Chapter 1 exercises. The data sets you need for these exercises will be at http://cs.nyu.edu/cs/faculty/shasha/papers/stateasyExerciseData.zip
2. In Diff2MeanCh1Ex2.vals we have duplicated the placebo/drug data from exercise 1 to see how the confidence interval and statistical significance change. How do they?
Solution:
Significance:
Observed difference of two means: 2.00
444 out of 10000 experiments had a difference of two means greater than or equal to 2.00 .
The chance of getting a difference of two means greater than or equal to 2.00 is 0.0444 .
The significance didn't change much.  That makes sense. Both the drug and placebo groups have the same distribution they had before.  If a value in the drug group had a frequency of x / s before,  where x is the number of times the value is in the drug group  and s is the sample size of the drug group, now it has a frequency of 2x / 2s which equals x / s.   Also every time we shuffle the values, all values are still included in the new groups, so any outliers are always included in the calculations.
Confidence: 
Observed difference between the means: 2.00
We have 90.0 % confidence that the true difference between the means is between: 0.74 and 3.28
Our confidence interval got a little tighter.  The reason is that with a larger sample size outliers have less of an impact (even though they still occur in the data with the same frequency).  Remember here we bootstrap the samples to generate new samples so not every value is included in every bootstrapped sample.
Chapter 2 exercises. The data sets you need for these exercises will be at http://cs.nyu.edu/cs/faculty/shasha/papers/stateasyExerciseData.zip
2. After transforming that data to ranks, evaluate the same question.
Solution:

Rank 1 will be the highest salary, rank 2 the second highest etc.  If multiple salaries are identical,
they are all assigned the same rank.  If there are x people with salaries u and r is the next unused 
rank, all x people are assigned rank (r + ((r - 1) + x)) / 2.  The next unused rank is then r + x.  
For example:
salary
rank
12499
4
12500
5.5
12500
5.5
15000
6
Two people have salary 12500.  So x = 2.  The next unused rank is 5, so r = 5.  Both people with salary 
12500 will be assigned rank (5 + ((5 - 1) + 2)) / 2 = 11 / 2 = 5.5.  The next unused rank is 7.
Now when we run Diff2MeanSig.py on Diff2MeanCh2Ex1Ranked.vals, we get:
Observed difference of two means: 10.21
62 out of 10000 experiments had a difference of two means greater than or equal to 10.21 .
The chance of getting a difference of two means greater than or equal to 10.21 is 0.0062 .
Our p-value is 0.0062, which is still less than 0.05.  When we ran Diff2MeanConf.py on the above input file we got:
Observed difference between the means: 10.21
We have 90.0 % confidence that the true difference between the means is between: 3.63 and 16.57
When we run Diff2MeanConfCorr.py on the ranked input file we get:
Observed difference between the means: 10.21
We have 90.0 % confidence that the true difference between the means is between: 3.46 and 16.60
The difference of course is now measured in salary ranks and not dollars. 
4.   You have four different treatments: none, A alone, B alone, A and B together
You have 16 fields: four are dry-hilly, four are wet-hilly, four are dry-flat, four are wet-flat. Give two Latin square designs that work for this.  Call the four dry-hilly fields dry-hilly1, dry-hilly2, dry-hilly3, and dry-hilly4. And similarly for the four wet-hilly fields and so on.
Solution:
Here is a first Latin square design.
dry-hilly1 none
dry-hilly2 A
dry-hilly3 B
dry-hilly4 AB
wet-hilly1 none
wet-hilly2 A
wet-hilly3 B
wet-hilly4 AB
dry-flat1 none
dry-flat2 A
dry-flat3 B
dry-flat4 AB
wet-flat1 none
wet-flat2 A
wet-flat3 B
wet-flat4 AB
Here is a second one (just rotation for each field type):
dry-hilly1 AB
dry-hilly2 none
dry-hilly3 A
dry-hilly4 B
wet-hilly1 AB
wet-hilly2 none
wet-hilly3 A
wet-hilly4 B
dry-flat1 AB
dry-flat2 none
dry-flat3 A
dry-flat4 B
wet-flat1 AB
wet-flat2 none
wet-flat3 A
wet-flat4 B
Chapter 3 exercises. 
These exercises are conceptual rather than quantitative. So, no calculation is required.
1. When might you do a rank transformation?
Answer: When there are some outliers and their values are less important than their rank
2. If you do a test and the p-value of the alternate hypothesis is say less than 0.10, what does that mean exactly?
Answer: it means that if the null hypothesis is true, then 10% of the time by chance, you would see a test value as extreme as the value you see or more so.
3. Why do you use shuffling? How is it used? Relate it to a p-value. Use a drug vs. placebo scenario as an example.
Answer: Shuffling is used to test statistical significance.  Suppose the drug group has a different effect than the placebo group on some statistic where it has some difference d.  In a shuffle test, the assignment of the drug/placebo label to people is shuffled (permuted). Then the statistic is recalculated.  The p-value is the number of shuffles where the statistic has a value of d or greater divided by the total number of shuffle experiments. If the p-value is high, then the drug is less significant.
4. Why do you use bootstrapping? How is it used?  Relate it to a confidence interval.  Use a drug vs. placebo scenario as an example.
Answer: Suppose again the drug group has a different effect than the placebo group on some statistic where it has some difference d. How much confidence should we have in the specific d value? Bootstrapping attempts to answer this without assuming anything about the sample distribution. In bootstrapping, we repeatedly take random samples of the same size as our original sample, from the original sample.  We use these samples to calculate a range of values our test statistic is likely to take. This gives a confidence interval.
5. When would you use a one-tailed test vs. a two-tailed test?
Answer: You measure some sample statistic (e.g. difference in the mean). Suppose you care only about results that are as extreme or more extreme than your sample statistic in one directon. Then you are concerned about a single tail result.
If you care about extremes at either end of the range of possibilities, you should use a two-tailed test.
For example, say there is a new diet trend and you want to know if the people who are on it weigh significantly more or less than people who aren't.  You look at both tails of the distribution because the diet could have the opposite affect of what people want: it cause weight gain.
6. In Nicholas D. Kristof’s June 16th, 2010 New York Times op-ed column called “Dad Will Really Like This” he describes tuberculosis sniffing giant rats working in Tanzania developed by a company called Apopo.  He says “A technician with a microscope in Tanzania can screen about 40 samples a day, while one giant rat can screen the same amount in seven minutes.”  What if when the rats were initially tested these were the results:


Rat signals sample has TB
Rat signals sample is TB free

Total
TB Sample

516



84



600


TB free sample
 40



360



400
Total


556



444



1000
Note that there are two types of mistakes here, when the rat indicates the sample has TB and it doesn’t (a false-positive) and when the rat signals that the sample is TB is sample free when it isn’t (a false-negative). What are the false positive and false negative rates?
Answer:  So in this case, the rats correctly identified 86% of the TB samples, and 10% of the TB free samples they said had TB.  These rates are about what they found in their preliminary tests (http://arstechnica.com/old/content/2007/09/of-mice-and-mines-trained-rats-search-for-explosives-tuberculosis.ars).
Now what if they had found the following:


Rat signals sample has TB
Rat signals sample is TB free

Total
TB Sample

84



516



600


TB free sample
 360



40



400
Total


444



556



1000
Here the rats signal that the TB sample is TB free 86% of the time and 90% of the time a sample is TB free they say it has TB.  Quite likely they have been trained to give a signal that a sample has TB when in fact they don’t smell TB at all.  In this case it is just a matter of correcting either our interpretation of the signal they give us, or retraining them to give the signal when they do smell TB. 
7.  If you want to prove that your drug has a beneficial effect compared to a placebo, would you want a statistical test that gives more power or less?
Answer: More. The null hypothesis is that the drug has no effect. Power is the probability that a test rejects the null hypothesis when the null hypothesis should be rejected. The null hypothesis is that the drug has no more effect than the placebo. So, you'd like to increase the power. 
8. Without changing the test, how might you increase the power of protocol that uses that test?
Answer: increase the sample size.
9. Relate the terms: false positive, false negative, type 1 error, type 2 error.
Answer: 
false positive/type I error - rejecting the null hypothesis when it is in fact true
false negative/type II error - not rejecting the null hypothesis when in fact it is false
Four things can happen:





you reject the null hypothesis
you accept the null hypothesis
null hypothesis is actually true:

false positive/type I error
you are correct
null hypothesis is actually false:


you are correct

false negative/type II error
Trying to decrease the number of false positives usually means increasing the false negatives and visa-versa.  What you choose to do depends on your problem and how costly each error is.  For example, in the tuberculosis sniffing rat example from question 5, we might prefer to increase the number of false-positives in order to reduce the number of false negatives.  Meaning we would rather have the rat say someone has TB when they don’t (which we will probably figure out with further testing) then have the rat miss someone who actual does have TB.
Chapter 4 exercises. The data sets you need for these exercises will be at http://cs.nyu.edu/cs/faculty/shasha/papers/stateasyExerciseData.zip
Throughout these exercises, there are two running data sets: (i) one concerning drug vs. placebos with varying dosages and (ii) one concerning gene responses to a certain pair of inputs A and B (that is each gene was tested 4 times in 25 samples for each of 4 input types: no input, A alone, B alone, A and B together). 
In the drug data set, higher response values are a good thing.  The dosages are: 100mg/m2, 75mg/m2, 50mg/m2, placebo
For the gene test, let there be 20 genes, each replicated 4 times in a total of 100 samples.
Gene no input, A alone, B alone, AB together (each gene 4 x)
2. For the smallest dose drug vs. placebo case determine whether the difference is significant and the confidence interval of the difference.
Solution: When we ran Diff2MeanSig.py with the input file Diff2MeanCh4Ex2.vals we got: 
Observed difference of two means: 5.27
2740 out of 10000 experiments had a difference of two means greater than or equal to 5.27 .
The chance of getting a difference of two means greater than or equal to 5.27 is 0.274 .
We cannot reject the null hypothesis here.  It is too likely that the difference between the 50mg/m2 dose and the placebo is due to chance alone.
Next we ran Diff2MeanConf.py with the same input file and got:
Observed difference between the means: 5.27
We have 90.0 % confidence that the true difference between the means is between: -8.33 and 18.87
Here we can see that the 50mg/m2 dose should  be better than the placebo in some cases and the placebo to be better in others.
.  
4. Use two-way anova to test the influence of factors A and B on the gene expressions.  Each factor is divided into categories given and not given.  Use all 20 genes.
Solution: TwoWayAnovaCh4Ex5.vals has the gene data split into 4 groups: AB, A, B, no input.  When we ran TwoWayAnovaSig.py on this input we got:
Observed F-statistic: 22.29
0 out of 10000 experiments had a F-statistic greater than or equal to 22.29
Probability that chance alone gave us a F-statistic of 22.29 or more is 0.0
Note that if you are reporting a p-value of 0 when you do 10,000 tests you should say p < 0.0001.
When we ran TwoWayAnovaConf.py on the input file we got:
Observed F-statistic: 22.29
We have 90.0 % confidence that the true F-statistic is between: 9.53 and 41.58
***** Bias Corrected Confidence Interval *****
We have 90.0 % confidence that the true F-statistic is between: 9.24 and 40.85
Remember that the f-statistic measures how the between group variance compares to the within group variance.  It looks here that there is between group variance.

6. Get a Bonferroni corrected p-value using the results from problem 5.   Use a Bonferroni cutoff of 0.05.
Solution: The file MultipleTestingCh4Ex6.vals contains the sorted results from problem 3.  We multiply each p-value by the number of tests run, and then apply the new cutoff.  Our new p-values are in the last column:
'AB gene 1' and 'A gene 1'      -185.78      0.00000000      0
'AB gene 1' and 'no input gene 1'      -179.49      0.00000000      0
'AB gene 10' and 'no input gene 10'      -182.50      0.00000000      0
'AB gene 11' and 'no input gene 11'      -208.43      0.00000000      0
'AB gene 12' and 'no input gene 12'      -276.83      0.00000000      0
'AB gene 13' and 'A gene 13'      -200.27      0.00000000      0
'AB gene 13' and 'no input gene 13'      -234.84      0.00000000      0
'AB gene 15' and 'no input gene 15'      -204.85      0.00000000      0
'AB gene 16' and 'no input gene 16'      -240.79      0.00000000      0
'AB gene 17' and 'no input gene 17'      -226.53      0.00000000      0
'AB gene 18' and 'A gene 18'      -157.78      0.00000000      0
'AB gene 18' and 'no input gene 18'      -205.78      0.00000000      0
'AB gene 2' and 'no input gene 2'      -192.39      0.00000000      0
'AB gene 3' and 'no input gene 3'      -190.36      0.00000000      0
'AB gene 4' and 'no input gene 4'      -216.10      0.00000000      0
'AB gene 5' and 'A gene 5'      -208.98      0.00000000      0
'AB gene 5' and 'no input gene 5'      -204.71      0.00000000      0
'AB gene 6' and 'no input gene 6'      -208.44      0.00000000      0
'AB gene 7' and 'no input gene 7'      -271.17      0.00000000      0
'AB gene 8' and 'no input gene 8'      -226.06      0.00000000      0
'AB gene 9' and 'no input gene 9'      -165.04      0.00000000      0
'AB gene 9' and 'A gene 9'      43.45      0.01870000      1.122
'AB gene 4' and 'B gene 4'      -43.51      0.01880000      1.128
'AB gene 7' and 'B gene 7'      -36.30      0.03250000      1.95
'AB gene 3' and 'A gene 3'      35.78      0.03500000      2.1
'AB gene 10' and 'A gene 10'      35.63      0.04840000      2.904
'AB gene 20' and 'B gene 20'      56.48      0.07140000      4.284
'AB gene 12' and 'A gene 12'      -28.67      0.08520000      5.112
'AB gene 4' and 'A gene 4'      -24.83      0.10820000      6.492
'AB gene 14' and 'no input gene 14'      -46.64      0.10910000      6.546
'AB gene 6' and 'B gene 6'      -21.75      0.12820000      7.692
'AB gene 12' and 'B gene 12'      -18.81      0.18210000      10.926
'AB gene 20' and 'A gene 20'      32.18      0.19120000      11.472
'AB gene 8' and 'B gene 8'      -18.10      0.19290000      11.574
'AB gene 6' and 'A gene 6'      -17.10      0.19820000      11.892
'AB gene 19' and 'B gene 19'      -30.65      0.21000000      12.6
'AB gene 14' and 'B gene 14'      -27.23      0.22470000      13.482
'AB gene 1' and 'B gene 1'      -15.22      0.22650000      13.59
'AB gene 15' and 'A gene 15'      -14.52      0.24100000      14.46
'AB gene 7' and 'A gene 7'      -12.25      0.27240000      16.344
'AB gene 9' and 'B gene 9'      11.86      0.27870000      16.722
'AB gene 2' and 'A gene 2'      -11.05      0.29720000      17.832
'AB gene 16' and 'B gene 16'      10.80      0.30080000      18.048
'AB gene 17' and 'B gene 17'      -9.58      0.31120000      18.672
'AB gene 19' and 'A gene 19'      17.71      0.32270000      19.362
'AB gene 11' and 'B gene 11'      -8.52      0.34990000      20.994
'AB gene 8' and 'A gene 8'      3.94      0.41670000      25.002
'AB gene 15' and 'B gene 15'      -3.95      0.42260000      25.356
'AB gene 19' and 'no input gene 19'      -7.87      0.42340000      25.404
'AB gene 2' and 'B gene 2'      4.01      0.43110000      25.866
'AB gene 16' and 'A gene 16'      -2.90      0.43840000      26.304
'AB gene 10' and 'B gene 10'      2.85      0.45110000      27.066
'AB gene 5' and 'B gene 5'      2.73      0.45490000      27.294
'AB gene 11' and 'A gene 11'      1.86      0.46870000      28.122
'AB gene 17' and 'A gene 17'      1.19      0.47470000      28.482
'AB gene 3' and 'B gene 3'      1.00      0.48220000      28.932
'AB gene 14' and 'A gene 14'      1.57      0.48520000      29.112
'AB gene 13' and 'B gene 13'      0.95      0.48720000      29.232
'AB gene 18' and 'B gene 18'      -0.80      0.48950000      29.37
'AB gene 20' and 'no input gene 20'      -0.47      0.48990000      29.394
Now when we use a Bonferroni cutoff of 0.05, we reject the null hypothesis in the first 21 tests (5 of the genes that we rejected the null hypotheis before the correction we now do not reject the null hypothesis for).  The reason is that when you do so many tests you expect to see some unlikely values by chance.  
