What is the fastest, cheapest and most efficient way to get from point A to point B? That consumes him, and all parts of his life.
– Sean Stanton on Travis Kalanick, Uber CEO

1. Suppose that we are doing Dijkstra’s Algorithm on vertex set \(V = \{1, \ldots, 500\} \) with source vertex \(s = 1 \) and at some time we have \(S = \{1, \ldots, 100\} \). What is the interpretation of \(\pi[v], d[v] \) for \(v \in S \)? What is the interpretation of \(\pi[v], d[v] \) for \(v \not\in S \)? Which \(v \) will have \(\pi[v] = NIL \) at this time. For those \(v \) what will be \(d[v] \)?

2. Suppose, as with Dijkstra’s Algorithm, the input is a directed graph, \(G \), a source vertex \(s \), and a weight function \(w \). But now further assume that the weight function only takes on the values one and two. Modify Dijkstra’s algorithm – replacing the MIN-HEAP with a more suitable data structure – so that the total time is \(O(E + V) \).

3. Let \(G \) be a DAG on vertices \(1, \ldots, n \) and suppose we are given that the ordering \(1 \cdots n \) is a Topological Sort. Let \(\text{COUNT}[i, j] \) denote the number of paths from \(i \) to \(j \). Let \(s \), a “source vertex” be given. Give an efficient algorithm (appropriately modifying the methods of the chapter) to find \(\text{COUNT}[s, j] \) for all \(j \).

A clever man commits no minor blunders. – Goethe