A Medical Language Processor for Two Indo-European Languages

Ngo Thanh Nhan[1,3], Naomi Sager[1], Margaret Lyman[2], Leo J. Tick[2],
François Borst[3], Yun Su[4]

[1] Courant Institute of Mathematical Sciences, New York University, NY, NY
10012, USA; [2] NYU Medical Center, NY, NY 10016, USA; [3] Division of Informatics, University
Hospital of Geneva and Faculty of Medicine, CH-1211 Geneva 4, Switzerland;
[4] State Economics Information Center, 58 Sanlihe Road, Beijing, China

ABSTRACT

The syntax and semantics of clinical narrative across Indo-European languages are quite similar, making it possible to envison a single medical language processor that can be adapted for different European languages. The Linguistic String Project of New York University is continuing the development of its Medical Language Processor in this direction. The paper describes how the processor operates on English and French.

A. INTRODUCTION

Is it possible to organize the information in clinical narrative algorithmically? Yes, if the algorithm is based on the principles by which language carries information. One can treat language as a code: a very complex, sometimes ambiguous code, but one that is not -- like many artificial codes -- designed to hide the message. Human ("natural") language is, despite its potential for vagueness and ambiguity, an effective mechanism for transmitting information, and it does so by utilizing its own structural properties as the "code" [1].

Using this approach, the Linguistic String Project (LSP) of New York University has developed a system that converts textual information from its linear form to an explicitly structured form. First it uses grammatical relations to determine the gross structure of successive sentences; then (in part simultaneously) it uses the regularities of language usage that are characteristic of the application area to refine, label, and finally rearrange the linguistic/informational units of the discourse into a database of semantically organized textual information.

Our main area of application has been the narrative of patient records, i.e. the "sublanguage" [2] of clinical reporting. Progress in the development of this Medical Language Processor for use on English-language hospital discharge summaries and ambulatory visit reports has been reported in previous SCAMC and MEDINFO volumes [3,4] as well as in book form [5]. Currently, we are adapting the system for French Lettres de Sortie in a joint project with the Hopital Cantonal Universitaire de Genève [6,7].

A companion paper [8] presents retrieval results from French documents. The present paper illustrates how structural similarity and a common sublanguage have made the adaptation of a Medical Language Processor from one Indo-European language to another not unduly difficult.

Figure 1
LSP Medical Language Processor
B. MEDICAL LANGUAGE PROCESSING VIA LSP

The LSP System component grammars are modules which execute sequentially and are compiled cumulatively [Figure 1]. Each component of the grammar consists of BNF definitions of parse tree structures, procedures that operate on these structures (routines, restrictions and transformations) and lists which state the well-formed parse tree combination of medical word classes.

To illustrate the processing, we will take an example from an outpatient visit report of a pediatric patient:

'Was seen in emergency room 2 days ago for diaper rash and given bacitracin and oral antibiotic.'

Translated into French (by a French physician), it reads:

'A été vu en salle d'urgence il y a 2 jours pour un érysème fessier et a reçu de la bactracine et un antibiotique oral.'

B.1. PARSING GRAMMAR

Figure 2 shows an output of parsing the example English sentence using the LSP English string grammar [9], and Figure 3 shows the corresponding French parse, obtained using the same grammar adapted for French. Internally, the outputs are trees; the short form of output seen in Figures 2 and 3 displays the segments ("strings") of the decomposition, and the position at which a modifier occurs, to the right or left of its host word, as indicated by the placement of the number corresponding to the line number where the modifier string is written. It will be seen that the component strings are much the same in the two decompositions. A difference is that English has more reduction around conjunction (leaving out a second 'was' before 'given') and we have treated 'diaper rash' as a single lexical item. Also French supplies more articles. The result is that the English output has fewer lines.

Notice that the English parse, Figure 2, line 7 (and the French parse, Figure 3, line 8) contains an incorrect modifier placement of the prepositional phrase PN 'for diaper rash' (Fr. 'pour un érysème fessier') as modifier of the time phrase '2 days ago' (Fr. 'il y a 2 jours'). This parse is syntactically possible (by the BNF definitions) but impossible in the medical sublanguage. The arrow pointing from 10 to the right of 7 in Figure 2 (and from 15 to the right of 11 in Figure 3) suggests the correct adjunction. The next component adjusts the parse accordingly.

Surprisingly few changes to the English grammar were needed to accommodate French. Although the dictionaries that give parts of

Figure 3

FRENCH PARSE

* CP_01 18.01.08
* A ETI EUY EN SALLE DE LE / LA URGENCE IL Y A 2 JOURS POUR UN
* ERTHE TEO ET E REU DE LA BACTRAINE ET UN
* ANTIBIOTIQUE ORAL.

PARSE 1

1. SENTENCE = TEXTLET 2.
2. OLDSENT = INTRODUCER CENTER ENDMARK 3.
3. FRAGMENT = SA TVO SA 4.
4. TVO = TENSE SA VERB SA OBJECT SA 5.
5. VENPASS = LVENR SA PASSOBJ SA ANDSTG 6.
6. PN = P NSTOP IN EMERGENCY ROOM 7.
7. NSTOP = 8.
9. LN = TPOS QPOS APOS NPOS 2
10. PN = P NSTOP FOR DIAPER RASH 11.
12. LN = TPOS QPOS APOS NPOS ORAL

Figure 2

ENGLISH PARSE

* CP_01 18.01.08
* WAS SEEN IN EMERGENCY ROOM 2 DAYS AGO FOR DIAPER RASH AND GIVEN
* BACTRACIN AND ORAL ANTIBIOTIC.

PARSE 1

1. SENTENCE = TEXTLET 2.
2. OLDSENT = INTRODUCER CENTER ENDMARK 3.
3. FRAGMENT = SA TVO SA 4.
4. TVO = TENSE SA VERB SA OBJECT SA 5.
5. VENPASS = LVENR SA PASSOBJ SA ANDSTG 6.
6. PN = P NSTOP IN EMERGENCY ROOM 7.
7. NSTOP = 8.
9. LN = TPOS QPOS APOS NPOS 2
10. PN = P NSTOP FOR DIAPER RASH 11.
12. LN = TPOS QPOS APOS NPOS ORAL

555
speech and word subclassifications are necessarily different, the lexical categories, both grammatical and medical, are largely the same.

B.2. SELECTION GRAMMAR

The selection component’s main job is to check the well-formedness of sublanguage word class combinations in a sentence, in terms of cooccurrence lists of adjective and noun clusters (LIST N-ADJ), noun and noun clusters (LIST N-NPOS), clusters of prepositional phrase and its host (LIST P-NSTGO-HOST), and variations of subject-verb-object clusters (LIST S-V-O or BE-S-O). For example, the selection component recognizes the ill-formed combination of noun and prepositional modifier 'days'+'for'+‘diaper rash’ (‘days’ NTIME1 + ‘for’ + ‘diaper rash’ H-INDIC) of the parse in Figure 2 and proceeds to correct this by using a prepositional phrase selection list P-NSTGO-HOST (Figure 4). Similarly, the component uses the list of well-formed medical sublanguage combination for ‘pour’ to correct the parse tree of the French sentence.

The P-NSTGO-HOST list asserts that the cooccurrence requirements for a preposition ‘for’ with its object ‘diaper rash’ H-INDIC is one of the well-formed medical subclass combinations, but NUNIT and NTIME1 (attributes of ‘days’) are not in the list of combinations with ‘for’+H-INDIC. The selection component then looks for a new modifier location for ‘for diaper rash’ (and Fr. ‘pour un érythème fessier’): as a sentence modifier of ‘was seen in emergency room’ (Fr. ‘a été vu en salle d’urgence’).

The selection component does not reject a parse received from the parsing component, but assigns node attribute FAIL-SEL to phrases which do not match any cooccurrence patterns. If a cluster passes a cooccurrence pattern, a node attribute SELECT-ATT or ADVERBIAL-TYPE (for specific phrases such as TIME-ADVERBIAL, ADJUNCT-TYPE, CONN-TYPE, BODYLOC-PN, QUANT-ADVERBIAL, INSTR-TYPE) will be assigned to the node with the value chosen [Figure 4].

B.3. TRANSFORMATION COMPONENT

The aim of this component is to normalize the sentence into ASSERTIONS or FRAGMENTS corresponding to chunks of related information in the target FORMATS (to be discussed later). It first fills in the information gaps due to conjunction ellipsis, turns imperative and interrogative sentence types into affirmative, reunifies verbal splits (due to past or present participle), and expands relative clauses into full assertions.

The example sentences actually each consist of three assertions conjoined by ‘and’ (Fr. ‘et’). So that the sentence can be described as below, with ___ marking showing gaps caused by conjunction ellipsis.

"Was seen in emergency room
2 days ago for diaper rash
and ___ given bactracin
and ___ oral antibiotic."

"A été vu en salle d’urgence il y a
2 jours pour un érythème fessier
et a reçu de la bactricine
et ___ un antibiotique oral."

The transformational component at conjunction expansion recovers the full sentences by filling in the gapped information and produces

"Was seen in emergency room
2 days ago for diaper rash
and WAS given bactracin
and WAS GIVEN oral antibiotic."

"A été vu en salle d’urgence il y a
2 jours pour un érythème fessier
et a reçu de la bactricine
et A RECU un antibiotique oral."

(where words in capital letters are generated in the course of processing).

And after filling in the empty SUBJECT (shown by empty square brackets), the transformational component produces

[] Was seen in emergency room
2 days ago for diaper rash
and [] WAS given bactracin
and [] WAS GIVEN oral antibiotic."

[] A été vu en salle d’urgence il y a
2 jours pour un érythème fessier
et [] a reçu de la bactricine
et [] A RECU un antibiotique oral."

The secondary task of the transformational component is to INDEX atoms such as nouns, pronouns, articles and verbs, as well as NSTG
and TPOS phrases (stored in node attribute INDEX) for antecedent recovery, and to record TENSE (in node attribute TENSE-ATT).

B.4. REGULARIZATION GRAMMAR

From the output of the transformation component, the regularization component first turns phrases under connectives into Polish notation format (where each pair of square brackets signifies an ASSERTION or FRAGMENT):

'and for [was seen in emergency room 2 days ago] [diaper rash]
and [WAS given bacitracin] [WAS GIVEN oral antibiotic].'

'et pour [a été vu en salle d'urgence il y a 2 jours]
[un érythème fessier]
et [a reçu de la bactracine]
[A RECUP un antibiotique oral].'

It is assumed here that each transformed ASSERTION or FRAGMENT corresponds to one FORMAT type. At each ASSERTION or FRAGMENT, the component reviews the elements and decides which type of FORMATs fits the phrase, then assigns a node attribute FORMAT-ATT to the ASSERTION or FRAGMENT whose value is the name of the format type decided upon. Each format type has one or more nodes that are characteristic. This helps to formulate a LIST FORMAT-TYPE which will lead us to devise a procedure to pick out in advance which format type an ASSERTION or a FRAGMENT belongs to. This process requires an identification of semantic host and modifiers. In 'episode of fever', 'fever' is the semantic host of the phrase, though 'episode' is the syntactic host.

B.5. FORMAT GRAMMAR

From a regularized parse tree, the format component creates a format tree corresponding to every ASSERTION or FRAGMENT of the regularized parse tree. The LSP System currently defines three types of format trees: FORMAT-1 for treatment, FORMAT-4 for laboratory tests and results and FORMAT-5 for patient description as a result of physical examination and history.

The Format component produces two types of output: a short form of the format tree (where unfilled nodes of the format tree are ignored) and an intermediate form for a standard dBMS called the CTEMPLATE. In the latter form, the results of mapping texts can be displayed in a combined table (CTABLE). The CTABLE for a French Lettre de Sortie can be seen in [8].

The format output for the English sentence is shown in Figure 5 and the output for the French sentence in Figure 6. The CTABLE for these sentences is shown in Figure 7. Notice that in the information representation, the corresponding rows of each sentence are almost identical. An exception is the treatment of 'was given' vs. 'a recu'. The English dictionary classed 'give' as a general medical management verb (TITGEN); thus, it appears in the TTXT column. On the other hand, the translated French verb 'a recu' ('recevoir' in the infinitive form) was given no medical subclass; thus it appears in the VERB column. But the crucial information (MED) in the medical treatment column (TTXT) are retained.

Figure 5
Information format for English example

* CP_01 1B.01.08
* WAS SEEN IN EMERGENCY ROOM 2 DAYS AGO FOR DIAPER RASH AND GIVEN
* BACITRACIN AND ORAL ANTIBIOTIC.

CONNECTIVE (CONJOINED (CTEXT = 'AND '))
CONNECTIVE (RELATION (CTEXT = 'FOR '))

FORMAT-1 (TREATMENT (GEN (CTEXT = 'WAS SEEN ')
(RENTEX = 'IN EMERGENCY_ROOM ')
(EVENT-TIME (TPREP1 (CTEXT = '[P]'))
(NUM (CTEXT = '2'))
(UNIT (CTEXT = 'DAYS'))
(TPREP2 (CTEXT = 'AGO'))
(TENSE (CTEXT = '[PAST]')))))

FORMAT-5 (PSTATE-DATA (S-S (CTEXT = 'DIAPER_RASH')))

CONNECTIVE (CONJOINED (CTEXT = 'AND '))

FORMAT-1 (TREATMENT (GEN (CTEXT = 'WAS GIVEN ')
(TENSE (CTEXT = '[PAST]'))
(MED (CTEXT = 'BACITRACIN'))))

FORMAT-1 (TREATMENT (GEN (CTEXT = 'WAS GIVEN ')
(TENSE (CTEXT = '[PAST]'))
(MED (CTEXT = 'ANTIBIOTIC ')
(BP-MOD (PPTPAR (CTEXT = 'ORAL '))))))

Figure 6
Information format for French example

* CP_01 1B. 8
* A EITEI VU EN SALLE DE LE / LA URGENCE IL Y A 2 JOURS POUR UN
* ERYTHEME FESSIER ET A RECUP DE LA BACITRACINE ET UN
* ANTIBIOTIQUE ORAL.

CONNECTIVE (CONJOINED (CTEXT = 'ET '))
CONNECTIVE (RELATION (CTEXT = 'POUR '))

FORMAT-1 (TREATMENT (GEN (CTEXT = 'A EITEI VU ')
(RENTEX = 'EN SALLE_DE LE / LA URGENCE ')
(EVENT-TIME (TPREP1 (CTEXT = '[P]'))
(NUM (CTEXT = '2'))
(UNIT (CTEXT = 'DAYS'))
(TENSE (CTEXT = '[PAST]')))))

FORMAT-5 (PSTATE-DATA (S-S (CTEXT = 'ERYTHEME ')
(LTEXT = 'UN ')
(RTEXT = 'FESSIER ')))

CONNECTIVE (CONJOINED (CTEXT = 'ET '))

FORMAT-1 (TREATMENT (MED (CTEXT = 'BACITRACINE ')
(LTEXT = 'UN ')
(VERB (CTEXT = 'A RECUP ')
(TENSE (CTEXT = '[PAST]')))))

CONNECTIVE (CONJOINED (CTEXT = 'ET '))

FORMAT-1 (TREATMENT (MED (CTEXT = 'ANTIBIOTIQUE ')
(LTEXT = 'UN ')
(VERB (CTEXT = 'A RECUP ')
(TENSE (CTEXT = '[PAST]')))))

C. CONCLUSION

Among Indo-European languages there are great similarities in grammar, making it relatively easy to modify the original LSP Medical English grammar to operate on French. Secondly, the great similarities among European languages in respect to technical vocabulary and terminology, especially in medicine, makes it possible to use the sublanguage techniques ("information formatting") of the LSP system for other European languages. The French adaptation is well along; work on German has begun.

557
Figure 7
Database CTABLEs for English and French examples

ENGLISH EXAMPLE
Was seen in emergency room 2 days ago for diaper rash
and given bacitracin and oral antibiotic.

<table>
<thead>
<tr>
<th>SID</th>
<th>ROW</th>
<th>CONJUNCT</th>
<th>TXTT</th>
<th>VERB</th>
<th>DIAG SS</th>
<th>R</th>
<th>PR TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>01B.01.08</td>
<td>R 01</td>
<td></td>
<td>WAS SEEN IN</td>
<td>EMERGENCY_ROOM</td>
<td></td>
<td></td>
<td>[PAST] [P]</td>
</tr>
<tr>
<td>01B.01.08</td>
<td>R 02</td>
<td>"FOR "</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 DAYS AGO</td>
</tr>
<tr>
<td>01B.01.08</td>
<td>R 03</td>
<td>"AND "</td>
<td>WAS GIVEN</td>
<td>BACITRACIN</td>
<td>[PAST]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01B.01.08</td>
<td>R 04</td>
<td>"AND "</td>
<td>WAS GIVEN</td>
<td>ORAL ANTIBIOTIC</td>
<td>[PAST]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FRENCH EXAMPLE
A été vu en salle d'urgence il y a 2 jours pour un érythème fessier
et a reçu de la bactiracine et un antibiotique oral.

<table>
<thead>
<tr>
<th>SID</th>
<th>ROW</th>
<th>CONJUNCT</th>
<th>TXTT</th>
<th>VERB</th>
<th>DIAG SS</th>
<th>R</th>
<th>PR TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>01B.01.08</td>
<td>R 01</td>
<td></td>
<td>A ETE1 VU</td>
<td></td>
<td>[PAST]</td>
<td>IL Y A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EN SALLE_DE_</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LE_.._LA_URGENCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01B.01.08</td>
<td>R 02</td>
<td>"POUR "</td>
<td></td>
<td></td>
<td>[PAST]</td>
<td>IL Y A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A E1RYTHE2ME</td>
<td>FESSIER</td>
<td></td>
<td>IL Y A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FESSIER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01B.01.08</td>
<td>R 03</td>
<td>"ET "</td>
<td>DE LA BACITRACINE</td>
<td>A REC4U</td>
<td>[PAST]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01B.01.08</td>
<td>R 04</td>
<td>"ET "</td>
<td>UN ANTIBIOTIQUE</td>
<td>A REC4U</td>
<td>[PAST]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

This research was supported in part by Grant 3.973.0.87 from the Fonds National Suisse de la Recherche Scientifique.

REFERENCES

[3] Proceedings of the Symposium on Computer Applications in Medical Care, (SCAMC). IEEE, New York:
 Ninth Annual (1985) 82-86, 221-226.

[7] Borst, F. et al., Cost Containment and Quality of Care Assessment: By-Product of a Fully Integrated HIS Handling Free Text Analysis of Discharge Summaries, submitted to MEDINFO 89.
