Introduction to Our Kinetic Paper

Inferring a causal link is useful in many applications in plant biology,  from genomics to ecology. If some A can cause some B to take on a high value (where A could be a gene in our context, a hormone, or a species in ecology),  then preventing B from taking such a value can be done by removing some B,  by removing some A or by interfering with the link from A to B. Conversely, making B achieve a higher value can be done by adding more B, adding more A, or enhancing the efficiency of the link from A to B. Commonly, causal relationships in biology may involve several elements A1, ..., Ak influencing some B, sometimes positively and sometimes negatively. The influences can be "linear" in which each element has either a positive or negative weight (or coefficient) or "non-linear" in which case the elements work synergistically. An example of synergy would be a dependency of B on the product of the concentrations of A3 and A7.  We know that synergy is widespread in biology.

In many cases, however, we simply lack sufficient data to explore all possible synergies. Suppose for example we wanted to explore the effects of all pairs of genes. The most straightforward way to do that would be to  over-express or knock out every pair. This would require something like 300 million manipulations. Thus, methods often work in two phases whose first phase consists of finding a good-fitting linear model and whose second phase consists of exploring the synergies among elements that have large positive or negative weights in the linear models. A sort of pre-first phase  is to cluster expression patterns in order to create "super-nodes" that can then be analyzed.

Regardless of the analysis that follows, experimental approaches to finding such causal links may entail performing:

A) "Steady state" experiments under multiple  different conditions to detect associations between A and other elements. Such associations are bi-directional but may acquire directionality if it is known that, for example, A is an element that can change other elements (in the genomic context A could be a "transcription factor") and B is not.

B) Experiments that increase the quantity of some A to see which other elements are either enhanced (quantity increases) or repressed (quantity decreases).

C) Experiments that decrease the quantity of A or even knock it out (A goes to 0) may also reveal something about the influence of A.

D) Experiments over a closely spaced time course to enable inferences of the form "the state of A at time t may influence B at time t+1."

This article focusses on inference  of causality in genomics, but its techniques apply to  any setting (whether in plants or other species) in which elements may singly or collectively affect others. The article consists of three parts:

1. A review of efforts to use time series and other data to infer regulatory edges, showing the kinds of results that can be obtained.

2. A description and a categorization of the experimental methods that are used.

3. An in-silico exploration using the DREAM framework to determine questions of practical interest, notably how to plan experiments to gain the maximum insight from each experiment.

Related Work

Previous network inference work on plants and related species has explored several complementary approaches to ours.

In Espinosa-Soto et al, the authors construct a Boolean network among 15 nodes (corresponding to a few more than 15 genes) to infer flower development. First they note that there are only a few steady states resulting from different trajectories of flowering. In accordance with systems theory, they call these steady states attractors. The initial states of the 15 genes that all go to some attractor A are called the basin of attraction of attractor A. The authors read the literature to determine which nodes induce and/or repress other nodes and then do further analysis to determine the Boolean relationships among them. Thus they assign relationships by hand.

Correlation techniques are automatic techniques to try to find single source-target relationships. To try to isolate the effects of one gene on another, several strategies make use of partial correlations. Schaefer and Strimmer present an analysis of Graphical Gaussian Models. These models assume a Gaussian noise distribution and try to infer partial correlations (gene X influences gene Y while holding the effects of other genes constant).  Partial correlations can be compute indirectly by computing regressions and then computing the correlations among the residuals. They point out that such analyses cannot be done without heuristic approximations because the number of experiments (e.g. microarrays) is always far less than the number of genes. This partial correlation approach  has worked well for analysis of a starch circuit in Ingkasuwan et al.

Mutual information still seeks pairwise relationships among variables (as do correlation methods) but without assumptions of linear dependencies. Carrera et al use mutual information on  1,436 microarry hybridization experiments to try to find transcription factor/promoter bindings. They show good recall and precision against the 448  experimentally validated transcriptional regulations. The authors use mutual information with a local significance (z-score). This is a reasonable pairwise approach, but doesn't give weights to edges.

The review paper by Middleton et al. looks at the different techniques for network inference and observes that two main approaches are to use ordinary differential equations, often based on mass action, yielding equations of the form  mRNA concentration = Transcription rate - Decay rate. Such approaches work especially well for small networks such as auxin networks.  Yuan et al analyze metabolomic data in bacteria based on  a time-dependent differential equations using mass action assumptions. An issue with the mass action approach is that it assumes that different inputs interact in a multiplicative manner (product of  concentration of each component) whereas the interaction is likely more complex in biological as opposed to chemical settings. So the authors point out that Boolean approaches sometimes give better qualitative results. In a Boolean approach, logic gates are based on thresholds, e.g. an AND gate will fire if the minimum input reaches a certain threshold. 

Middleton et al. also argue that biology is modular so it's a good idea to take a bottom-up approach starting with modules (of up to 50 genes) and extending from there.  The extension would involve coupling several small gene network models after parametrizing them individually, though they say that problem is more or less open. Finally, they say that an approach that lumps whole gene families into one based on clustering can help as done in Vernoux, T., et al. (2011). The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol. Syst. Biol. 7: 508

Mendoza-Parra et al advocate a different way of using time series. They start with an undifferentiated set of genes and then as clusters diverge, they look at how transription values  change. Transcription factors that anticipate the bifurcation of cluster could be causing the bifurcation. The approach is very clever.

To discover physical connections directly (but without necessarily knowing the effect of those connections) Brady et al measure protein-protein interactions and protein-DNA interactions using chromotin IP. They try to derive a network based on follow-up experiments using qPCR. They don’t use time series experiments at all.

Caldana et al took time series experiments in which they had varied parameters (temperature, light, and duration of treatment) to determine which parameter had the most influence. Their basic analytical technique was to use ANOVA to understand which method was most effective.

Greenfield et al. [Alex Greenfield, Christoph Hafemeister, and Richard Bonneau 
Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
Bioinformatics first published online March 21, 2013 doi:10.1093/bioinformatics/btt099 ] advocates the use of multiple data types for the Inferelator, thus allowing structural knowledge (perhaps derived from chromatin-based methods) to specify the possible connections between genes. Thus, if some target gene Z has possible connections from X and Y but not from W, then only X and Y will be considered in the subsequent analysis. For steady state experiments, inferelator uses mutual information context likelihood of relatedness methods. The main inference algorithm uses these potential edges to derive an ordinary differential equation model that may combine linear and non-linear terms. The result is a set of equations that estimate the change in transcription of a target gene based on transcriptional levels of other genes using time series data. The Inferelator authors argue for the use of Modified Elastic Nets and Bayesian regression framework to solve this problem (these are machine learning approaches that make strong use of parsimony to try to avoid overfitting; the modification is that genes may see their weights reduced more or less depending on previous structural knowledge).

Marbach et al, show empirically that a combination of strategies (wisdom of crowds) often lead to the best outcomes.

Complementary to all techniques that use experiments to find regulatory edges are efforts to use previously discovered relationships. Van Landeghem et al show that the literature can be scanned to infer  regulatory edges.

Experimental Results
In these experiments, we have focused on algorithms that did well in the DREAM competition. The software we provide with this paper is extendible, so other algorithms (including ones referred to in the related work) can be incorporated to improve the results. Our intent here is not to advocate any particular set of algorithms but rather to show the kinds of results one can achieve. For concreteness, here is the workflow we use:

Figure showing workflow

The first question we address is: given an experimental budget, can we characterize data in such a way that we can determine whether to use more replicates or more time points assuming the data is varying over time. Noise is measured this way …. Some sample results using N experiments divided either over M time points (with R replicates per time points) or M’ with R’ or M’’ with R’’ show that for the purpose of inferring small networks ….., for medium sized networks …. and for large networks ….

Precision Recall curves for small networks for the different numbers of replicates depending on noise. Appropriate caption

Ditto for middle networks and for larger ones.

The second question we address is how much steady state data and priors help.

Histogram showing area under AUPR improvement from steady state data assuming best number of replicates for each noise and size value. Show steady state alone.

Now we switch problems and look at real data. When looking at real data, we cannot ask for precision and recall because there is not gold standard. However, we can look at out-of-sample data. That is, we train on a subset of the data (from earlier time points) and predict on a later time point.

Show the results based on noise and the replica suggestions from DREAM data to predict the change in a last time point with and without steady state data.

We conclude with advice for experimentalists. Prior information is very useful. How to trade off replicates with time points.

Genie3 method uses different time points as if they were different steady state experiments.
