Basic Algorithms, Assignment 2, Solutions
Due, Tuesday, Sept 18

Prof. Spencer’s Office Hours: Wednesday 1-2:30
Course website:
www.cs.nyu.edu/cs/faculty/spencer/basicalg/index.html

1. If a computer does a billion operations per second how many does it do in a year. Round this to one significant digit and write it in exponential form, e.g., something like $3 \cdot 10^{43}$ (but thats not the answer!)

Solution: We have $60 \cdot 60 = 3600$ seconds in an hour, $3600 \cdot 24 \sim 80000$ seconds in a day and $\sim 80000 \cdot 365 \sim 3 \cdot 10^7$ seconds in a year so the computer will do $\sim 10^9 \cdot 3 \cdot 10^7 = 3 \cdot 10^{16}$ operations in a year.

2. Redo Table 2.1 on Page 34 with the processor performing a billion operations per second and with functions $n, n \log_2 n, n^3, 1.1^n$.

Solution: I give the time for input sizes resulting in a time greater than 1 second.

- n: < 1 sec, for each n
- $n \log_2 n$: < 1 sec for each n
- n^3: $n = 1,000$- 1 sec, $n = 10,000$-16min, $n = 100,000$-11 days, $n = 1,000,000$-32 years
- 1.1^n: $n < 100$ - < 1sec, $n \geq 1000$ very long

3. Suppose an algorithm takes $n \log_2 n$ operations, and our computer does a billion operations per second. For how large an n can our computer do the algorithm in a day. (I’m looking for a rough answer here, say to one significant digit.)

Solution: In a day the computer does $\sim 10^9 \cdot 80000 = 8 \cdot 10^{12}$ operations. Now the function $n \log_2 n$ does not have a nice exact inverse but the $\log_2 n$ term is nearly constant for long periods. As $\log_2 10^3 \sim 10$ (as $2^{10} = 1000$ except for roundoff error!) $\log_2 10^{12} \sim 40$. We want $n \log_2 n \sim 8 \cdot 10^{12}$ but $\log_2 n$ is around 40 so we want $n \sim 8 \cdot 10^{12}/40 = 2 \cdot 10^{11}$. Well, was our approximation OK? Actually $\log_2 n$ for this n is less than 40 but only by 2 or 3 so the approximation is pretty good.

4. How many binary digits are there in a 100 decimal digit number? (Actually, there are a few possible answers depending on the exact number but we’re just looking for a rough answer.)

Solution: Each 3 decimal digits give 10 binary digits so we get $10 \cdot 33 = 330$ binary digits from 10^{99} plus another three or four (or five or six)
from the remaining factor (between 10 and 99) so 335 would be a pretty good estimate.

5. Let \(f(n) = \sqrt{2n \ln n} \) and let \(g(n) = 6\sqrt{n} \). Which function is larger as for \(n \) sufficiently large? When does the eventually larger function become larger? (These functions actually came up in my work some years ago.)

Solution: In comparing the \(\sqrt{n} \) factors cancel so we are comparing \(\sqrt{2 \ln n} \) with 6. As the first goes to infinity \(f(n) \) is eventually larger. This occurs when \(\sqrt{2 \ln n} = 6 \), when \(2 \ln n = 36 \), when \(\ln n = 18 \), when \(n = e^{18} \). Another handy estimate is that \(e^3 \sim 20 \) (they are very close!) so that \(e^{18} \sim (20)^6 = 64000000 \).

6. John Wastenot decides to implement the Stable Marriage Gale-Shapley algorithm without using much space. His input consists of linked lists of size \(n \), \(\text{MANLIST}[i] \), \(1 \leq i \leq n \), and \(\text{WOMANLIST}[j] \), \(1 \leq j \leq n \), giving the preference list for each person of the opposite gender. He adds two array \(\text{MANMATE}[i] \), \(1 \leq i \leq n \), and \(\text{WOMANMATE}[j] \), \(1 \leq j \leq n \), giving the current mate \(\text{NIL} \) if there isn’t one, which is the original value) of each person. He adds an array \(\text{MANLASTPROP}[i] \) giving the last woman (\(\text{NIL} \) if there were none) that man \(i \) has proposed to.

Write a pseudocode program for implementing Gale-Shapley with this data structure. Do a worst case analysis of how many steps the algorithm will take. (Note: The answer will not be \(\Theta(n^2) \).)

Solution (Outline): In the WHILE loop you go through \(i \) until finding \(\text{MANMATE}[i] = \text{NIL} \). If none is found, exit and print out couples. (This takes \(\leq n \) steps.) Now go through \(\text{MANLIST}[i] \) until finding \(\text{MANLASTPROP}[i] \), let \(j \) be the next woman on \(\text{MANLIST}[i] \). (This takes \(\leq n \) steps.) (If \(\text{MANLASTPROP}[i] = \text{NIL} \) let \(j \) be the first woman on \(\text{MANLIST}[i] \).) Reset \(\text{MANLASTPROP}[i] = j \). Now \(i \) proposes to \(j \). The \(\text{WOMANMATE}[j] \) case is now easy and quick. But when \(\text{WOMANMATE}[j] = i' \neq \text{NIL} \) and we must see whether \(j \) prefers \(i \) or \(i' \). To do that go through \(\text{WOMANLIST}[j] \) until reaching either \(i \) or \(i' \), this taking \(\leq n \) steps. The updating in the two cases is quick. The total time for the WHILE loop is now \(\leq n + n = O(n) \). But the WHILE loop may be used \(n^2 \) time so this implementation has time \(O(n^3) \). Note that this can be considerably slower than the implementation with time \(O(n^2) \). This is a quite common occurance, that saving space by keeping auxilliary arrays to a minimum can lead to a great increase in time.

Throughout human history, mankind has been a lot better at
gathering data than at thinking about it.
From *Mirror Worlds* by David Gelernter