsest-level fitted surface. As a result the user has

a choice of base surfaces varying from the minimal surface spanning the outline

of the feature, all the way to the source surface.

6.6 Parameterization

Once we have separated the details from the base surface, we need to find a map

from the source base surface to the target, to be able to transfer the details. As

it was discussed in Section 6.3.3, we construct the map in two steps. First, we

map the source surface to the plane. Second, we determine the region on the

target surface where the feature will be pasted and we parameterize it onto the

same plane.

Parameterization is needed both for the source and target base surfaces.

The type of surface patches that we need to parameterize is relatively uncom-

mon: while the surface is likely to be quite smooth, the shape of the patch can

be relatively complex. The parameterization we construct should satisfy the

following requirements:

• The parameterization region should not be chosen a priori. The need

for this can be seen from the following simple example: the outline of

a feature selected on the plane base surface can be arbitrarily complex,

however the parameterization should not be different from the surface

itself. Any algorithm that requires a fixed domain is not likely to perform

well in this situation.

• The parameterization should be guaranteed to be one-to-one. As we need
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to resample, for each vertex on the target we need to identify a unique

position on the source. This means that at least the map from the source

to the plane has to be one-to-one.

• The parameterization should minimize a reasonable measure of distor-

tion. Ideally, for developable surfaces it should be an isometry up to a

scale factor. The algorithm that we use does not explicitly minimize a

measure, but it appears to produce results with close to minimal shape

distortion, as discussed below. It tends to produce better results than all

other algorithms that we have tried in situations relevant for us.

Most of the existing parameterization algorithms do not determine the do-

main automatically; it is either determined using a heuristic approach or it has

to be prescribed by the user. The parameterization described in [80] allows for

free boundary evolution, but it requires a vector field defined over the surface

and it does not provide a one-to-one guarantee. Until recently, the algorithms

that guaranteed a one-to-one parameterization required convex domains, like

the many variations of Floater’s algorithm ([26]). We use the algorithm of

Sheffer and Sturler [93] which meets our requirements most closely.

Angle-based flattening. For a mesh, a parameterization is defined by spec-

ifying the positions (parametric coordinates) of all vertices of the mesh in the

plane. Without the loss of generality, we can assume a triangular mesh (we use

quad subdivision surfaces, but each quad can be easily split into two triangles).

The idea of angle-based flattening is to compute the parametric coordinates of

the vertices indirectly: first, all angles are computed using an optimization pro-

cedure, then the planar mesh is reconstructed by fixing the length of one of the
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edges. The reason for computing the angles rather than vertex positions directly

is that the one-to-one condition can be easily enforced and aspect ratios can be

controlled explicitly. The disadvantage is that the reconstruction procedure is

relatively unstable, as positions of vertices depend sequentially on each other.

However, we found that for the relatively small numbers of triangles that we

use (at most thousands), this is never a problem.

Next we describe the formulation of the optimization problem for angles

mostly following [93]. Let t denote a triangle of the mesh, T the set of all

triangles; let v be a vertex and V the set of all vertices in mesh. If v is a vertex

of t then the angle αv
t is the corresponding angle in the triangle t. Let N(v)

be the set of all triangles sharing a vertex v. The target value for angle αv
t is

defined as follows: ϕv
t = 2παv

s/
∑

s∈N(v) α
v
s , i.e., ideally all angles at a vertex

should be rescaled by the same amount, so that their sum is equal to 2π.

The resulting functional is

F (α) =
∑
t,v∈t

wv
t (α

v
t − ϕv

t )
2,

where the weights are chosen to be 1/(ϕv
t )

2.

Minimization of this functional needs to be constrained for the results to

correspond to a valid planar triangulation. The necessary constraints are as

follows: (a) the angles should stay above some minimal value ε; (b) the sum of

all angles at a vertex should be 2π; (c) the sum of all angles of each triangle

should be π; (d) each 1-neighborhood of a vertex should be consistent. This

means that if we reconstruct a neighborhood triangle-by-triangle going around

the vertex, the last edge of the last triangle should coincide with the first edge

of the first triangle as shown in Figure 6.7.

169



t

v

αv
t αt

next(v  )

αt
prev(v  )

t

notation consistency constraint violation

Figure 6.7: The image on the right shows the situation prevented by the con-

straint g4(t) in the parameterization algorithm.

The mathematical expressions for these four constraints are:

g1(v, t) = α
v
t − ε ≥ 0; g2(v) =

∑
t∈N(v)

αv
t − 2π = 0;

g3(t) =
∑
v∈t

αv
t − π = 0

g4(v) = Πt∈N(v)
sinα

prev(t)
t

sinα
next(v)
t

− 1 = 0.

The inequality constraints are best enforced in an iterative procedure for

minimizing the functional by rejecting values that violate the constraints. The

equality constraints are included into the functional by means of Lagrange mul-

tipliers: L(α) = F (α) +
∑

v λ(v)g2(v) +
∑

t µ(t)g3(v) +
∑

v g4(t).

This is a nonlinear optimization problem which is solved using Newton’s

method: xn+1 = xn − H(L)−1∇L, where ∇L and H(L) are the gradient and

the hessian of L, and x is the vector of all angles and Lagrange multipliers. At

each step, we need to solve a linear system to invert H(L). In [93] a direct

solver is used. We observe that the system does not change much from one

iteration of the Newton method to the next. Furthermore, for smooth surfaces

it is likely that the initial guess for the angles is quite close to the solution (e.g.

for the developable surface it is already a solution). This indicates that iterative
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solvers are likely to perform quite well. Although the system is symmetric, it

is not positive definite, and the Conjugate Gradient method cannot be used.

However, the Conjugate Residuals method applies. For fast convergence rates,

preconditioning is required, i.e., an approximate sparse inverse of the matrix

needs to be computed. To avoid an expensive preconditioner computation, we

add a small negative constant equal to the inverse of the number of triangles

on the diagonal which makes it possible to avoid pivoting when calculating

an incomplete factorization (ILU) preconditioner. Our experience was that a

small number of iterations of the solver were sufficient to obtain a reasonable

parameterization.

It should be noted that, while the constraints guarantee that the resulting

mesh is one-to-one locally (no flipped triangles), the boundary of the image

may self-intersect and globally the map is still not one-to-one. A technique for

eliminating such self intersections is described in [93].

6.7 Determining a Target Region

Before pasting can be performed, an area on the target surface corresponding to

the feature has to be identified and parameterized. It is a chicken-and-egg prob-

lem: to determine the region covered by the pasted feature, we need to map it to

the target; however, mapping the feature to the target requires parameterizing

the corresponding part of the target surface over the plane. As parameterizing

the whole target is generally not an option, we use the following approach: we

observe that initially we need to identify only an approximate boundary region

where the feature will fit, rather than to establish a one-to-one mapping of the

interior. Once the region is identified, it can be parameterized over the plane
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and a mapping is computed as the composition of the two parameterizations.

The algorithm that we use for identifying the region proceeds in several

steps: first, we represent the boundary of the source region in a generalized

radial form, constructing line segments (planar geodesics) connecting the spine

to the boundary. Then we map the one-dimensional spine to the target, and

use geodesics on the target to map the boundary points to the target. Finally,

we connect the points on the target and fill in the interior region (Figure 6.8).

The computation of geodesics passing through a point is a central tool in the

algorithm and is discussed in greater detail.

Parameterizing the source boundary. The user has the option to draw a

curve on the surface, possibly with several branches, which serves as the spine

of the feature. It is our main intention to help the system map the feature

to the target surface with the least distortion. If the user does not define a

spine, a single point (the centroid of the boundary of the parameterization) is

automatically selected to serve as the spine.

The following algorithm is used to parameterize the source boundary. First,

the spine is mapped to a curve in the plane by the parameterization. Let

c0, . . . cm−1 be equispaced points on the spine in the parametric domain. The

number of points can be adjusted to trade speed for quality.

For each vertex wj on the boundary of the source parameterization find the

closest point ci. Let ni be the number of points closest to the point ci, dj be

the distance from ci to wj and γj be the angle between the direction from ci

to wi and the spine. If the spine consists of a single point, an arbitrary fixed

direction is used as the direction of the spine.

The boundary of the source region can be characterized by the set of triples
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(ci, dj, γj), where i = 0 . . .m− 1, and j = 0 . . . ni − 1. This collection of triples

can be thought of as a discrete parameterization of the boundary with respect to

the spine generalizing the radial parameterization. In the case of a single-point

spine, this is just the radial parameterization.

Mapping the spine to the target. Mapping the spine to the target is

straightforward: the user specifies an initial position and orientation for a point

on the spine. The other points on the spine are obtained sequentially by walking

as follows. Suppose the positions T (c0) . . . T (ci) are known. If the angle between

the intervals (ci−1, ci) and (ci, ci+1) is βi, then the next point on the spine is

obtained by walking on the target surface at an angle βi to the previous segment

for a distance equal to |ci, ci+1|.

Finding the target region. Once the positions of all points T (c0) . . . T (cm−1)

are found on the target, we find the positions of each boundary point T (wj)

using the corresponding triple (ci, dj, γj). Specifically, we walk starting from ci

along a geodesic direction forming the angle γj on the target for a distance dj

to obtain T (wj).

Once all the points on the boundary are found, they need to be connected.

We do that by using a plane which passes through the two points T (wj) and

T (wj+1) and the normal at one of the points. If both normals happen to be

aligned with the direction between the points, an additional point is inserted

between them by adding a boundary point on the source midway, generating a

radial representation for it, and adding an extra geodesic path.

We traverse the triangles along the intersection of the plane with the sur-

face starting from T (wj) in the direction of T (wj+1). There are three possible
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outcomes: either we reach T (wj+1) (both points are on the same continuous

segment of the plane surface intersection), we return to T (wj), or we reach a

boundary. In the last two cases, we add a new point on the boundary of the

source region and repeat the procedure for each pair of points.

Once all sequential points T (wj) on the target surface are connected, we use

a fill algorithm to mark the complete region.

radial parametrization

selected feature

target region finding

spine parameterization
region mapped  to a target

Figure 6.8: Finding the target region.

It is important to note that the algorithm may produce an area which is

not topologically equivalent to a disk. For example, any large enough region

mapped to a sphere can cover the entire sphere. The algorithm described above

should be followed by a test checking the topology of the resulting area. This

can be done by computing the genus assuming that there is a face attached to

the boundary loop of the region. The genus computed in this way should be

zero, and the region should have exactly one boundary loop. If the test fails,
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pasting at this scale is not possible. The user should decrease the scale for the

pasted feature, or place it at a different location.

Target parameterization. Once the target is determined, it is mapped to

the plane. Generally, we use the same relatively expensive angle-based flat-

tening algorithm for target parameterization each time a pasting operation is

performed. This allows us to achieve maximum flexibility in feature placement

and lowest distortion. While this approach still permits interactive manipula-

tion rates, the frame rate is much better if a larger area of the target can be

parameterized and the feature is moved inside this area. In this case, the most

expensive part, i.e., target area finding and reparameterization is completely

excluded, and only resampling has to be done at most steps.

Geodesic walking. One of the key ingredients of the algorithm for determin-

ing the target region is the algorithm for computing a geodesic emanating from

a given point in a specified direction. While a number of algorithms for this or

similar problems have been proposed [79, 40, 50], our application has specific

requirements.

• We need the algorithm to be fast, as the target region has to be found at

interactive rates. This makes it difficult to use methods based on front

propagation.

• Even more importantly, we need a continuity property. Note that termi-

nation of the algorithm for finding the target region depends on our ability

to make the distance between points T (wj) on the target arbitrarily small

by increasing the density of the points wj on the source boundary. Such
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continuity means that as we decrease the angle between two outgoing

geodesics for a point, the distance between their endpoints can be made

arbitrarily small. It is known however that straightest geodesics on meshes

may violate this condition (“the saddle point problem”).

• Accuracy of the result is of secondary importance, as the mapping pro-

cess is approximate. Also “the swallow tail problem”, i.e., the fact that

geodesics may intersect near an elliptic point, is not relevant for us as we

only determine the the boundary of the region and we do not construct a

one-to-one map.

saddle surface       straightest geodesics

pi

ni
n1

n0

geodesic
construction our geodesics

Figure 6.9: Comparison of straightest geodesics and our geodesics. Note the

empty regions for the straightest geodesics: no matter how densely the directions

are sampled, no geodesic passes through a part of the region.

Our procedure is based on the fact that the geodesic g(t) is always a locally

normal curve, i.e., its second derivative g′′(t) is pointing along the normal to

the surface. By interpolating the normals, we approximate a smooth surface
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with continuously changing normal. The elementary step remains going from

triangle to triangle, but the angles are computed differently.

Suppose we start at a point pi at the edge e0 of a triangle Ti, and v0 and v1

are the vertices of the edge e0. Let n0 and n1 be the normals at the vertices v0

and v1. We compute the normal ni at the point pi as the average of the normals

n0 and n1. Suppose there is an initial direction vector ti defined. The procedure

described next defines the direction vector at any point of the discrete geodesic

to be perpendicular to the normal vector at the point. (If the initial one is not,

we project it to the plane perpendicular to the normal). To obtain the point

pi+1 and the new direction ti+1 in triangle Ti+1 we perform the following steps:

1. Intersect the plane spanned by ni and ti with Ti to get a direction P (ti).

If the plane coincides with the plane of Ti, ti itself is used.

2. Intersect the line along P (ti) in the triangle Ti with its edges to get the

point pi+1. Suppose the intersected edge is e1 with endpoints v1 and v2.

The next triangle Ti+1 is the triangle across the edge e1.

3. Compute the normal ni+1 at pi+1 as average of the normals n1 and n2 at

vertices v1 and v2. Project the direction P (ti) onto the plane perpendicular

to ni+1 to obtain ti+1. If P (ti) is parallel to ni+1, we use the average of the

projections obtained for two small perturbations of position of the point

pi+1.

It can be proven that this procedure satisfies the continuity requirement if

the mesh approximating the surface is smooth enough, i.e., the projection of the

ring of triangles around any vertex onto the plane perpendicular to the normal

is one-to-one.
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6.8 Mapping and Resampling

Once the mappings from the source and target to the plane are established,

their planar images are aligned using the point and orientation correspondences

specified by the user when the target area was chosen. The final step in the

pasting algorithm is resampling and combining the details from the source with

the details and base surface of the target.

For every vertex v of the parameterization of the target which is inside the

parameterization domain of the source, we find the corresponding quad of the

source parameterization. Then u, v coordinates are computed in this quad,

and the source is evaluated. Evaluation can be done in two ways: for fast

resampling, the values of the source at the vertices of the quad are interpolated.

For higher quality, subdivision surface evaluation [96] should be used. This is

similar to using bilinear filters for fast image editing and bi-cubic filtering for a

higher-quality final result.

Adaptive refinement and sampling. The further away the geometry of

the feature is from a displacement map, the less suitable pasting for surface op-

erations is. However, in some cases it is desirable to use the pasting paradigm

to place objects which cannot be reparameterized over the plane without con-

siderable distortion (Figure 6.13 left). In other cases, the resolution of the

source surface is substantially higher than the resolution of the target. In these

cases, uniform sampling of the target is not adequate and a form of adaptivity

is needed. Hybrid meshes [29] offer the maximal degree of flexibility, as it is

possible to perform irregular refinement in some spots and align mesh edges

exactly with pasted feature edges. We use a more conventional approach where
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only regular refinement of individual faces is allowed. However, rather than

quadrisecting individual faces recursively according to a criterion, we estimate

the local density of source samples on target face, and directly estimate the

subdivision level required for a given face, refining faces to that level uniformly.

6.9 Results

A number of models created using our system are shown in Figures 6.11 to 6.13.

Figure 6.11 shows how details from a scanned object are pasted on a simple vase

model. In this case, the object itself serves as the base surface. Similarly, Fig-

ure 6.12 demonstrates how details from a scanned model can be combined with

a different computer model. Figure 6.13 (right) demonstrates how a medium

scale detail can be pasted on a surface while preserving small-scale surface de-

tails. Figure 6.13 (left) also shows examples of feature manipulation on the

surface.

In all cases the operations were performed interactively, but the frame rate

varied greatly depending on the complexity of the feature, the complexity of

the target region, and the sampling density in the target region. If the target

is a simple smooth object, a large area can be parameterized at once without

significant distortion, and no dynamic parameterization is required. Then suf-

ficiently complex models still permit high frame rates. At the same time, if no

large region can be parameterized without distortion, the frame rate varies in

the range 5-0.5 frames per second.

Limitations of the approach . The principal limitations of our approach

include:
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selected feature        initial alpha values    pasting without blending   smooth alpha values    pasting with blending 

Figure 6.10: Blend region computation for eliminating boundary artifacts.

• The algorithm fails to produce a valid surface when the identified target

region is not homeomorphic to a disk. This may occur, for example, if it

completely covers a handle.

• The approach is useful for transferring features from one surface to an-

other when the curvature of the chosen target base surface does not deviate

radically from the curvature of the source base surface at corresponding

points. While the algorithm will produce a valid surface for any situa-

tion when the identified target region has disc topology, when the target

and source base surfaces are radically different the resulting surface may

exhibit distortion of features and self-intersections.

• The resulting surfaces may exhibit geometric aliasing near sharp features

as the sampling pattern of the target is used to resample the source.

Possible straightforward solutions include adaptive refinement near sharp

features which does not eliminate the problem but reduces the scale of

artifacts, and smoothing which eliminates the artifacts at the expense of

detail. A more promising approach is mentioned in Section 6.10.

Except for the first one, all of the above limitations are ”soft” in the sense

that the algorithms we have described still produce a formally valid result.
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Figure 6.11: Combining a feature obtained by scanning a wine bottle with a

displacement map created from a photograph onto a simple vase model.

Figure 6.12: Left: details from a scanned candle pasted on the mannequin head.

Right: features of different scales from other models added to a phone model.

target

logo pasted with target 
      details removed

logo pasted with target
     details preserved

target

source

Figure 6.13: Left: pasting a complex feature (an ear) onto the mannequin head.

Right: blending of source and target details. The object is a scanned rock.
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6.10 Conclusion and Future Work

We have described an approach to surface editing that can be extended in many

ways. One can imagine a variety of blending modes, combinations of pasting

and texture generation, as well as other enhancements. One of the important

advantages of the approach is that the structure of the target mesh is not

changed by pasting (except for possible adaptive refinement). This means that

complexity of the object is not likely to increase quickly each time a feature is

added, as it is the case with boolean operations. This is also a disadvantage, as

pasting features with complex shapes may result in strong mesh distortion.

While applicable to a broad range of surfaces, pasting is primarily intended

for displacement-map-like features. In its current implementation, the further

away a feature is from a displacement map, the more likely self-intersections

are to appear especially when a feature is pasted on a highly curved surface.

We believe that the applicability of the approach can be extended if hierarchal

pasting is used, i.e., the feature is decomposed into details and each level is

pasted onto the previous. In this case, more complex features can be pasted

more robustly.

Many CAD models have sharp creases. While a multiresolution surface can

approximate sharp creases arbitrarily well, the approximate creases are never

perfectly sharp and often exhibit aliasing. Furthermore, using details on all lev-

els to introduce a simple corner is wasteful. The representation can be extended

[8] to introduce such features by tagging some of the edges but without chang-

ing connectivity. Note that the parameterization in this approach (Figure 6.14)

has to conform to the sharp feature. An important future enhancement of our

system is ability to paste sharp features.
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Figure 6.14: Adding a sharp crease to a multiresolution surface without chang-

ing the connectivity.
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