BUILDHEAP(H) and SORTHEAP(H) and SORTARRAY(H)

This routine begins with an array H of records in no particular order, with $n = \text{length}(H)$ the number of records. It ends with the same records in the same array but now the array is a heap. The algorithm is quite simple:

BUILDHEAP(H)

$n \leftarrow \text{length}(H)$ (* Just for convenience of understanding *)

For $i = n$ down to 1

Heapify – down(H, i)

Endfor

Why does this work? Heapify – down(H, i) looks only at the subtree consisting of i and all of its descendents. If that is a heap except maybe position i (the root of the subtree) is too big then it fixes it and the whole subtree has the heap property. From $i = n$ down to $[n/2] + 1$, i has no descendents and so Heapify – down(H, i) does nothing. (Indeed, we can have the for loop begin at $i = [n/2]$. Now we show by induction that when we reach i and apply Heapify – down(H, i) that the subtree with root i has the heap property. Suppose this is true until you reach i and i has children $x = 2i, y = 2i + 1$. By induction the subtrees with roots x, y became heaps when we applied Heapify – down(H, x) and Heapify – down(H, y) and those elements haven’t been touched since. So the only problem with the subtree with root i is what is at its root, and so Heapify – down(H, i) fixes it. When we finish $i = 1$ the subtree with root 1, that is, the whole tree, is a heap.

How long does this take? Let $T(n)$ be the time for BUILDHEAP, with an array of size n. Each application of Heapify – down(H, i) takes time $O(\lg n)$ and so the total time is $O(n \lg n)$. While this is technically true (in the sense that you are less than 132 years old) we can say more. Actually, the total time is $O(n)$.

The time for Heapify – down(H, i) is the distance from i to the leaves. For the $n/2$ values which are leaves the time is zero. For the $n/4$ values i which have children but not grandchildren the time is 1. (We are measuring time by the number of switches when we apply Heapify – down(H, i) . In general, the $n/2^j$ values i whose distance to the leaves is j have time j. The key is that most of the time Heapify – down(H, i) has a very small time. But lets be more precise. Let $g(n)$ be the number of switches. Then

\[g(n) \leq \frac{n}{2} \cdot 0 + \frac{n}{4} \cdot 1 + \frac{n}{8} \cdot 2 + \ldots \]
Taking out the common factor of \(n \) we have

\[
g(n) \leq n \left[\frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{4}{64} + \cdots \right]
\]

We bound the sum by an infinite sum

\[
g(n) \leq n \cdot \sum_{i=2}^{\infty} \frac{i-1}{2^i}
\]

Intriguingly, this sum is precisely one! One way to see this is to make an infinite table:

\[
\begin{array}{cccccc}
1/4 & 1/8 & 1/16 & 1/32 & 1/64 \\
- & 1/8 & 1/16 & 1/32 & 1/64 \\
- & - & 1/16 & 1/32 & 1/64 \\
- & - & - & 1/32 & 1/64 \\
- & - & - & - & 1/64
\end{array}
\]

The column sums are the terms we have. The runs are geometric series and sum to \(1/2, 1/4, 1/8, \ldots \) respectively. The sum of the column sums is equal to the sum of the row sums which is a geometric series which sums to one. So \(g(n) \leq n \) and hence \(T(n) = O(n) \). We have the lower bound \(T(n) = \Omega(n) \) since you can’t make a heap without looking at all the data. Thus BUILDHEAP is a \(\Theta(n) \) algorithm.

\[\text{SORTHEAP}(H)\] takes a heap of length \(n \) and turns it into a sorted array.

\[
\text{SORTHEAP}(H)
\]

\[
n \leftarrow \text{length}(H)
\]

For \(i = 1 \) to \(n - 1 \)

\[
\text{TEMP} \leftarrow \text{ExtractMin}(H) \quad (* \text{This places } H(1) \text{ in TEMP and rearranges rest of heap} *)
\]

\[
H(\text{length}(H)) \leftarrow \text{TEMP}
\]

\[
\text{length}(H) \leftarrow \text{length}(H) - 1
\]

endfor

\[
\text{length}(H) \leftarrow n \quad (* \text{return length to original value} *)
\]

The FOR loop is being done \(n - 1 \) times. On the first time the smallest element (which is \(H(1) \)) is moved to \(H(n) \), the \textbf{length} is moved down to \(n - 1 \) and now \(H(1), \ldots, H(n - 1) \) form a heap. Now the current \(H(1) \) (so that will be the second smallest element) is moved to \(H(n - 1) \) and
now $H(1), \ldots, H(n-2)$ form a heap. We continue removing the smallest elements and putting them at the end. (A subtlety here. The array H will always have n values in it. However, we will be lowering the value $\text{length}(H)$ to $s = n-1, n-2, \ldots$ down to 2. This is important because when $\text{length}(H) = s$ the subroutine $\text{ExtractMin}(H)$ is only looking at the terms $H(1), \ldots, H(s)$ and is leaving the other terms alone. The algorithm then puts $H(1)$ in the $H(s)$ position and shuffles around $H(2), \ldots, H(s)$ so that they are now the first $s-1$ positions and form a heap of length $s-1$.) At the end of the $n-1$ iterations the $H(1), \ldots, H(n)$ are in reverse order, the largest one first. (This can easily be reversed with a $O(n)$ algorithm if needed.)

As each application of ExtractMin takes time $O(lg n)$ and there are $n-1$ applications the total time is $O(n lg n)$. (It looks like there is something to be gained further here as ExtractMin is done on heaps of length $n, n-1, \ldots$ down to 2 and the later ones are quicker but it turns out that that gain is negligible.)

If we put these two algorithms together we get a sorting algorithm.

\begin{verbatim}
SORTARRAY(H)
 BUILDHEAP(H)
 SORTHEAP(H)
\end{verbatim}

This takes a totally unsorted array H, first makes it a heap, and then makes it a sorted array. The time is $O(n)$ for the first part, $O(n lg n)$ for the second part, so the total time is $O(n lg n)$. (This matches the best other sorts we shall examine!)