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Summary. We present some recent domain decomposition tools and a BDDC algorithm for
3D problems in the space H(curl;Ω). Of primary interest is a face decomposition lemma
which allows us to obtain improved estimates for a BDDC algorithm under less restrictive as-
sumptions than have appeared previously in the literature. Numerical results are also presented
to confirm the theory and to provide additional insights.

1 Introduction

We investigate a BDDC algorithm for three-dimensional (3D) problems in the space H0(curl;Ω).
The subject problem is to obtain edge finite element approximations of the variational prob-
lem: Find uuu ∈ H0(curl;Ω) such that

aΩ (uuu,vvv) = ( fff ,vvv)Ω ∀vvv ∈ H0(curl;Ω),

where

aΩ (uuu,vvv) :=
∫

Ω

[(α∇×uuu ·∇× vvv)+(βuuu · vvv)]dx, ( fff ,vvv)Ω =
∫

Ω

fff · vvvdx.

The norm of uuu ∈ H(curl;Ω), for a domain with diameter 1, is given by aΩ (uuu,uuu)1/2 with
α = 1 and β = 1; the elements of H0(curl) have vanishing tangential components on ∂Ω .
We could equally well consider cases where this boundary condition is imposed only on one
or several subdomain faces which form part of ∂Ω . We will assume that α ≥ 0 and β > 0
are constant in each of the subdomains Ω1, . . . ,ΩN . Our results could be presented in a form
which accommodates properties which are not constant or isotropic in each subdomain, but
we avoid this generalization for purposes of clarity.

In the pioneering work of [11], two different cases were analyzed for FETI-DP algorithms:
Case 1:

αi = α for i = 1, . . . ,N
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The condition number bound reported for the preconditioned operator is

κ ≤C max
i
(1+H2

i βi/α)(1+ log(H/h))4, (1)

where H/h := maxi Hi/hi.
Case 2:

βi = β for i = 1, . . . ,N

for which the reported condition number bound is

κ ≤C max
i
(1+H2

i β/αi)(1+ log(H/h))4. (2)

We address the following basic questions regarding [11] in this study.

1. Is is possible to remove the assumption of αi = α or βi = β for all i?
2. Is it possible to remove the factor of H2

i βi/αi from the estimates?
3. Is is possible to reduce the logarithmic factor from four powers to two powers as is typical

of other iterative substructuring algorithms?
4. Do FETI-DP or BDDC algorithms for 3D H(curl) problems have certain complications

not present for problems with just a single parameter?

We find in the following sections that the answers are yes to all four questions. However, due
to page limitations, we only consider here the relatively rich coarse space of Algorithm C
of [11]. We remark that the analysis of 3D H(curl) problems with material property jumps
between subdomains is quite limited in the literature. A comprehensive treatment of problems
in 2D can be found in [3]. A different iterative substructuring algorithm for 3D problems is
given in [6], but the authors were unable to conclude whether their condition number bound
was independent of material property jumps.

2 Tools

We assume that Ω is decomposed into N non-overlapping subdomains, Ω1, . . . ,ΩN , each the
union of elements of the triangulation of Ω . We denote by Hi the diameter of Ωi. The interface
of the domain decomposition is given by

Γ :=

(
N⋃

i=1
∂Ωi

)
\∂Ω ,

and the contribution to Γ from ∂Ωi by Γi := ∂Ωi\∂Ω . These sets are unions of subdomain
faces, edges, and vertices. For simplicity, we assume that each subdomain is a shape-regular
and convex tetrahedron or hexahedron with planar faces.

We assume a shape-regular triangulation Thi of each Ωi with nodes matching across the
interfaces. The smallest element diameter of Thi is denoted by hi. Associated with the trian-
gulation Thi are the two finite element spaces W hi

grad ⊂ H(grad,Ωi) and W hi
curl ⊂ H(curl,Ωi)

based on continuous, piecewise linear, tetrahedral nodal elements and linear, tetrahedral edge
(Nédeléc) elements, respectively. We could equally well develop our algorithms and theory
for low order hexahedral elements.

The energy of a vector function uuu ∈W hi
curl for subdomain Ωi is defined as

Ei(uuu) := αi(∇×uuu,∇×uuu)Ωi +βi(uuu,uuu)Ωi , (3)
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where αi and βi are assumed constant in Ωi.
Let NNNe ∈W hi

curl and ttte denote the finite element shape function and unit tangent vector,
respectively, for an edge e of Thi . We assume that NNNe is scaled such that NNNe · ttte = 1 along e.
The edge finite element interpolant of a sufficiently smooth vector function uuu ∈ H(curl,Ωi) is
then defined as

Π
hi(uuu) := ∑

e∈MΩ̄i

ueNNNe, ue := (1/|e|)
∫

e
uuu · ttte ds, (4)

where M
Ω̄i

is the set of edges of Thi , and |e| is the length of e. We will also make use of
other sets of subdomain edges. The sets M∂Ωi

, ME , MF , and M∂F contain the edges of
∂Ωi, subdomain edge E , subdomain face F , and ∂F , respectively. We denote by GiF , GiE ,
and GiV sets of subdomain faces, subdomain edges, and subdomain vertices for Ωi. The wire
basket Wi is the union of all subdomain edges and vertices for Ωi. We will also make use of
the symbol ωi := 1+ log(Hi/hi), and bold faced symbols refer to vector functions. We denote
by p̄i the mean of pi over Ωi.

The estimate in the next lemma can be found in several references, see e.g., Lemma 4.16
of [12].

Lemma 1. For any pi ∈W hi
grad and subdomain edge E of Ωi,

‖pi‖2
L2(E ) ≤Cωi‖pi‖2

H1(Ωi)
. (5)

Lemma 2. For any pi ∈W hi
grad, there exist piV , piE , piF ∈W hi

grad such that

pi|∂Ωi
= ∑

V ∈GiV

piV |∂Ωi
+ ∑

E∈GiE

piE |∂Ωi
+ ∑

F∈GiF

piF |∂Ωi
, (6)

where the nodal values of piV , piE , and piF on ∂Ωi may be nonzero only at the nodes of V ,
E , and F , respectively. Further,

|piV |2H1(Ωi)
≤C‖pi‖2

H1(Ωi)
, (7)

|piE |2H1(Ωi)
≤Cωi‖pi‖2

H1(Ωi)
, (8)

|piF |2H1(Ωi)
≤Cω

2
i ‖pi‖2

H1(Ωi)
. (9)

Proof. The estimates in (7-9) are standard, and follow from Corollary 4.20 and Lemma 4.24
of [12] and elementary estimates.

We note that a Poincaré inequality allows us to replace the H1-norm of pi by its H1-
seminorm in Lemmas 1 and 2 if p̄i = 0.

The next lemma is stated without proof due to page restrictions.

Lemma 3. Let fi ∈W hi
grad have vanishing nodal values everywhere on ∂Ωi except on the wire

basket Wi of Ωi. For each subdomain face F of Ωi and Chi ≤ d ≤Hi/C, C > 1, there exists a
vvvi ∈W hi

curl such that vie = ∇ fie for all e ∈MF , vie = 0 for all other edges of ∂Ωi, and

‖vvvi‖2
L2(Ωi)

≤C(ωi‖ fi‖2
L2(∂F )+d2‖∇ fi · ttt∂F ‖2

L2(∂F )), (10)

‖∇× vvvi‖2
L2(Ωi)

≤C(τ(d)‖ fi‖2
L2(∂F )+‖∇ fi · ttt∂F ‖2

L2(∂F )), (11)
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where ttt∂F is a unit tangent along ∂F , and

τ(d) =
{

0 if d > Hi/C
d−2 otherwise.

The Helmholtz-type decomposition and estimates in the next lemma will allow us to make
use of and build on existing tools for scalar functions in H1(Ωi). We refer the reader to
Lemma 5.2 of [4] for the case of convex polyhedral subdomains; this important paper was
preceded by [5], which concerns other applications of the same decomposition.

Lemma 4. For a convex and polyhedral subdomain Ωi and any uuui ∈W hi
curl, there is a qqqi ∈W hi

curl,
ΨΨΨ i ∈ (W hi

grad)
3, and pi ∈W hi

grad such that

uuui = qqqi +Π
hi(ΨΨΨ i)+∇pi, (12)

‖∇pi‖L2(Ωi) ≤C‖uuui‖L2(Ωi), (13)

‖ΨΨΨ i‖L2(Ωi) ≤C‖uuui‖L2(Ωi), (14)

‖h−1
i qqqi‖2

L2(Ωi)
+‖ΨΨΨ i‖2

H1(Ωi)
≤C‖∇×uuui‖2

L2(Ωi)
. (15)

Lemma 5. For any uuui ∈W hi
curl with uie = 0 for all e∈ME and E ∈GiE , there exists a vvvi ∈W hi

curl
such that vie = uie for all e ∈M∂Ωi

,

vvvi = ∑
F∈GiF

vvviF , (16)

where viF e = 0 ∀e ∈M∂Ωi
\MF . Further,

Ei(vvviF )≤Cω
2
i Ei(uuui), (17)

where the energy Ei is defined in (3).

Proof. Let pi in (12) be chosen so p̄i = 0. This is possible since a constant can be added to pi
without changing its gradient. Because uie = 0 for all e ∈ME , it follows from Lemmas 1 and
4 and elementary estimates that

‖∇pi · tttE ‖2
L2(E ) ≤ ‖(Π hi(ΨΨΨ iii)+qqqi) · tttE ‖2

L2(E )

≤Cωi‖∇×uuui‖2
L2(Ωi)

. (18)

For each subdomain face F of Ωi, we find from Lemmas 2 and 4 that

‖∇piF ‖2
L2(Ωi)

≤Cω
2
i ‖uuui‖2

L2(Ωi)
. (19)

Define

piW := ∑
V ∈GiV

piV + ∑
E∈GiE

piE , d :=
{

Hi if di ≥ Hi
max(di,Chi) otherwise,

where di :=
√

αi/βi. Further, let piW and pppiF denote the functions fi and vvvi, respectively, of
Lemma 3. For each subdomain face F of Ωi, we then find from Lemmas 1 and 3 and (18) that
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Ei(pppiF )≤Cω
2
i Ei(uuui), (20)

where piF e = ∇piW e ∀e ∈MF and piF e = 0 ∀e ∈M∂Ωi
\MF . With reference to (12) and

(4), we define
qqqiF := ∑

e∈MF

qieNNNe, (21)

and from elementary finite element estimates and Lemma 4 find

‖qqqiF ‖2
L2(Ωi)

≤Ch3
i ∑

e∈MF

q2
ie ≤C‖qqqi‖2

L2(Ωi)
≤C‖uuui‖2

L2(Ωi)
, (22)

‖∇×qqqiF ‖2
L2(Ωi)

≤Chi ∑
e∈MF

q2
ie ≤C‖∇×uuui‖2

L2(Ωi)
. (23)

It follows from Lemmas 2 and 4 that there exists a ΨΨΨ iF ∈ (W hi
grad)

3 such that ΨΨΨ iF =ΨΨΨ i at all
nodes of F , that vanishes at all other nodes of ∂Ωi, and

‖ΨΨΨ iF ‖2
L2(Ωi)

≤C‖ΨΨΨ i‖2
L2(Ωi)

≤C‖uuui‖2
L2(Ωi)

, (24)

‖∇×ΨΨΨ iF ‖2
H1(Ωi)

≤Cω
2
i ‖ΨΨΨ i‖2

H1(Ωi)
≤Cω

2
i ‖∇×uuui‖2

L2(Ωi)
. (25)

From Lemmas 1 and 4, we obtain

‖ΨΨΨ i‖2
L2(∂F ) ≤Cωi‖ΨΨΨ i‖2

H1(Ωi)
≤Cωi‖∇×uuui‖2

L2(Ωi)
. (26)

Let ΨΨΨ i∂F ∈ (W hi
grad)

3 be identical to ΨΨΨ i at all nodes of ∂F and vanish at all other nodes of

Ωi. For ggg := Π hi(ΨΨΨ i∂F ), we define

gggiF := ∑
e∈MF

ghi
e NNNe. (27)

From elementary estimates and (26) we then obtain

‖gggiF ‖2
L2(Ωi)

≤Ch2
i |ΨΨΨ i‖2

L2(∂F ) ≤Cωih2
i ‖∇×uuui‖2

L2(Ωi)
, (28)

‖∇×gggiF ‖2
L2(Ωi)

≤Cωi‖∇×uuui‖2
L2(Ωi)

. (29)

Defining
vvviF := ∇piF + pppiF +qqqiF +Π

hi(ΨΨΨ iF )+gggiF , (30)

we find viF e = uie ∀e∈MF and viF e = 0 ∀e∈M∂Ωi
\MF . The estimate in (17) then follows

from the bounds for each of the terms on the right-hand-side of (30) along with elementary
estimates for Π hi(ΨΨΨ iF ). 2

3 BDDC

Background information and related theory for BDDC can be found in several references
including [2, 9, 10, 8, 1]. Let uΓi and uΓ denote vectors of finite element coefficients associated
with Γi and Γ . In general, entries in uΓi and uΓj are allowed to differ for j 6= i even though they
refer to the same finite element edge. Entries in the vector ũΓi are partially continuous in the
sense that specific edge values or edge averages over certain subsets of Γ are required to match
for adjacent subdomains. In order to obtain consistent entries, we define the weighted average
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ûΓi = Ri

N

∑
j=1

RT
j D jũΓj , (31)

where R j is a 0-1 (Boolean) matrix that selects the rows of uΓj from uΓ and D j is a diagonal
weight matrix with positive entries. The weight matrices form a partition of unity in the sense
that

N

∑
i=1

RT
i DiRi = I, (32)

where I is the identity matrix. To summarize, ûΓi is fully continuous while ũΓi is only par-
tially continuous. The number of continuity constraints that must be satisfied by all the ũΓi

determines the dimension of the coarse space.
Let Si denote the Schur complement associated with Γi, which is defined in (39). The

system operator for BDDC is the assembled Schur complement

S =
N

∑
i=1

RT
i SiRi. (33)

From Theorem 25 of [10], the condition number of the BDDC preconditioned operator is
bounded above by

κ(M−1S)≤ sup
ũΓi

∑
N
i=1 ûT

Γi
SiûΓi

∑
N
i=1 ũT

Γi
SiũΓi

. (34)

This remarkably simple expression shows that the continuity constraints for ũΓi should be
chosen so that large increases in energy do not result from the averaging operation in (31).

For simplicity of notation, we will refer to ui as the vector of edge finite element coeffi-
cients for Ωi. We have the decomposition

ui = RT
Γi

uΓi +RT
Ii

uIi , (35)

where uΓi and uIi are vectors of coefficients associated with Γi and the interior of Ωi, respec-
tively, and each row of RΓi and RIi has one nonzero entry of unity. We further decompose uΓi

as

uiΓ = ∑
F∈GiF

RT
iF uiF + ∑

E∈GiE

RT
iE uiE (36)

= ∑
F∈GiF

RT
iF uiF +RT

Wi
uWi (37)

= RT
W ′

i
uT
W ′

i
+RT

Wi
uWi , (38)

where Wi denotes the wire basket for Γi and W ′
i = Γi \Wi. The Schur complement associated

with Γi can be expressed as
Si = AΓiΓi −AΓiIi A

−1
IiIi

AIiΓi , (39)

where Ai is the stiffness matrix for Ωi and

AΓiΓi = RΓi AiRT
Γi
, AΓiIi = RΓi AiRT

Ii
, AIiIi = RIi AiRT

Ii
, etc. (40)

Similarly, for W ′
i and F , we introduce the Schur complements

SW ′
i
= RW ′

i
SiRT

W ′
i
, SFi = RiF SiRT

iF . (41)

Lemma 5 is now rewritten in matrix-vector notation as
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(RiF uiΓ )
T SFi(RiF uiΓ )≤Cω

2
i (RW ′

i
uiΓ )

T SW ′
i
(RW ′

i
uiΓ ). (42)

Because of page restrictions, we only consider a very rich coarse space which includes
every edge of each subdomain edge. This coarse space corresponds to Algorithm C of [11]. In
this case, we have

RWi ∆uΓi = 0, (43)

where ∆u := ũ− û, and it follows from (37) and the positive definiteness of Si that

∆uT
Γi

Si∆uΓi ≤ |GiF | ∑
F∈GiF

∆uT
iF SFi ∆uiF . (44)

Let Ω j denote the subdomain which shares F with Ωi, and consider the generalized eigen-
value problem

SFi Φ = SF j ΦΛ , (45)

where Φ is a matrix of eigenvectors normalized so that ΦT SF j Φ = I and Λ is a diagonal
matrix of positive eigenvalues. Introducing the change of variables uiF = ΦwiF , we obtain

∆uT
iF SFi ∆uiF = ∆wT

iF Λm∆wiF , (46)

∆uT
jF SF j ∆u jF = ∆wT

jF I∆w jF . (47)

Choosing

ŵiF = ŵ jF = (Λ + I)−1(Λ w̃iF + w̃ jF ), (48)

we find

∆wiF = (Λ + I)−1(w̃iF − w̃iF ), (49)

∆w jF = (Λ + I)−1
Λ(w̃ jF − w̃iF ), (50)

and from (46) and (47) obtain

∆uT
iF SFi ∆uiF +∆uT

jF SF j ∆u jF ≤ 4(ũT
iF SFi ũiF + ũT

jF SF j ũ jF ). (51)

From (44), (51) and (42), we obtain

N

∑
i=1

∆uT
Γi

Si∆uΓi ≤Cω
2

N

∑
i=1

ũT
Γi

SiũΓi , (52)

where
ω = max

i
1+ log(Hi/hi). (53)

Finally, from (34), (52), and the triangle inequality, we obtain

Theorem 1 (Condition Number Estimate). The condition number of the BDDC precondi-
tioned operator for this study is bounded by

κ ≤Cω
2. (54)
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In summary, we have obtained a favorable condition number estimate that requires no assump-
tions on the material properties of the subdomains. We are unaware of any other algorithms
for 3D H(curl) problems with this property. Comparing the condition number estimate of The-
orem 1 with those in (1) and (2), we see that the factor of H2

i βi/αi has been removed and
the logarithmic factor has been reduced from four powers to two. We note that the estimate in
Theorem 1 also holds for FETI-DP due its spectral equivalence with BDDC.

The algorithm involves a change of variables for edges of each subdomain face, and the
choice for ŵiF and ŵ jF in (48) corresponds to the diagonal weight matrices

RiF DiRT
iF = Λ(Λ + I)−1, (55)

RiF D jRT
iF = (Λ + I)−1. (56)

We note this change of variables can be implemented in practice with just a few simple mod-
ifications to the standard BDDC algorithm. Referring back to the discussion before (46), the
change of variables can be expressed as

uiΓ = TiwiΓ .

Notice that rows of the square transformation matrix Ti for edges not on a subdomain face will
have a single diagonal entry of unity since no change of variables is made for those edges,
while the rows of Ti corresponding to subdomain face F are obtained from the matrix of
eigenvectors Φ appearing in (45). One can then replace D j in (31) by D̃ j := TjD jcT−1

j , where
D jc is the diagonal weight matrix associated with the new variables (see (56)). In terms of the
algorithm in [2], the changes amount to replacing Wi in (16) and (19) by D̃i and Wi in (18) and
(20) by D̃T

i . The importance of the change of variables for some problems is shown in the next
section.

4 Numerical Results

In this section, we present some numerical results to verify the theory and also to provide
some additional insights. The domain is a unit cube discretized into smaller cubic elements.
All the examples are solved to a relative residual tolerance of 10−8 for random right-hand-
sides using the conjugate gradient algorithm with BDDC as the preconditioner. The number
of iterations and condition number estimates from conjugate gradients are under the headings
of iter and cond in the tables. We consider three different types of weights for the averaging
operator. The first one, designated eig, is the one of the previous section based on a change of
variables and the solution of an eigenproblem. Unless otherwise specified in the tables, this is
the weighting used. The second type, stiff, is based on a conventional approach in which the
weights are proportional to entries on the diagonals of subdomain matrices. The third, card,
uses the inverse of the cardinality of an edge, i.e. the reciprocal of the number of subdomains
sharing the edge, for the weight.

The results in Table 1 are consistent with theory, suggesting condition numbers are
bounded independently of the number of subdomains, while the results in Table 2 are con-
sistent with the log(H/h)2 estimate of Theorem 1.

We also consider a checkerboard distribution of material properties in which (α,β ) for
a subdomain is either (α1,β1) or (α2,β2), and note that subdomains with the same proper-
ties are connected together only at their corners. Results for 64 cube subdomains each with
H/h = 4 are shown in Table 3. Notice for only one choice of material properties in the table
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that all three types of weighting lead to small condition numbers, and only the eig approach
always gives condition numbers which are independent of the material properties. We also in-
vestigated another type of weighting similar to card, but with weights γ , 0 < γ < 1 for faces of
subdomains with properties α1,β1 and 1− γ for faces of subdomains with properties α2,β2.
Regardless of the choice of γ , large condition numbers were observed for the properties in the
final row of Table 3. We note also that the choice of material properties in the final row is not
covered by the theory of [11].

In the final example, we consider a cube mesh of 203 elements that is partitioned into
different numbers of subdomains using the graph partitioner Metis [7]. Although this example
is not covered by our theory because the subdomains have irregular shapes, the results in
Table 4 indicate that the algorithm of this study continues to perform well. The results in
Tables 3 and 4 suggest that the eig weighting of this study may be necessary in order to
effectively solve problems with material property jumps or with subdomains having irregular
shapes.

Table 1. Results for N cube subdomains, each with β = 1 and H/h = 4.

N α = 102 α = 1 α = 10−2

iter (cond) iter (cond) iter (cond)

43 15 (2.70) 14 (2.63) 10 (1.77)
63 16 (2.88) 15 (2.81) 11 (2.05)
83 16 (2.95) 15 (2.87) 12 (2.23)
103 17 (2.98) 16 (2.91) 13 (2.33)

Table 2. Results for 64 cube subdomains, each with β = 1.

H/h α = 102 α = 1 α = 10−2

iter (cond) iter (cond) iter (cond)

4 15 (2.70) 14 (2.63) 10 (1.77)
6 17 (3.30) 16 (3.21) 11 (2.14)
8 18 (3.77) 16 (3.66) 13 (2.46)
10 19 (4.16) 18 (4.03) 13 (2.72)
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