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Summary. We present some recent domain decomposition tools and a BDDC algorithm for
3D problems in the space H(curl; ). Of primary interest is a face decomposition lemma
which allows us to obtain improved estimates for a BDDC algorithm under less restrictive as-
sumptions than have appeared previously in the literature. Numerical results are also presented
to confirm the theory and to provide additional insights.

1 Introduction

We investigate a BDDC algorithm for three-dimensional (3D) problems in the space Hy(curl; ).
The subject problem is to obtain edge finite element approximations of the variational prob-
lem: Find u € Hy(curl; Q) such that

ago(u,v)=(f,v)g VveHy(curl;Q),

where
ao(u,v) ::/Q[(anwav)+([3u~v)]dx, (f,v)Q:/!;f-vdx.

The norm of u € H(curl;Q), for a domain with diameter 1, is given by aq (u,u)"/? with
o =1 and B = 1; the elements of Hy(curl) have vanishing tangential components on 9Q.
We could equally well consider cases where this boundary condition is imposed only on one
or several subdomain faces which form part of dQ. We will assume that @ > 0 and § > 0
are constant in each of the subdomains Q, ..., Qy. Our results could be presented in a form
which accommodates properties which are not constant or isotropic in each subdomain, but
we avoid this generalization for purposes of clarity.

In the pioneering work of [11], two different cases were analyzed for FETI-DP algorithms:
Case 1:

a=o for i=1,...,N
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The condition number bound reported for the preconditioned operator is
K < Cmax(1+H} B/ ) (1+1og(H /h))*, )
1

where H /h := max; H;/h;.
Case 2:
Bi=p for i=1,....N

for which the reported condition number bound is
x < Cmax(1+H?B/oy)(1+log(H/h))*. )
L

We address the following basic questions regarding [11] in this study.

1. Is is possible to remove the assumption of ¢o; = o or f§; = f§ for all i?

2. Is it possible to remove the factor of Hi2 Bi/ a; from the estimates?

3. Isis possible to reduce the logarithmic factor from four powers to two powers as is typical
of other iterative substructuring algorithms?

4. Do FETI-DP or BDDC algorithms for 3D H(curl) problems have certain complications
not present for problems with just a single parameter?

We find in the following sections that the answers are yes to all four questions. However, due
to page limitations, we only consider here the relatively rich coarse space of Algorithm C
of [11]. We remark that the analysis of 3D H(curl) problems with material property jumps
between subdomains is quite limited in the literature. A comprehensive treatment of problems
in 2D can be found in [3]. A different iterative substructuring algorithm for 3D problems is
given in [6], but the authors were unable to conclude whether their condition number bound
was independent of material property jumps.

2 Tools

We assume that 2 is decomposed into N non-overlapping subdomains, 1,...,Qy, each the
union of elements of the triangulation of Q. We denote by H; the diameter of 2;. The interface
of the domain decomposition is given by

N
r:= (U agi> \0Q,

i=1

and the contribution to I" from 9d€; by I; := dQ;\d Q. These sets are unions of subdomain
faces, edges, and vertices. For simplicity, we assume that each subdomain is a shape-regular
and convex tetrahedron or hexahedron with planar faces.

We assume a shape-regular triangulation .7}, of each Q; with nodes matching across the
interfaces. The smallest element diameter of .7, is denoted by /;. Associated with the trian-

gulation J}, are the two finite element spaces Wé’r’ad C H(grad, ;) and Wchljr] C H(curl, ;)
based on continuous, piecewise linear, tetrahedral nodal elements and linear, tetrahedral edge
(Nédeléc) elements, respectively. We could equally well develop our algorithms and theory
for low order hexahedral elements.

The energy of a vector function u € Wclﬁﬂ for subdomain £; is defined as

Eij(u) == o;(V xu,V xu)q, + Bi(u,u)g,, 3)
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where o; and f3; are assumed constant in £;.

Let N, € Wc}ﬁﬂ and ¢, denote the finite element shape function and unit tangent vector,
respectively, for an edge e of .7,,. We assume that N, is scaled such that N, -t, = 1 along e.
The edge finite element interpolant of a sufficiently smooth vector function u € H(curl, £;) is
then defined as

m"(u):= Y uNe, u :z(l/\e\)/u-tgds, )

66./1(2’_ 7e

where .#¢_is the set of edges of .7, and |e| is the length of e. We will also make use of
other sets of subdomain edges. The sets . #yq,, Mg, # 5, and My g contain the edges of
d9Q;, subdomain edge &, subdomain face %, and 9.7, respectively. We denote by ¥z, %2,
and ¥, sets of subdomain faces, subdomain edges, and subdomain vertices for ;. The wire
basket %#; is the union of all subdomain edges and vertices for £;. We will also make use of
the symbol w; := 1+ log(H;/h;), and bold faced symbols refer to vector functions. We denote
by p; the mean of p; over ;.

The estimate in the next lemma can be found in several references, see e.g., Lemma 4.16
of [12].

Lemma 1. For any p; € whi

gra

4 and subdomain edge & of €;,

||Pi”%2(g) < Ca),-HpiH?,](Qi). )

Lemma 2. For any p; € W;riad’ there exist pyy ,pis, iz € W;riad such that
pilog,= Y, pivloa+ Y picloo+ Y pizloo (6)
V €Yy E€YGis F €Yz

where the nodal values of pyy, pie, and p;z on d€; may be nonzero only at the nodes of ¥,
&, and F, respectively. Further,

Py () < Clpillin o) M
|Pi<?|12-11(g,.) < Cwi”PiH}qu(gi)a ®)
|Pi,/°“|%11(g,.) < CwiZHPiH%]l(Q,.)- )

Proof. The estimates in (7-9) are standard, and follow from Corollary 4.20 and Lemma 4.24
of [12] and elementary estimates.

We note that a Poincaré inequality allows us to replace the H!-norm of p; by its H!-
seminorm in Lemmas 1 and 2 if p; = 0.
The next lemma is stated without proof due to page restrictions.

Lemma 3. Let f; € W;’r‘a 4 have vanishing nodal values everywhere on d; except on the wire
basket W; of Q. For each subdomain face F of Qi and Ch; <d < H;/C, C > 1, there exists a

v, € Wch"ﬂ such that vie =V f, for all e € M 7, vie = 0 for all other edges of d€;, and

||Vi||%2(g,.) < C(winiH%Z(agz) +d2||vfi't8,?‘|i2(agi))a (10)
IV x Vi||i2(_qi) < C(T(d)”fiHiZ(a,g) +|Vfi "837||i2(a,7)): (11)
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where ty & is a unit tangent along 0.7, and

(0 ifd>HyC
T(d)= { d=2 otherwise.

The Helmholtz-type decomposition and estimates in the next lemma will allow us to make
use of and build on existing tools for scalar functions in H'!(£;). We refer the reader to
Lemma 5.2 of [4] for the case of convex polyhedral subdomains; this important paper was
preceded by [5], which concerns other applications of the same decomposition.

thereisaq; € whi

Lemma 4. For a convex and polyhedral subdomain ; and any u; € wh il

curl’

Y, e (W:r"ad)3, and p; € W:}fad such that
u; = gq;+ 11" (¥) + Vp;, (12)
IVpill2 () < Clluillz2(q,). (13)
1¥ill2 @) < Clluillz o) (14)
||hf14i||1%2<gi) + |‘Ti||?~1|(9,) <C|V x u5|\iz(gi). (15)

Lemma 5. Forany u; € szrl withuje =0 foralle € # g and & € G, there exists av; € ‘/Vc}ll;ﬂ

such that vi, = u;e for all e € Myq,

vi= ) vz, (16)
Tz

where viz, =0Ve € My, \ Mz. Further,
Ei(viz) < CPEi(w;), (17)
where the energy E; is defined in (3).

Proof. Let p; in (12) be chosen so p; = 0. This is possible since a constant can be added to p;
without changing its gradient. Because u;, = 0 for all e € .#, it follows from Lemmas 1 and
4 and elementary estimates that

IVpi-telfaie) < 1AT (W) + 1) 1ol 720
SC(I),‘HVXM[||%2(Q’_)~ (18)

For each subdomain face .% of Q;, we find from Lemmas 2 and 4 that
2 2 2
IVPizlli2(q) < Coflluillz2 g, - 19)

Define
Piw = Z Piv + Z pig, d:=

VeGy E€Ye

H; ifd; > H;
max(d;,Ch;) otherwise,

where d; := +/0;/B;. Further, let p; and p; & denote the functions f; and v;, respectively, of
Lemma 3. For each subdomain face .% of £2;, we then find from Lemmas 1 and 3 and (18) that
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Ei(pi7) < COPE;(wy), (20)

where p;z, = Vpiy, Ve € Mz and p;z, =0 Ve € Myq, \ .M 7. With reference to (12) and
(4), we define
G7= Y qieNe, @1
ece My

and from elementary finite element estimates and Lemma 4 find

||‘Ii,9||22(_q,.) <ch Y q.< CH‘LHLZ ) < C||u,|\L2 (22)
ec My

[V x qiﬂ”izm,.) <Ch Y q,<C|Vx ui”izmiy (23)
ec Mz

It follows from Lemmas 2 and 4 that there exists a ¥; z € (Wll’, )3 such that ¥,z = ¥; at all

grad
nodes of .7, that vanishes at all other nodes of d£2;, and

I1¥i7 1720 < CI¥il72 (0, < ClluillZ o (24)
HVX‘PMIIHI <Cw H‘Pllyn <Ca> Hquzlle (25)
From Lemmas 1 and 4, we obtain

H'PHLZ <Cw1H'PHH Q) <CleV><“zHL2 (26)

Let W54 € (W;rad) be identical to ¥; at all nodes of d.% and vanish at all other nodes of

Q;. For g := IT" (¥, 7), we define

g7 = Y, 8NN.. (27)
ec Mz

From elementary estimates and (26) we then obtain

18i7 1720,y < CH; 1¥ill 2 9.5y < COMF IV X w172 (28)
HVX&?HLZ <C(1),HV><M,HL7 (29)

Defining
Viz = Vpiz +Piz +ai7 + 11" (Pi7) + 87, (30)

we find vz, = uje Ve € Mz and viz, =0Ve € My \ .# 7. The estimate in (17) then follows
from the bounds for each of the terms on the right-hand-side of (30) along with elementary
estimates for IT" (¥; ). O

3 BDDC

Background information and related theory for BDDC can be found in several references
including [2, 9, 10, 8, 1]. Let ur; and u- denote vectors of finite element coefficients associated
with I; and I'. In general, entries in ur; and u; are allowed to differ for j Z# i even though they
refer to the same finite element edge. Entries in the vector #i; are partially continuous in the
sense that specific edge values or edge averages over certain subsets of I" are required to match
for adjacent subdomains. In order to obtain consistent entries, we define the weighted average
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N
i =R; Y. RiDjir;, @31
j=1

where R; is a 0-1 (Boolean) matrix that selects the rows of ur; from ur and D is a diagonal
weight matrix with positive entries. The weight matrices form a partition of unity in the sense

that
N

Y RIDiR; =1, (32)
i=1
where [ is the identity matrix. To summarize, #r; is fully continuous while iif; is only par-
tially continuous. The number of continuity constraints that must be satisfied by all the iir;
determines the dimension of the coarse space.
Let S; denote the Schur complement associated with I, which is defined in (39). The
system operator for BDDC is the assembled Schur complement

N
S=Y RISiR:. (33)
i=1
From Theorem 25 of [10], the condition number of the BDDC preconditioned operator is
bounded above by
YV alSiarn
K(M_IS) < sup%. (34
i, Y=y UpSillr;
This remarkably simple expression shows that the continuity constraints for #Zj; should be
chosen so that large increases in energy do not result from the averaging operation in (31).
For simplicity of notation, we will refer to u; as the vector of edge finite element coeffi-

cients for ;. We have the decomposition
U; :R1T7'417' -‘-RZW‘.7 (35)

where ur; and uy, are vectors of coefficients associated with I; and the interior of ©;, respec-
tively, and each row of Ry; and R;, has one nonzero entry of unity. We further decompose ur;
as

wr= Y Rpuz+ Y Rlus (36)
FEeY. 7 E€YGe
= Y RGuz+Ryuy (37
FeY 5
= R;’_,u%/ +R£//,u%” (38)

where #; denotes the wire basket for I and V/i’ =I;\ #;. The Schur complement associated
with I; can be expressed as
Si = Anr — A Ay Ann (39)

where A; is the stiffness matrix for €; and
Arr; =RpARL, A, =RpARL, Ay, =R AR], etc. (40)
Similarly, for #; and .%#, we introduce the Schur complements
Sy = R%/SiRg,/[,7 Sz =Ri7SiRl;. 1)

Lemma 5 is now rewritten in matrix-vector notation as
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(Rizuir)" Sz (Rizuir) < Cof Ry uir)" Sy (Ryuir). (42)

Because of page restrictions, we only consider a very rich coarse space which includes
every edge of each subdomain edge. This coarse space corresponds to Algorithm C of [11]. In
this case, we have

Ry, Aur; =0, 43)

where Au := ii — i, and it follows from (37) and the positive definiteness of S; that
AufSidur; < %z Y, AulzSzAuiz. (44)

Let Q; denote the subdomain which shares .% with ;, and consider the generalized eigen-
value problem
S7® =Sz PA, (45)

where @ is a matrix of eigenvectors normalized so that ®7'§ 7, @ =1and A is a diagonal
matrix of positive eigenvalues. Introducing the change of variables u; 7 = ®w; #, we obtain

Aul Sz Auiz = Aw! z ApAw, 7, (46)
AW 5S 5 Aujz = Aw) Z 1AW 5. 47
Choosing
Wiz = Wiz = (A+1) " (Awiz +Wjz), (48)
we find
Awiz = (A+1) " (Wiz — W), (49)
Awjz = (A+D)'A(Rj 7 —Wiz), (50)

and from (46) and (47) obtain
AulzS 7 Auiz + Aul S5 Aujz < i 7S 7,07 + i) 7S 7,0;7). (51)

From (44), (51) and (42), we obtain

(52)

i’

N N
AulSiAur; < Cw? Y. af-Sqir;
i=1 i=1

where
o = max 1 +log(H;/h;). (53)
1

Finally, from (34), (52), and the triangle inequality, we obtain

Theorem 1 (Condition Number Estimate). The condition number of the BDDC precondi-
tioned operator for this study is bounded by

Kk < Co’. (54)
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In summary, we have obtained a favorable condition number estimate that requires no assump-
tions on the material properties of the subdomains. We are unaware of any other algorithms
for 3D H(curl) problems with this property. Comparing the condition number estimate of The-
orem 1 with those in (1) and (2), we see that the factor of HiZBi /o has been removed and
the logarithmic factor has been reduced from four powers to two. We note that the estimate in
Theorem 1 also holds for FETI-DP due its spectral equivalence with BDDC.

The algorithm involves a change of variables for edges of each subdomain face, and the
choice for Ww; & and W;# in (48) corresponds to the diagonal weight matrices

RizDiR[z = AA+D)7", (55)
RizDjRl; = (A+1)"". (56)

We note this change of variables can be implemented in practice with just a few simple mod-
ifications to the standard BDDC algorithm. Referring back to the discussion before (46), the
change of variables can be expressed as

u;r = Tiwir.

Notice that rows of the square transformation matrix 7; for edges not on a subdomain face will
have a single diagonal entry of unity since no change of variables is made for those edges,
while the rows of T; corresponding to subdomain face .% are obtained from the matrix of
eigenvectors ¢ appearing in (45). One can then replace D; in (31) by D j:=T,D jCTj*l, where
Dj is the diagonal weight matrix associated with the new variables (see (56)). In terms of the
algorithm in [2], the changes amount to replacing W; in (16) and (19) by D; and W; in (18) and
(20) by DiT. The importance of the change of variables for some problems is shown in the next
section.

4 Numerical Results

In this section, we present some numerical results to verify the theory and also to provide
some additional insights. The domain is a unit cube discretized into smaller cubic elements.
All the examples are solved to a relative residual tolerance of 10~8 for random right-hand-
sides using the conjugate gradient algorithm with BDDC as the preconditioner. The number
of iterations and condition number estimates from conjugate gradients are under the headings
of iter and cond in the tables. We consider three different types of weights for the averaging
operator. The first one, designated eig, is the one of the previous section based on a change of
variables and the solution of an eigenproblem. Unless otherwise specified in the tables, this is
the weighting used. The second type, stiff, is based on a conventional approach in which the
weights are proportional to entries on the diagonals of subdomain matrices. The third, card,
uses the inverse of the cardinality of an edge, i.e. the reciprocal of the number of subdomains
sharing the edge, for the weight.

The results in Table 1 are consistent with theory, suggesting condition numbers are
bounded independently of the number of subdomains, while the results in Table 2 are con-
sistent with the log(H /h)? estimate of Theorem 1.

We also consider a checkerboard distribution of material properties in which (o, ) for
a subdomain is either (o, ;) or (0, ), and note that subdomains with the same proper-
ties are connected together only at their corners. Results for 64 cube subdomains each with
H /h = 4 are shown in Table 3. Notice for only one choice of material properties in the table
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that all three types of weighting lead to small condition numbers, and only the eig approach
always gives condition numbers which are independent of the material properties. We also in-
vestigated another type of weighting similar to card, but with weights y, 0 < y < 1 for faces of
subdomains with properties o, 81 and 1 — 7 for faces of subdomains with properties @, 3.
Regardless of the choice of ¥, large condition numbers were observed for the properties in the
final row of Table 3. We note also that the choice of material properties in the final row is not
covered by the theory of [11].

In the final example, we consider a cube mesh of 20% elements that is partitioned into
different numbers of subdomains using the graph partitioner Metis [7]. Although this example
is not covered by our theory because the subdomains have irregular shapes, the results in
Table 4 indicate that the algorithm of this study continues to perform well. The results in
Tables 3 and 4 suggest that the eig weighting of this study may be necessary in order to
effectively solve problems with material property jumps or with subdomains having irregular
shapes.

Table 1. Results for N cube subdomains, each with f = 1 and H/h = 4.

N a=102 a=1 o =102
iter (cond) iter (cond) iter (cond)

43 15(2.70) 14 (2.63) 10(1.77)
6> 16(2.88) 15(2.81) 11 (2.05)
8 16(2.95) 15(2.87) 12(2.23)
103 17 (2.98) 16 (2.91) 13(2.33)

Table 2. Results for 64 cube subdomains, each with § = 1.

H/ha=10> o=1 a=10"2
iter (cond) iter (cond) iter (cond)

15(2.70) 14 (2.63) 10 (1.77)
17 (3.30) 16 (3.21) 11 (2.14)
18 (3.77) 16 (3.66) 13 (2.46)
0 19(4.16) 18(4.03) 13(2.72)

— 00 O\ &
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