Notes on DAGS and TopOrder, §3.6

This is the approach followed in class. I changed some names of variables to match the assignment. The input is a directed graph G with the Adjacency list representation. There is a Boolean Variable NO PROBLEMO which will be true if G is not a DAG and (therefore) there is a cycle. There is a stack GOODORDER which, if G is a DAG, will give a topological ordering. There is an array COLOR[v] which takes on the values white, grey, black. We’ll call the whole algorithm GRAPHTEST

GRAPHTEST

(* Initialization *)

GOODORDER $\leftarrow \emptyset$

For all vertices v

COLOR[v] \leftarrow white

(* End Initialization *)

For each vertex v

 If COLOR[v] \leftarrow white
 DFS[v]
 EndIf

EndFor

The center of the algorithm is DFS[v]

DFS[v] \leftarrow grey (* v has been found *)

For all $w \in \text{Adj}[v]$

 If COLOR[w] \leftarrow grey (* Cycle found *)
 NO PROBLEMO \leftarrow false
 EXIT GRAPHTEST
 EndIf

 If COLOR[w] \leftarrow white (* New point found*)
 DFS[w] (* recursive call *)
 EndIf

(* Ignore black vertices *)

Endfor

COLOR[v] \leftarrow black (* v has been completed *)

ADDTOSTACK [GOODORDER,v]

(* stack will have v in reverse order of completion *)

That does it. It helps to think of DFS[v] at the start of GRAPHTEST when all vertices are white. It will explore all vertices w reachable from v and call DFS[w] for those w and all those w will become black and then when DFS[v] finishes, v itself becomes black. At this point some (sometimes all, in which
case we’re done) of the vertices are black but none are grey. When we find another white vertex \(v' \) and call \(\text{DFS}[v'] \) it is as if the black vertices weren’t there.