NANCY LEVESON –It’s the system, stupid

After 20 years in software safety we had not made any real progress, I sat down to consider what was wrong and decided that the assumptions underlying everything we do were wrong. Software and new technology are changing the nature of accidents, and we need to change our approaches to preventing them accordingly
– Nancy Leveson

[Leveson_opener_0001.tif]
On April 10, 1912 the Titanic left its port in Southampton England on its maiden voyage. The newspapers celebrated it as a masterpiece of ship design--three propellers, four smoke towers, radios, electrical lights, and an onboard swimming pool. Some of the world’s wealthiest industrialists embarked into their furnished first class cabins. When the boat sank four days later with great loss of life, the first question was how could such a perfect vessel succumb to such an ignominious fate?

A post-mortem of the accident revealed that the boat was traveling at night in icy conditions faster than it should have. The watch for icebergs was intermittent. The boat collided with an iceberg and began to sink. But boats had sunk before. Why was the loss of life so extraordinarily high? For starters, the ship was carrying enough lifeboats for only about half the passengers. Worse yet, when the 40-person capacity lifeboats launched, some carried only 12 passengers.
Were the captain and the lookout to blame? Should the constellation of failures in design and procedure be considered astronomically unlucky? Or did the ship sink from overconfidence – from the belief that safety precautions (sufficient lifeboats, proper lookouts, and so on) were unnecessary on a “practically unsinkable” ship?

Though technology advances, accidents will always be with us. In fact, improving technology implies enhanced destructive potential: compare the consequences of an accident at a nuclear power plant with an accident at a windmill.
Nancy Leveson studies accidents, especially life-taking ones., . She believes that looking for proximate causes (reckless captains or inattentive lookouts) makes future accidents more rather than less likely. She maintains that the proximate causes can often obscure the systemic ones.

Though trained in computer science, her unusual and broad background in many fields has enabled her to look beyond technology. She considers ”the system” writ large: technology, management, industry and company “culture,” government, society, and economics—what she calls “socio-technical” factors in safety. She includes the entire life cycle of systems, from concept development to design, deployment operations and finally retirement….. While many holistic approaches to design projects founder in a sea of words, hers offers the possibility of far better practice while still allowing complex systems to be built.
Born in 1944, Leveson grew up in West Los Angeles. Her father, the youngest of ten children, was the only one to go to college. He majored in economics. After working for an accounting firm, he retired early and stayed home to manage his investments. Leveson’s mother started and ran her own sportswear company.

My mother believed that women should be social. But I was shy and loved books. I taught myself to read when I was about three years old. I used to love to take the encyclopedia which was bigger than me and read it. But I had to hide because my mother would push me to go play with the neighborhood kids.

When she was in second grade, the school gave Leveson an IQ test.

The principal called my mother and recommended that my parents put me in a special school. The story I heard was that the school was in Arizona and my parents didn’t want to send a six year old to boarding school. It turned out there was a very fine special school at UCLA. But there was no sidewalk there. You had to walk on the grass. My mother decided that I couldn’t be trusted not to step out into the street. So her child who was super bright wasn’t bright enough to stay on the grass and not walk in the street.
Her parents consented to let Leveson skip a grade, which just made her younger than everyone, but she still found school less than challenging.
My older sister would play with me only when she needed a “student” to play school. She taught me what she was learning, so I was way ahead of my classmates. Most of the time I spent the hours daydreaming and creating alternative worlds.

After lounging through primary and high school, Leveson went to UCLA in 1961 and studied math because that major required so few courses. She could then take courses in lots of different subjects, including the social sciences, humanities, and arts. She credits her very broad education and interests with her holistic approaches to research later in life.
I had a great time in college—I became social. I found people that I could relate to. My grades were not great. I didn’t go to most of my classes the last two years, but instead studied the subjects on my own. I just went and took the finals. This was the mid-1960s and students were discovering that there was more to the world than academics.

UCLA’s math department was proudly theoretical. Applied mathematics was frowned on.

But they did have a one unit course, one hour a week on Friday at 4 p.m. on computer programming for what was even then an obsolete machine, the IBM 1620. I signed up for the class and then I forgot I was enrolled. The week before finals, I got a list in the mail about the time and location of my finals. I went to talk to the professor and asked him to allow me to drop the course. He was sympathetic but denied my request, suggesting that the final was open book so perhaps I could pass it anyway.

It didn’t seem worth ruining my other classes trying to learn about computers in a week, so I went into the final cold and sat there reading the book. Of course, I failed the class so now I have the distinction of being perhaps the only Ph.D. in computer science who failed their first computer class. But while sitting for the three hours and reading the book, I decided that computers might be interesting.

So despite this unlikely and rather unsuccessful initiation into the field, Leveson decided to pursue computer science. She preferred computing to becoming an actuary.
It was like solving puzzles, which I loved.
So her next problem was how to talk her way into graduate school given her less than stellar academic record. There was no computer science department at UCLA at the time but there was a program in UCLA’s School of Management where the requirements were looser. She went to a professor who did research in Artificial Intelligence-- Earl “Buzz” Hunt. He agreed to take her on if she did well in his graduate operating systems and AI classes.

I didn’t know what a computer was. And everybody else was in the Ph.D. program and knew a lot about computer science. I was also the only female in the school of 800 students. I was scared. I had no idea what was going on in my classes at first.

It was the first time I really studied in my life. I actually read the books. I asked questions. I had my hand up the whole time. I had no idea what they were talking about—I didn’t know what any of the words meant. Everyone in the class thought I was going to fail. I thought I was going to fail. The professor thought I was going to fail. This “girl” is totally in the wrong place. But I got the highest grades in the two classes and Buzz agreed to supervise me.

Buzz suggested I stay on for a Ph.D., but at the time, few women did such things. I had never even had a female professor. It didn’t seem like an appropriate thing to do.

After completing her master’s in 1967, Leveson went to work for IBM in Los Angeles as a systems engineer. At the time, IBM offered one-stop shopping to its customers, providing hardware, programming, and even operations support. Leveson did all of that, plus operating systems debugging and teaching others about new tools in information and database systems.

I really liked the job except that I hated having to be somewhere from 9 to 5 and having a boss. They tried an experiment to put all the systems engineers who, like me, worked with a sales team, on a partial commission basis. The salesmen on our team sold a very expensive super-computer and I received a large commission. With money in my pocket, I quit and decided I was going to trek around the world.

For two years, Leveson hitchhiked her way one and a half times around the world, living on an average of 50 cents a day. When she was staying with an Australian couple in the highlands of New Guinea among Stone-Age aboriginal tribes, she began to take stock.

In the West we feel that the world revolves around us as individuals. We think our own lives are very important. When you’re in Asia and there are all these masses of humanity living under terrible conditions, you start to feel very small and unimportant in the larger scheme of things. I decided it was time for me to do something with my life. And what I did should be something that made a difference and provide a meaning for my life.

She returned to the United States and first taught high school math. After a year, Leveson decided that she would like to learn to work with emotionally disturbed kids. She enrolled in a program in developmental psychology at UCLA.

I did very well in the book work. But I worked with some emotionally disturbed in-patient psychotics and I just wasn’t very good clinically. I found it too depressing. I started taking cognitive psychology classes, which I loved. But it appeared that it would take me eight years to get a degree and that there would be few available university positions in cognitive psychology after I finished. My friends suggested I go back to computer science where I could get a degree in three years and have lots of career options. I could study artificial intelligence and do many of the same things that I might have done in psychology.

So she switched to computer science. But she fell out of love with artificial intelligence. She switched once again, this time to software engineering and programming languages. She finished her degree in 1980 in the predicted three years. She accepted a job at the University of California at Irvine. She was the first woman in the department.

All I can say is it was not easy to be a “first.” In addition, I had been there about a week and found out that my dissertation had been plagiarized by someone who had asked for an early copy, so I couldn’t publish it. I was pretty bummed out.
But her luck changed quickly. During her first week at Irvine, Leveson got a call from an engineer at Hughes Aircraft.

He said “We have this torpedo with 15 microprocessors on it. We’re not too concerned about missing the other guy, but we are concerned that it turns around 180 degrees and hits us.” I said, “That sounds like a reliability problem. That’s not what I do. I do formal semantics of programming languages. And I don’t know anything about torpedoes, I’m an applied mathematician”. He said, “Well we’ve got some money.” I said, “I’ll learn.”

That’s when Leveson’s education in system safety began. In commercial aviation and nuclear power, safety engineering focuses on making systems “fail-safe,” relying mostly on making each component very reliable and then having several identical copies of the components to make them even more reliable – what engineers call redundancy. Engineers in these industries also emphasize learning from past accidents, what could be called the “fly-fix-fly” approach. This approach works well because the system designs are relatively simple, they change very slowly, and new technology is introduced very slowly. Until quite recently, computers were used very conservatively, if at all.

The safety problem in defense is very different. Weapons are always being updated with the latest technology. Computers have been used to control these very complex systems since the early intercontinental ballistic missile systems of the 1950s. In these systems, accidents and near misses were frequent even though components were built well and there was redundancy everywhere.
Engineers discovered that in complex systems, many safety problems arose in the interactions among components, not in the failure of individual components. So redundancy didn’t help. In addition, redundancy does not provide protection against software errors. Software-related accidents usually occur when the software does exactly what the designers intended it to do, but that intention turns out to be wrong. Multiple versions of incorrect logic do not in the end result in correct behavior.

In order to cope with safety problems in complex defense systems, a unique form of safety engineering was developed. The early pioneers in the military aviation community, such as C.O. Miller, called this new approach to safety engineering “System Safety.” Leveson was lucky to learn it from some of the best in the world during her escapades with the Hughes torpedo. While it has been used throughout the aerospace world, it has had much less influence in other industries and is almost unknown outside the United States and among non-aerospace engineers.
In system safety, the emphasis is on building safety into the design from the beginning rather than adding it on afterwards with protection systems. The focus is on “hazards” or unsafe states of the system, such as an inadvertent launch of a missile. Hazard analysis is performed to determine how such states can come about, essentially “investigating an accident before it happens.” The design is then changed either to eliminate the potential causes of the hazards.
Another unique feature of system safety is the view that accident causes are not just technical but involve all aspects of the system and its management. What the torpedo designers brought to Leveson was an entirely new challenge—one that crossed intellectual boundaries and could have a pervasive impact on society.

My diverse background in the social sciences and wandering among different fields became a plus. I was able to integrate engineering with the social and cultural aspects of accidents. At the same time, my computer background was enormously helpful in tackling complex system engineering problems. Not only are computer scientists uniquely qualified to deal with complexity, but the digital revolution was taking engineers by surprise and changing the bedrock under their feet. Many basic assumptions underlying the most pervasive engineering techniques, such as independent random failures, do not hold for computers and software.

Leveson, like most others, first tried to extend the traditional safety engineering techniques to include software.

I started out thinking we’d test software for safety. It turns out you can’t test for safety. Accidents usually occur due to things you forgot or because the assumptions made about the system and its environment are incorrect. Those same assumptions underlie the testing process. And for software, testing is too late anyway. Making significant changes to complex software at the testing stage is impractical.
Then I started looking at software design. But I soon realized that most software-related accidents stemmed from errors in the requirements, not the software design. So I moved to the requirements field. And I also started doing human-computer interaction at the same time because operators were being blamed for accidents that really resulted from the software having confused or misled them. Once I got into human factors and into requirements, I realized I had backed my way out of computer science and into system engineering.

One of the reasons computers have created new problems in system engineering is that they allow enormously complex systems to be built. These systems cannot be exhaustively tested to get out design errors. At the same time, software introduces new types of failure modes that are not adequately handled by standard reliability engineering techniques.

The computer is so powerful and so useful because it has eliminated many of the physical constraints of previous machines. This is both its blessing and its curse: We no longer have to worry about the physical realization of our designs, but we also no longer have physical laws that limit the complexity of our designs.

Before software became pervasive, engineers mainly had to deal with physical constraints, such as gravity and the laws of thermodynamics. These laws tended to limit the complexity of the systems they built. But computers add a new dimension. We are now able to build systems, using computers, that overwhelm human intellectual limits. It is impossible for the unaided human mind to understand, predict, and thus guard against all potential hazardous states. While engineers and computer scientists are trying to develop new tools that allow us to stretch the limits of complexity that human minds can handle, we are unwilling to wait for engineering tools to catch up to our desires for new and more advanced automation.

Leveson left Irvine for the University of Washington in Seattle and then moved to MIT in her, as she puts it, continual search for worse weather.
MIT’s Aeronautics and Astronautics Department approached me about a job but I was not terribly enthusiastic about moving to Boston or leaving a computer science department. But they invited me to just visit for a year, and I fell in love with MIT. This was the first place where I found a large group of other people thinking about systems in the large.

Leveson is now working in what she calls the socio-technical aspects of large systems, which integrate management and social sciences with engineering. The working title of her newest book, a work in progress posted on her website, is System Safety Engineering: Back to the Future. She wants to update and bring the ideas of the early system safety pioneers back into the forefront of safety engineering as well as propose a new way forward for everyone.
System safety is never taught in schools. It is a uniquely grassroots movement that originated with the post World War II defense system engineers. Engineering students are taught about reliability but not safety. Even among system safety engineers, the early ideas are getting replaced by reliability analysis due to lack of formal education in system safety. Engineers have to learn on the job from another system safety engineer.

Leveson distinguishes between reliability and safety. Consider a valve in a nuclear power plant.

If I show you a valve and tell you that it will be used in a nuclear power plant, can you tell me whether the plant will be safe? It is possible to determine whether the valve will operate reliably, but not the impact of the valve’s behavior on the safety of the larger system. Safety depends on interaction. In system’s theory, safety is considered an “emergent” property.
It’s possible to achieve safety using unreliable components provided there are enough of them and they interact properly – consider how well ant colonies survive even though individual ants die easily. In other systems, the most minor mistake can lead to a terrible accident.
What Causes Accidents?
Engineers and others traditionally ascribe accidents to a chain of events leading to the accident. One event in the chain is arbitrarily labeled the “root cause.” Leveson argues that this is both simplistic and harmful, partly because the chain tends to start at the most convenient root cause and usually only one “root cause” is identified. More important, the systemic factors that allowed the events to occur are often ignored

One example she cites in her book is the Bhopal chemical accident. The release of methyl isocyanate (MIC) from the Union Carbide chemical plant in Bhopal, India, in December 1984 caused at least 10,000 deaths and more than 200,000 injuries, making it the worst industrial accident in history.
The proximate cause was that a relatively new worker was assigned to wash out some pipes and filters. The worker did not insert a special disk to prevent water from leaking into the MIC tank. Water leaked in and an explosion occurred. A relief valve opened and 40 tons of MIC was released into the air and then drifted into a populated area where it caused great misery.

So was the cause of the accident an error on the part of the maintenance worker or was the worker part of a sabotage plot as Union Carbide later claimed? Well, consider that the pipe-washing operation should have been supervised by the second shift supervisor, but that position had been eliminated in a cost-cutting effort. Inserting the disk was not the job of the worker doing the pipe-washing because he was too low-level and was not trusted with this important task. Or consider that the explosion would not have occurred if the refrigeration unit had been working, because the water-MIC mixture is explosive only at room temperature. Or consider that the scrubber designed to remove the MIC from the vents was out of service. The list goes on and on.

[Leveson_Bhopal.tif. Caption: In the chemical factory at Bhopal, most of the designed safety mechanisms were inoperative.]
The maintenance worker was, in fact, only a minor and somewhat irrelevant player in the loss. Instead, degradation in the safety margin occurred over time and without any particular single decision to do so but simply as a series of decisions that moved the plant slowly toward a situation where any slight error would lead to a major accident.

The Indian government blamed the accident on human error, but Leveson would say the whole system was unsafe. Errors happen. The question is how to design and operate the system so that normal errors and failures do not lead to a catastrophic accident.

Note the difference between the two points of view: an operator error removes most responsibility from the company or the Indian government (which owned 26% of the plant) and an act of sabotage removes the need for any change in the way the plant is run.
 By contrast, Leveson’s analysis points to the need for major reform in the running of the plant. For starters, all the originally designed hazard correction systems (the refrigerators, scrubbers, sprinklers and so on) would have had to be made operational. Which point of view leads to a safer future?

Leveson’s new approach to system safety substitutes system theory for reliability theory. The critical change is treating safety as a “control” problem rather than a “failure” problem. The goal is to control safety by enforcing constraints on the behavior of the system and its components. Control, in turn, depends on the notion of feedback.
The engineering concept of feedback is analogous to adjusting the temperature in an unfamiliar hotel shower. You rotate the temperature control to about the right level, then feel the water, adjust the control, feel the water some more and so on. Even if the dial is very different from any you’ve ever seen, you’ll set the shower to a comfortable temperature in a short time. This is the single most important feature of feedback-based control: the sensor (your hand) must be accurate while the control need only be “monotonic” e.g., turning the dial clockwise always makes the water cooler.
Effective control requires an accurate view of the state of the process as well as the ability to exercise control. Bhopal had, for example, inadequate control over the pipe-washing operation (e.g. the missing supervisor who should have checked for safety) and could not exercise control over the released MIC because of the inactive scrubbers. The nearby population was never alerted to the possibility of a problem or even given instructions about the elementary countermeasures that could be taken such as putting a wet cloth over the face and closing the eyes. But these are only a few of the problems. We need to look beyond the plant and at the management oversight by Union Carbide as well as the Indian government to truly understand why this accident occurred if we want to prevent similar accidents in the future.
In her studies of accidents, Leveson has noticed several common features. First, there is usually operational degradation away from safety. Nothing bad happens for so long that safety personnel become complacent, management cuts budgets, and maintenance becomes shabby.

Bhopal presents many examples, but there is nothing special about India. Heavy rains in southern California often cause flooding because storm drains routinely get clogged with debris. Because rain is infrequent in southern California, towns neglect to clear the debris from storm drains.

Second, accidents often happen because of what Leveson calls “asynchronous evolution”. Suppose someone upgrades his or her software (an optimization for that person) and then sends you a document using a new version of a word processor that is incompatible with your version and you can’t read it. Communication that had previously been possible no longer is. So a local optimization has led to a global breakdown in cooperative work. That is a minor problem, but major problems have occurred for similar reasons. For example, one factor in an incident involving a pair of U.S. fighter planes shooting down a US helicopter in 1994 was that the fighters had acquired an updated communications system while the helicopter hadn’t.

Third, accidents can happen because of uncoordinated and dysfunctional interactions among system components. Each component operates correctly, but together the impact of their actions leads to a loss. As an example, two planes collided mid-air over southern Germany a few years ago. The Swiss air traffic controller gave correct commands to the pilots to avoid each other. An airborne device to avoid collisions also gave commands to the pilots. Everything would have been fine if the two pilots had each followed one of the sets of commands, but one followed the command given by the ground air traffic controller while the other followed the orders of the airborne automated system.
Clearly these three problems are interrelated: most happen after a process has been established. Seeking greater efficiency, individual actors reduce budgets (Bhopal) or optimize their own operations (fighter planes). The result is that either sensing or control is weakened and accidents happen. This is not a question of probabilities but of the breakdown of the feedback-control loop. It’s turning the dial on the shower without putting your hand there.

Leveson’s theory of safety-driven design follows from these observations. She argues for designing safety into the system from the beginning, using basic system engineering principles and the hazard analysis technique she has developed.
In her latest book, Leveson offers a simple example of the design of an automated door system for trains. The first step in the process is to identify the system hazards. Some of the hazards include (1) a person being hit by closing doors, (2) someone falling from a moving train or (3) passengers and staff being unable to escape from a dangerous environment in the train compartment (e.g., a fire).

These in turn are translated into design constraints for the engineers who are creating the design of the automated doors and their control system, for example, (1) An obstructed door must reopen to permit removal of obstruction and then automatically reclose. (2) A door should open only when the train is stopped. (3) Means must be provided to open doors anywhere when the train is stopped for emergency evacuation.

These constraints may lead to various design decisions. For example, constraint (1) could suggest the use of a sensor in a door similar to one in an elevator. Constraint (2) might entail an interlock between a motion sensor and the door. Constraint (3) might combine the interlock with a door open instruction when an alarm is sounded. So, hazards give rise to constraints which then give rise to design requirements. The idea is to build safety in right from the start.
The hierarchical decomposition makes the safety issues understandable at every level of the design from the most abstract to the most concrete. By making the intent clear, it may also discourage operators from optimizing costs at the risk of reducing safety. Feedback and control is a far better approach than assuming an absence of failures. After all, as the folklore tells us: shit happens.

Systems theory has also allowed Leveson to analyze existing designs. The nice thing is that this approach scales better than current ones.

No one could figure out how to do a safety assessment on the new missile defense system. It’s a giant system of systems, some new and others already existing. It includes parts of the old early warning systems from NORAD of the1960s and 70s plus new radar, new platforms, etc. Some safety assessment had been done on individual parts. But no one knew or had done a safety assessment of the integrated whole. The government could not deploy and test the new system without some assurance that an inadvertent launch would not occur. Nobody could figure out how to do such an analysis using current tools. Someone at a meeting spoke up “ Nancy has this new idea. Why don’t we try that?” He explained it to them and it sounded okay, but then they were desperate.

They tried it, and it worked beautifully. The analysis found so many feasible scenarios for inadvertent that deployment and testing of the new US missile defense system was delayed for six months while they fixed them. It is now used as the primary safety approach of the Missile Defense Agency.
An inadvertent launch is a scary prospect especially when it comes to missile defense. Besides the waste of launching a multi-million dollar missile at a non-existent target, imagine the reaction of a potential adversary whose radar starts detecting missiles originating from the United States. A method of decomposing a system hierarchically using control theory to analyze safety can help prevent such events.

Leveson’s approach is still being refined. In addition, she is exploring the application to problems in a large number of complex, socio-technical systems such as healthcare and hospital safety, pharmaceutical safety, food safety, and even corporate fraud. It applies to any problem that can lead to unacceptable losses. Leveson’s “back to the future” approach for safety-critical systems will depend on a sea change in attitude however.

Most engineers are taught to look at things from the viewpoint of what you want it to do. What about the things you don’t want it to do? That’s all that safety engineering is: forcing people to think about what you don’t want the system to do.
References:

1. System Safety Engineering: back to the future Nancy Leveson, a work in progress available on Leveson’s website.
============= stop here

Leveson visualizes all this in the technical diagram of Figure 1. shows an example of a hierarchical safety control structure for a typical U.S. regulated industry, such as aircraft. Each industry and company will, of course, have its own unique control structure. There are two basic hierarchical control structures in Figure 2 – one for system development (on the left) and one for system operation (on the right) – with interactions between them. An aircraft manufacturer, for example, might have only system development under its immediate control, but safety involves both development and operational use of the aircraft.
[image: image1.jpg]‘ SYSTEM DEVELOPMENT

Congress and Legislatures

Legislation l T

Government Reports
Lobbying

Hearings and open meetings
Accidents

SYSTEM OPERATIONS ‘

Congress and Legislatures

Legislation

Lobbying
Hearings
Accidents

T Government Reports

Government Regulatory Agencies
Industry Associations,
User Associations, Unions,
Insurance Companies, Courts

Government Regulatory Agencies
Industry Associations,
User Associations, Unions,
Insurance Companies, Courts

Regulations
Standards
Certification
Legal penalties
Case Law

Certification Info.
Change reports
Whistleblowers
Accidents and incidents

Company
Management

Standards

Safety Policy l
Resources

Policy, stds.

Safety Standards l T
Design,

Safety Constraints
Standards
Test Requirements

Safety
Reports

\
Manufacturing

Documentation

Implementation
and assurance

Status Reports
Risk Assessments
Incident Reports

Project
> Management —-

Hazard Analyses
Progress Reports

Test reporis
Hazard Analyses
Review Results

Hazard Analyses
Safety—Related Changes
Progress Reports

Regulations
Standards
Certification
Legal penalties
Case Law

A
Accident and incidents

Operations reports
Maintenance Reports
Change reports

Y Whistleblowers

Company
Management

Safety Policy

Standards
Resources

Operating Assumptions

Work Instructions

Operations Reports

Operations
Management

Change requests
Audit reports

Problem reports

Operating Procedures

Operating Process

‘ Human Controller() ‘

Hazard Analyses
Documentation
Design Rationale

Maintenance

Management
Work safety reports
Procedures | audits
work logs
inspections

Manufacturing

™ and Evolution

Automated
Revised Controller
operating procedures
Software revisions | Actuator(s | Sensor(s
Hardware replacements
Physical
Process

—
il

Problem Reporis

Incidents
Change Requests
Performance Audits

Figure 2: An Example of a Safety-Control Structure

[Dennis, something is missing here??]

and has already proved useful for real-world problems, such as designing a new NASA explorer spacecraft, analyzing changes in the Space Shuttle management structure after the Columbia accident, providing risk management tools for the new NASA manned space exploration initiative to return to the moon and then go on to Mars, investigating a commercial airplane accident in the U.S., and analyzing the risks of outpatient surgery at a large hospital in Boston.

