Basic Algorithms, Assignment 9 SOLUTIONS
Due, Thursday, Nov 15

1. Page 190, Exercise 5. For definiteness, let \(x[i], 1 \leq i \leq n \) be the locations of the \(n \) houses (in miles from the western endpoint) and let \(y[j], 1 \leq j \leq s \) be the placements of your stations. Assume the \(x[i] \) are already ordered. Design your algorithm, give a cogent argument for its correctness, and analyze its time as a function of \(n \).

Solution: The algorithm is to wait as long as possible to place the stations. The first station is placed at \(y[1] = x[1] + 4 \). Set \(L = y[1] \), the placement of the last station so far. Set \(J = 1 \), the number of stations so far. Now for \(1 \leq i \leq n \), if \(x[i] \leq L + 4 \) you do nothing. Else you set \(J = J + 1 \) and \(y[J] = x[i] + 4 \). This is a linear time algorithm (given the sorted \(x[i] \)).

2. Suppose we are given the Minimal Spanning Tree \(T \) of a graph \(G \). Now we take an edge \(\{x, y\} \) of \(G \) which is not in \(T \) and reduce its weight \(w(x, y) \) to a new value \(w' \). Suppose the path from \(x \) to \(y \) in the Minimal Spanning Tree contains an edge whose weight is bigger than \(w \). Prove that the old Minimal Spanning Tree is no longer the Minimal Spanning Tree.

Solution: We can replace the edge whose weight is bigger than \(w \) with the edge \(\{x, y\} \) resulting in a lower weight spanning tree.

3. Let \(n = 2^t \). Consider the alphabet \(S = \{1, \ldots, n\} \) with frequencies \(f[i] = 2^{-i}, 1 \leq i \leq n - 1 \) and \(f[n] = 2^{-n+1} \). Describe how the Huffman Code Algorithm with work, the final code \(\gamma \), and \(ABL[\gamma] \), the Average Bits per Letter for the code. Let \(\gamma^* \) denote the code that sends \(i \) into the binary expansion of \(i - 1 \), where each binary expansion is given \(t \) bits. What is \(ABL[\gamma^*] \) as a function of \(n \).

Solution: For \(\gamma^* \) we have a constant length code so \(ABL[\gamma^*] = t = \lg n \). For \(\gamma \) we have the encoding \(\gamma[1] = 0, \gamma[2] = 10, \gamma[3] = 110, \ldots, \gamma[n - 1] = 1^{n-2}0 \) and \(\gamma[n] = 1^{n-1}1 \). So \(ABL[\gamma] = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \ldots \), more precisely, including the last one,

\[
ABL[\gamma] = \sum_{i=1}^{n-1} i2^{-i} + (n-1)2^{1-n}
\]

This is roughly 2 (there is an exact formula) as

\[
\sum_{i=1}^{\infty} i2^{-i} = \sum_{i=1}^{\infty} \sum_{j \geq i} 2^{-j} = \sum_{i=1}^{\infty} 2^{-i+1} = 2
\]
4. Suppose we ran Kruskal’s algorithm on a graph G with n vertices and m edges, no two costs equal. Suppose the $n - 1$ edges of minimal cost form a tree T.

(a) Argue that T will be the minimal cost tree.

Solution: From Kruskal’s Algorithm we will accept all the edges of T. Then we have a spanning tree so no more edges are accepted.

(b) How much time will Kruskal’s Algorithm take. (Assume it stops when it finds the MST.)

Solution: We do n operations $\text{UNION}[x, y]$, each takes time $O(\ln n)$ so the total time is $O(n \ln n)$.

(c) We define Dumb Kruskal. It is Kruskal without the SIZE function. For $\text{UNION}[u, v]$ we follow u, v down to their roots x, y as with regular Kruskal but now, if $x \neq y$, we simply reset $\pi[y] = x$. We have the same assumptions on G as above. How long could dumb Kruskal take. Describe an example where it takes that long. (You can imagine that when the edge u, v is given an adversary puts them in the worst possible order to slow down your algorithm.)

Solution: As $\text{UNION}[x, y]$ must take time $O(n)$ (as there are only n vertices) the whole algorithm will take time $O(n^2)$. This can happen. Suppose the edges were, in order, $\{2, 1\}, \{3, 1\}, \{4, 1\}, \ldots, \{n, 1\}$. For the first edge we make $\pi[1] = 2$. The second edge we follow 1 down to root 2 and set $\pi[2] = 3$. Now for the third edge we follow 1 to 2 to root 3 and set $\pi[3] = 4$. On the i-th step we are taking time $\sim i$ so it is a $\Theta(n^2)$ running time.

People wish to learn to swim and at the same time to keep one foot on the ground.
– Marcel Proust