	ASCS DEGREE REQU						
Re	quirement A: 36 credits of ap	proved coursework					
•	21 credits - standard graduate CS classroom-based courses.						
	Course	S	emester	Grade	Credits:		
	Course	S	emester	Grade	Credits:		
	Course	S	emester	Grade	Credits:		
	Course	S	emester	Grade	Credits:		
	Course						
	Course						
	Course						
•	6 credits - standard graduate thesis (no external internshi	ps) Independent study	and master's	s thesis require D	OGS approval.		
	Course	S	emester	Grade	Credits:		
	Course	S	emester	Grade	Credits:		
	and relevant graduate course external internships require Course	DGS approval.		-			
	Course	S	emester	Grade	Credits:		
	Course	S	emester	Grade	Credits:		
	quirement B: A student must t urses:	ake the three foundation	al courses and	l maintain a rolling	g GPA of 2.7 or better in the		
	CSCI-GA 1170-001 Fundar	nental Algorithms Sea	mester	Grade	Credits: Placed Out		
	CSCI-GA 2110-001 Program	mming Languages Se	mester	Grade	Credits: Placed Out		
	CSCI-GA 2250-001 Operat	ing Systems Se	mester	Grade	Credits: Placed Out		
Re	quirement C: A student must p	bass ONE course in TW	O of the follo	wing four designa	ted application areas		
	Course						
	Course	S	emester	Grade	Credits:		
Gr	aphics						
	Advanced Computer Graphics	* Computer Vision an	d Tracking	* Multimed	a		
*	Advanced Computer Vision	* Experiments in Mo	tion Capture		ltiplayer Games		
	Computational Geometry	* Geometric Modelin	•		opics in Computer Animation		
	Computational Photography	* Graphics Processin	-				
	Computer Games	Architecture & Pro	• •	★ Visualizat	ion		
	Computer Graphics	* Interactive Shape N		1 0 .			
* (Computer Vision	★Motion Capture for	Gaming & Ur	ban Sensing			

Computation for Science and Society

- * Advanced Cryptography
- * Advanced Topics in Numerical Analysis: Convex & Nonsmooth Optimization
- * Advanced Topics: Data Science
- * Advanced Cryptography
- * Algorithmic & Economic Aspects of Internet
- * Applied Cryptography & Network Security
- * Bioinformatics
- ***** Bioinformatics and Genomics
- * Computational Biology
- * Computational Fluids
- * Computational Fluid Dynamics
- * Computational PDEs
- * Computational Systems Biology
- * Financial Computing
- * Financial Computing Projects
- * Financial Software Projects
- * High Performance Scientific Computing
- * Immersed Boundary Method
- * Information & Communication Technology for Developing Countries

Intelligent Systems

- * Advanced Computer Vision
- * Advanced Topics in Natural Language Processing
- * Artificial Intelligence
- * Big Data: Large Scale Machine Learning
- * Computer Vision
- * Data Mining
- * Data Warehousing and Mining
- * Deductive Verification of Reactive Systems
- * Deep Learning
- * Formal Methods
- * Foundations of Machine Learning
- * Heuristic Problem Solving
- * Information Science of Marketing
- * Logic in Computer Science

Databases

* Big Data

* Data Mining

- * Advanced Database Systems
- * Data Warehousing
- * Database System
 - * Distributed Storage Systems

Requirement D: A student must complete a designated capstone course with the grade of B (3.0) or better. Alternatively, subject to requirements and prior approval of the DGS, a student may complete a master's thesis or advance lab.

Course	_Semester	_Grade	_ Credits:
* Advanced Computer Graphics	* Info Teo	ch Projects	

- * Advanced Computer Graphics
- * Advanced Database Systems
- * Cloud Computing
- * Compiler Construction
- * Distributed Systems
- * Graphics Processing Units (GPUs): Architecture & Programming

- * Introduction to Cryptography
- * Linear Programming
- * Monte Carlo Methods
- * Music Software Projects
- * Numerical Methods I
- * Numerical Methods II
- * Numerical Methods for Time-Dependant PDEs
- * Numerical Optimization
- * Scientific Computing
- * Speech Recognition
- * Social Networks
- * Topics in Numerical Analysis
- * Values Embodied in Information & Communications Technology

- * Machine Learning
- * Machine Learning & Computational Statistics
- * Mobile Robots
- * Natural Language Processing
- * Optimization in Machine Learning
- * Programming Semantics, Analysis & Verification by Abstract Interpretation
- * Robot Motion Planning
- * Robotics
- * Social Multiplayer Games
- * Statistical Natural Language Processing
- * Special Topics in Machine Learning: Probabilistic Graphical Models
- * Topics in Automated Deduction

* Multicore Processors: Architecture & Programming

* Web Search Engines

* Networks & Distributed Systems

* Search Engine Architecture

* Software Engineering

* Realtime & Big Data Analytics