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ABSTRACT

Data generation is no longer the limiting factor in advancing biological research. Instead, data integration, analysis and interpretation are the bottlenecks and challenges that biologists face every day in genomic research. To enable biologists to take advantage and iteratively integrate and analyze the increasing amount of genomic data in order to derive testable hypotheses, we have developed the “VirtualPlant” software platform. VirtualPlant enables scientists to visualize, integrate and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant can be used to help biologists who are not trained in computer science to mine lists of genes, microarray experiments and gene networks to address questions in plant biology such as: “What are the molecular mechanisms by which internal or external perturbations affect processes [[ sentence is easier to read without this: and gene networks]] controlling growth and development?” We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis genomic data, the data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available for users at www.virtualplant.org.  

INTRODUCTION

It is a common practice in experimental biology laboratories today to address the molecular mechanisms underlying a physiological or developmental response by identifying the genes involved using a genomic platform such as microarray (or, soon, deep sequencing) technology. Such a platform might identify genes regulated during a physiological or developmental response. Once the relevant gene sets are identified, biologists next analyze their functional relationships (e.g. whether they belong to the same metabolic pathway) and analyze their properties in the context of known biological pathways . Performing these tasks can be cumbersome because the biologist has to use several different tools to accomplish them. To further complicate the matter, different tools do not necessarily support the same format, so it is up to the biologist to transform the output of one to the input of another. 

Aside from the challenge of integrating the vast amount of knowledge accumulated in the literature about the relevant genes, the genomic data available in the public domain comes from a large number of experimental approaches and an even larger number of laboratories. Moreover, the information is stored in numerous databases (DB), and it is encoded in diverse formats and DB schemas. It is not trivial to integrate such heterogeneous information in biologically meaningful ways. Different approaches to integrating biological DBs have been employed in the past including the use of the hypertext navigation feature of the World Wide Web, data warehouse approaches and client-side integration solutions (for example, see (Ritter, 1994; Karp, 1996; Siepel et al., 2001; Philippi, 2004; Wilkinson et al., 2005). Once data from distinct DB sources are coherently integrated, tools and computer models can be used to enable one to visualize and analyze this biological data from a systems perspective (Ideker et al., 2001). Several environments have been developed in the past years that permit data integration and modeling (Kahlem and Birney, 2007). Some software allows detailed mathematical representation of cellular processes (e.g. Gepasi (Mendes, 1997) and Virtual Cell (Loew and Schaff, 2001) ), while other software permits qualitative representations of cellular components and their interactions (e.g. Cytoscape (Shannon et al., 2003), Osprey (Breitkreutz et al., 2003), and  N-Browse (Kao and Gunsalus, 2008) ). Generally, quantitative models are directed toward specific cellular process of interest and are [I don’t understand the rest of this sentence:] built by representing existing literature as a system of mathematical equations. Quantitative models are powerful because they describe a system in detail (Endy and Brent, 2001). Unfortunately, they require a detailed understanding of the system under scrutiny. This information is available for only a few biological processes. In fact, there are still many gaps in our qualitative understanding of biological systems, even for model organisms. For example, most of the genes in Arabidopsis have not yet been experimentally characterized. The crucial first stage in building a quantitative model is constructing the interaction network to be analyzed (Schwender et al., 2003).

Besides modeling, the large-scale genomic data available to biologists today requires the use of a variety of software tools to process ,analyze, and visualize data. A now classic approach, for example, is to identify genes that are co-regulated in their expression patterns across selected experimental conditions (e.g. (Eisen et al., 1998)). An extensive review of the different software tools that are available for studying gene co-expression is available (Usadel et al., 2009). (Srinivasasainagendra et al., 2008) and ATTEDII (Obayashi et al., 2009).  To identify genes that are differentially expressed between two experimental conditions, statistical methods such as Rank Products can be used (Breitling et al., 2004; Hong et al., 2006). Several tools are available as packages in BioConductor, a project largely composed of tools written in the statistical language R (Gentleman et al., 2004). To learn the biological significance of the differentially expressed genes or co-expressed genes, a common next step is to evaluate the frequency of occurrence of functional attributes using structured functional annotations such as the Gene Ontology (GO) . Several software packages to automate this type of analysis now exist (e.g. Onto-Express (Khatri et al., 2002), GoMiner (Zeeberg et al., 2003), GOSurfer (Zhong et al., 2004), FatiGO (Al-Shahrour et al., 2004)). While advanced data analysis tools for exploiting genomic data are rapidly emerging (see review (Brady and Provart, 2009) ), one drawback of current software tools is that they are highly specialized. This translates into the need to travel through several different web services or to use various stand-alone applications to be able to analyze the large data sets characteristic of genomic research, a cumbersome and inefficient process not amenable to the systems approach of iterative in silico exploration and experimentation. 

VirtualPlant addresses these problems by integrating selected genomic data and analysis tools into a single web-accessible software platform. VirtualPlant provides access to a database storing selected information about (so far) Arabidopsis and Rice experiments, genes, gene products and their properties. The VirtualPlant code and database have been created in a generic, species-independent manner, to make it easy to add new organisms and tools. The VirtualPlant database also includes a high level representation of plant cellular components and interactions that allow users to create molecular networks “on the fly”. These molecular networks provide a framework for analyzing experimental measurements. Because the goal of our work is to discover new biological insights based on the synthesis of multiple data sources, VirtualPlant also includes novel data visualization and data analysis techniques that allow seamless information exploration across many datasets with the help of a “shopping cart”  in which gene sets from experiments and/or analyses can be stored and then used as inputs to other tools to enable iterative analysis. For concreteness, we present a working example in which we have utilized VirtualPlant to identify gene networks and putative regulatory hubs that control seed development.  We have previously demonstrated the use of VirtualPlant and specific tools embodied in the VirtualPlant system to generate hypothesis that were validated experimentally (Wang et al., 2004; Gutierrez et al., 2007; Gifford et al., 2008; Gutierrez et al., 2008; Thum et al., 2008) should we include the Crawford work?
RESULTS

The VirtualPlant Data and Tools
VirtualPlant was constructed on top of a small data warehouse that supports the data analysis process. This warehouse includes descriptions of molecular entities (e.g. gene annotations and functional classification), molecular interactions (metabolic associations, regulatory interactions and other interaction data from public databases) and publicly available microarray data (including more than 1,800 gene chip hybridizations from the ATH1 Affymetrix platform obtained from the NASC (European Arabidopsis Stock Center) using the Affywatch subscription service). A description of the currently supported data types and corresponding sources can be found in Table I. VirtualPlant contains a software module that automatically refreshes this database on a regular basis. VirtualPlant’s interface was designed to be analogous to the familiar E-commerce paradigm, which has customers (aka biologists) and inventory (aka data) (Fig. 1). Users can interact with data in VirtualPlant in three main ways: 1) Browse the database, 2) Query the database content, and 3) Upload their own data. The VirtualPlant web site is divided into four separate windows: 1) Navigation window located on the top, 2) the Cart window located on the left, 3) Data browser window located on the lower left, and 4) Analysis window located in the middle (Fig. 2). The Navigation window provides links to the different features of VirtualPlant. The Data browser window provides access to some of the different annotations and functional categories that are loaded into the VirtualPlant database. The Analysis window is where most of the activity occurs. Figure 2 shows the “Analysis” view, which is the result from clicking on “Analyze” in the Navigation window. The pull-down menu shows the different types of functions and tools that are available for that species (Arabidopsis) and data type. 

The contents of the Cart can be used as input to data analysis and/or visualization tools. The results of operations by these tools can be stored back into the Cart. In this sense, VirtualPlant is not a single-service site where data is uploaded from a client, analyzed with a tool, and then downloaded back to the client. Instead, the user can iteratively analyze his/her data by using the output of one data analysis/visualization tool as the input of another tool using the Cart as an intermediate. This unique feature of VirtualPlant facilitates a fundamental methodology of Systems Biology’s iterative cycles of data analysis and experimentation (Ideker et al., 2001; Gutierrez et al., 2005). Three working examples described below illustrate how VirtualPlant can be used to perform iterative data analyses that build and refine testable biological hypotheses.

Using VirtualPlant to drive iterative cycles of systems biology research

The purpose of the following three case studies is to describe some of the tools available in VirtualPlant and to illustrate the utility of the software in the integration of genomic data to develop testable hypotheses. The first two case studies illustrate some of the basic functionalities of VirtualPlant. The third case study provides an advanced application of the software. Each case study provides concrete working examples that can help new users learn how to use the software. Links to step-by-step video tutorials for the three case studies are provided on the website.

Case study 1:  Analysis at the gene level:  

This first case study illustrates the use of VirtualPlant software starting with one gene. Suppose a biologist poses the following question: “What are the biological processes associated with the genes co-expressed with NIA1?” The first step to answer this question is to query the database to find the gene of interest. A simple way to query the VirtualPlant database is to use the query form, which can be accessed using the “Query” link on the Navigation Window (Fig. 2). To perform a query, select type ‘Genes’, enter NIA1 in the “Keywords” field and click the ”Submit Query” button.  The results are displayed in a table where the user can select the result(s) of interest and add it to their cart.  Clicking on the gene description “NIA1,NIA1 (NITRATE REDUCTASE 1)”, displays the Gene Details page which contains information about the gene such as the full annotation, gene models, Affymetrix probe ID and Functional annotation terms. 


To learn more about the expression of this gene, simply click on the Affymetrix probe ID name (259681_at) that appears in the NIA1 Gene Details page. Clicking on 259681_at will open the Probe Details page. In addition to the probe attributes, this page contains a histogram of the number of probes whose expression correlates with NIA1 and also displays the correlation values (Fig. 3). These correlation values were determined previously using publicly available microarray experiments from the ATH1 Affymetrix platform obtained from NASC (European Arabidopsis Stock Centre www.arabidopsis.info). The experiments were first normalized using the gcRMA method and all pair-wise probe correlations were calculated using Spearman Rank Correlation. Correlation values can vary quite a bit based on the experimental data set and the statistics you use to calculate them (Usadel et al., 2009). The purpose of the graph is to show some of the genes that are correlated across a collection of experiments with the gene of interest and then use some of the other tools in the VirtualPlant system to further investigate and explore the co-expressed genes. To select the probes that are correlated to the query probe, one can simply click on the bars of the histogram. The probes that are correlated to the query probe (259681_at in this example) will be displayed in the table under the graph. To select genes that are positively correlated to NIA1 at a cutoff of at least 0.6 and less than 0.7, one can click on the bar labeled ‘0.6 to 0.7’. This analysis shows that there are 20 probes correlated to 259681_at that map to 23 genes because three of the probes are ambiguous (map to two genes). In order to further analyze the 23 genes whose expression correlates with NIA1, one can either export the list of genes to the Cart using the ‘Save selection to cart’ button or visualize the functional annotation of the genes using the ‘Pie’ function (see below). In order to select all 23 genes: Select the first gene  Scroll down using the scroll bar on the table  Depress the shift key and select the last gene.  Clicking on the ‘Save selection to cart’ button creates a new entry named “Corr:259681_at” in the Cart. This new list of genes can now be used as input to other tools in VirtualPlant, such as Biomaps (discussed in Case Study 2) to find over-represented GO or MIPS terms, or Gene Networks (discussed in Case Study 3) where one can identify any known or predicted interactions between the 23 genes. 
The ‘Pie’ function allows users to identify the biological processes associated with the genes that are correlated to NIA1 and displays the results in pie chart format. Click on ‘Pie’ to open a new window with a pie chart of Gene Ontology (GO) terms  associated to the genes in the selected list (Fig. 3). The Pie Chart displays the number of genes in each GO term.  On the top left there is pull-down where one of the three ontologies (biological process, cellular component, or molecular function) can be selected. By default all GO terms that are directly associated with the genes are shown, which include GO terms from different levels of the GO hierarchy. Selecting the “level” checkbox allows user to select a certain dept of the GO hierarchy. At level 1 of biological process the three most abundant terms are: “cellular process”, “metabolic process” and “response to stimulus”. When you move the slide to level 2 the terms become more specific and more informative. 
This simple exercise indicated that expression of the NIA1 gene correlates with the expression of genes involved in “cellular metabolic process”, “primary metabolic process”, “biosynthetic process”, “response to stress”, and “response to abiotic stimulus” (Fig. 3). This result is consistent with our understanding of nitrate reduction and the coordination between this and other metabolic pathways in plants (Stitt et al., 2002).  The answer to the original question “What are the biological processes associated with the genes co-expressed with NIA1?” was obtained via VirtualPlant’s user-friendly web interface in a few minutes. In the next case study we will see how we can use VirtualPlant to obtain statistically significant GO terms associated to a list of genes.
Case study 2: Analysis at the gene list level.

With the advent of genomic technologies (e.g. microarray technology), many researchers today study not one gene but one or more lists of many genes. These gene lists can be generated in different ways: 1) genes correlated to a gene of interest (previous example), 2) genes in a gene family, 3) genes in a metabolic pathway or 4) genes that are differentially expressed in several independent microarray experiments. To illustrate how VirtualPlant is used to analyze lists of genes, this case study mines published microarray results of nitrate-regulated genes (Wang et al., 2004). Wang et al (2004) compared global gene expression in response to nitrate treatments in a nitrate reductase (NR)-null mutant and wild-type plants. Genes that are similarly regulated by nitrate in both the wild-type and the NR-null mutant are designated “nitrate-regulated”, as the lack of nitrate reductase prevents nitrate reduction and assimilation, thus blocking the production of any downstream metabolic signals. The biological question in this second case study is: “What processes are regulated by nitrate and not a downstream nitrogen signal?” To answer this question, the first step is to identify genes that are regulated similarly by nitrate in both the NR-null mutant (or double mutant, DM) and wild-type plants. To facilitate this demonstration, VirtualPlant provides these lists of genes in the ‘Upload Data’ page (accessible by clicking on the ‘Upload Data’ link in the Navigation Window).  The first two lists under “Sample Data” correspond to genes that are induced in the wild-type (439 genes) and induced in the mutant (393 genes). Clicking on the titles of the sample gene lists will add them to the Cart.  The two sample gene lists will appear in the Cart in the top left corner. To find genes that are induced in both mutant and wild-type plants, one uses the “Intersect” tool. The Intersect tool is available by clicking the “Analyze” link in the Navigation Window (Fig. 2). Once the Analysis Window has loaded  Select the gene sets by clicking the checkboxes in front of the WTRoots and DMRoots lists  Choose the “Intersect” function from the ‘Analysis’ pull-down menu  (Fig. 2)  Click on the “Analyze” button. A new set, which contains genes contained in the two gene lists (wild-type and mutant), is created and added to the Cart with the name “Intersection: Wang_etal_2004_I_DMroots/Wang_etal_2004_I_WTroots”. In this example, the newly created gene set contains 283 genes that are induced in both the NR-null mutant and in wild-type plants. The three set operation tools (“Union”, “Intersect” and “Symmetric difference”) each is capable of taking two or more gene lists to produce one output gene set with the result. A dynamic and more visually interactive analysis of two or more lists of genes can also be carried out using “Sungear”, a tool available from the ‘Analysis’ pull-down menu (Fig. 2). For a detailed description of Sungear, please refer to the previous publication by Poultney and colleagues (Poultney et al., 2007). An example of the use of Sungear to gain insight into the genomic nitrate response was also published  

To answer the next question, “What processes are regulated by nitrate and not a downstream nitrogen signal?” one needs to identify the biological processes that are significantly over-represented in the list of 283 genes. One way to answer this question in VirtualPlant is to use the “BioMaps” tool to determine which GO terms  or MIPS functional categories (Mewes et al., 2004) are statistically over-represented in the list of genes as compared to a background population (e.g. the entire genome). To do this: Select the check box to the left of “Intersection: Wang_etal_2004_I_DMroots / Wang_etal_2004_I_WTroots” list  Select “BioMaps” in the ‘Analysis’ pull-down menu (Fig. 2)  Click “Analyze”. Once executed, BioMaps displays a page where the user can select the annotation (GO terms or MIPS), the background population, the statistical method (binomial distribution, hypergeometric distribution, and Fisher’s exact test) and also the p-value cutoff to use for the analysis. The p-values shown in the output of Biomaps are already adjusted for multiple hypothesis testing. In the case of Fisher’s Exact test we use FDR correction and for the distributions we use [RODRIGO]. For this case study, use the default settings: GO assignments from TAIR, Hypergeometric distrubution test with a p-value cutoff of 0.01. Since the gene lists used in this case study were generated using data from ATH1 microarray experiments, we will select the option to use ATH1 genes as the background. The results are provided as “Table View”, “Network View”, which is a color-coded graph, and a link to “Download to Excel”, which is a tab-delimited file that can be opened in Excel, Word or any other software that can read text files. The final link “Unprocessed” downloads a file with comments from the BioMaps analysis. Network View graph is generated by an open source software package called GO::TermFinder (Boyle et al., 2004) and provides an intuitive and visual way to analyze the results. This graph shows the relevant functional terms and their parents as nodes, with annotated genes attached in gray boxes to the most specific term.  Clicking on the node name opens up its detail page. The more general terms in the annotation are represented by nodes drawn at the top of the image (e.g. cellular process), with increasing specificity towards the bottom of the image (e.g. cellular carbohydrate metabolic process). The color of the nodes indicates the p-value of over-representation as indicated by the graph’s legend (Fig. 4). To simplify the analysis of complex results, this graphical representation of BioMaps will show a maximum of ten over-represented functional terms. However, the table output of BioMaps will always contain all significantly over-represented terms found by the analysis. The table also provides details regarding the genes in the query list that belong to the term as well as the statistics. Any set of genes listed in the table can be added to the Cart. A simple visual inspection of the Table View resulting from the BioMaps analysis allows the user to identify the most prominent biological processes in the gene list analyzed (Supplemental Table 1). In this example, “cellular carbohydrate metabolic process”, “alcohol metabolic process”, “ion transport”, and “response to abiotic stimulus” are some of the overrepresented biological processes amongst the 283 genes that are regulated by nitrate.  This confirms previous results  (Crawford, 1995; Stitt et al., 2002; Gutierrez et al., 2007) showing that Carbohydrate Metabolism is a metabolic process that is coordinately regulated with nitrate availability. VirtualPlant’s support for gene lists described in this section provides a simple yet powerful way to integrate and analyze published experiments, annotation, pathways and other data using a list of genes as the common currency. With a few steps, VirtualPlant can help biologists build testable hypothesis from the comparative analysis of genomic data presented in a biological context as shown in a series of recent publications(Gutierrez et al., 2007; Gifford et al., 2008; Gutierrez et al., 2008; Thum et al., 2008).

Case study 3.  Analyzing gene networks:

The last case study demonstrates a more advanced use of VirtualPlant. Nitrogen is essential for synthesizing seed storage proteins, which is crucial for proper seed development.  The goal of this case study is to determine which nitrogen metabolic genes are controlled at the level of gene expression during seed development, and to identify transcription factors that may be key regulatory hubs regulating these genes during seed development. In other words, “What regulatory networks are responsible for coordinating the expression of genes involved in nitrogen metabolism during seed development?” This case study will demonstrate how to; 1) load a publicly available microarray data set into the Cart, 2) identify genes that are regulated during seed development by determining which genes are differentially expressed, and 3) examine molecular interactions between genes involved in nitrogen metabolism and genes regulated during seed development. 

At this point, it is necessary to create a VirtualPlant user account which serves two main purposes: 1) Allows the User to save gene lists and experiments in the Cart 2) Register the user’s email so they can be notified when a long-running analysis is completed. For this example, we will start by analyzing microarray data. The microarray experiments can be loaded to the Cart either by browsing for the experiment using the Data Browser window or by uploading the experimental data directly. VirtualPlant accepts two formats for data upload: 1) original ATH1 CEL files, which can then be normalized using either gcRMA or MAS5, and 2) matrices of expression values. The second option allows users to use a different normalization method and then upload the data. It also allows users to upload experiments generated with other microarray platforms as well as alternative experimental approaches such as next-generation sequencing technologies. 

The experiment selected for this case study was a seeds and siliques developmental time series generated by the AtGenExpress project  . To select this experiment, in the Data Browser window at the lower left of the screen click on “Microarray Experiment”. Then in the Main Window, click on “AtGenExpress Project”,  “Developmental Stage”,  “Developmental Series”,  “Detlef Weigel , Jan Lohmann, Markus Schmid AtGenExpress: Developmental series (siliques and seeds)(154)” . The user can add this experiment to the Cart using the “Create Experiment” button. To facilitate the demonstration of the VirtualPlant software for first-time users, we also provide a link on the Upload Data page to directly add this experiment to the Cart. To analyze the experiment, click on “Analyze” in the Navigation window. By default, the Analysis View displays the Gene Sets section of the Cart. To view the Experiments section, click on the “Experiments” link. Now the Main window displays all the experiments in the Cart. Select the checkbox near the experiment   Select “Find Differentially Expressed Genes” from the pulldown menu  click “Analyze”. A form will appear that allows users to select the “Base” and “Treatment” microarray hybridizations. Placing the mouse over the different slide names will provide a more detailed information. In this example, the last 5 stages of the developmental series are derived from isolated seeds containing no silique tissue, so we will analyze only these last 5 stages.  To identify differentially expressed genes during seed development, select a seed development stage as base, and the subsequent stage as treatment. For the first comparison select all three ATGE_79 as base and all three ATGE_81 as treatment. VirtualPlant provides the user with several different statistical functions, but for this case study select RankProduct (Breitling et al., 2004) with a p-value cutoff of 0.01. The calculations to determine differentially expressed genes is performed off line. An email is sent to the user when the calculations are completed. It is not necessary to wait for this analysis to finish in order to do something else in the VirtualPlant software. For this case study we also compared ATGE_81 vs ATGE_82; ATGE_82 vs ATGE_83; and ATGE_83 vs ATGE_84.

After completion of the statistical analysis, an email is sent to the user with a notification that the job has been completed and whether the analysis resulted in any differentially expressed genes. The list(s) of differentially expressed genes will appear in the Cart with a name formed by concatenating the name of the experiment, “diff exp genes”, the statistical method used, and whether the genes are induced (ind), or repressed (dec). Collectively, all four comparisons above will create eight lists (each comparison generating induced and repressed lists). A union of the 8 lists will result in 1,367 genes that are differentially expressed in at least one of the four stages of seed development as compared to the previous stage. To create a union of the lists, go to the Analysis View,  select all the lists of differentially expressed genes during seed development you identified in the previous steps and then select the “Union” function from the Analysis pull down menu.


The next step in this case study is to create a molecular network for the genes that are regulated during seed development. Currently there are three different network functions that can be performed: 1) Super Node networks, 2) Gene networks, and 3) Networks Statistics. The Super Node networks analysis provides a view of the biological processes that are regulated during seed development and how they interact with each other. The Super Node networks tool groups individual genes into a “super node” based on shared functional properties such as GO terms, KEGG pathway, Gene Families and even similar annotations. Edges are drawn between two super nodes when at least one gene or gene product in each super node have a molecular interaction. To perform Super Node networks analysis on the lists of differentially expressed genes during seed development, click on “Analyze”  Select the check boxes next to the eight lists generated in the previous section (or the union of these lists)  Select the “Super Node networks” tool from the Analysis pull down menu  Click the “Analyze” button. Once executed, the “Super Node networks” tool will present the user with two forms. The first form enables selection of the criteria for grouping genes into a super node (Fig 5a). The default grouping method is to use the first few words of the gene annotations. For the first option, use the pull-down menu to select “Share first TWO words”, which will group together genes that share the first two words. The second option is to select the functional annotation you want to use. From the pull-down menu, select “KEGG Pathway and Gene Families”.  Functional annotations are often categorized in a hierarchical manner, where the functional terms and pathways are themselves grouped into a higher more generic category. For the third option, select “Direct Associations” from the pull-down menu. Metabolic genes are often associated with each other via metabolites. For this case study, we will not represent the metabolites in the network. To hide the metabolites, select the checkbox to associate the genes that share a connection to a metabolite. Finally, click on the “Submit” button. The next form allows the user to select the types of molecular interaction data to view in the network. See the Materials and Method section for details about the different types of edges connecting two genes. Using the default mode will select all potential edges connecting two genes. For this case study, select Enzymatic reactions, Literature based interactions, Post-transcriptional regulation, protein-protein interactions, and Transcriptional regulation (Fig. 5b). For Enzymatic reactions, only select the “Primary” reactions, which corresponds to the edges drawn on the KEGG pathway maps. The Regulated Edges are predicted interactions based on the presence of known transcription factor cis-acting binding sites located in the 3kbp upstream region of annotated transcripts. Subtype “One Binding Site” represents presence of at least one binding site in the upstream region and “Over-represented Binding Site” represents over-representation of the binding site (two standard deviations) as compared to the expected number based in all upstream regions in the genome. Check the “Regulated Edges” box and choose “One Binding Site” as the Subtype. To improve the regulatory interaction predictions, filter the transcription factor:target gene predictions to include only the transcription factor and target pair whose expression values are correlated in the microarray experiment  (Gutierrez et al., 2008; Vandepoele et al., 2009). To filter “Regulated Edges” by correlation, select the checkbox in the “Correlation Data” column in the “Regulated Edges” row. To select the correct data set, select “Detlef Weigel, Jan Lohmann, Markus Schmid AtGenExpress: Developmental series (siliques and seeds)” in the “Experiment” field. The statistics for the calculation of correlations selected in this example are “Pearson” and with cutoff values of less than -0.9 and higher than 0.9.  The last parameter that we need to define to load the network is the number of “Hops” away from the original list of genes used for the analysis. With “0” hops the network shows only the genes in the original list and the interactions between them. With “1” hop, the network will also show genes that were not in the original list but that are associated with genes in the original list. 1 hop is a good option when the gene list is small or has very few interactions. For this example, we will select “0” hops and then click on the “Submit” button to generate the network. Visualization and manipulation of the network produced by either “Supernode analysis” or “Gene Network” analysis is implemented by the Cytoscape software (Shannon et al., 2003) which is launched automatically using Java Webstart. Features in Cytoscape allow users to set visualization preferences, such as the network layout (Figures 6 and 7 use the organic layout), changing node attributes such as size (size of Super Nodes in figure 6 are proportional to the number of genes in the Super Node), and to select nodes based on attributes such as size. The first time Cytoscape is launched from VirtualPlant it will need to download the necessary files onto the user’s computer.  The Supernode Networks analysis for the 1,367 seed regulated genes reveals several major transcription factor families that are highly connected in the seed development network (based on correlation and over-representation of cis-acting elements in the promoter region), including MADS-box, bHLH, TGA3-like, NAC, and bZIP. Interestingly, the network analysis also identifies a Supernode of “unknown proteins” composed of 147 genes connected by putative transcription factor hubs. The next step is to identify the “nitrogen metabolism” node and all the other Supernodes that are connected to it. From Cytoscape’s menu bar perform the following selection events:  “Select”  “Nodes”  “By Name” and type in the text field “Nitrogen Metabolism”. This will highlight and select the node. From the Cytoscape’s menu bar select “Select”  “Nodes”  “First neighbors of selected nodes”.  This will select the nitrogen metabolism node and all the nodes associated with it. Most of the neighbors are transcription factor families and two are other metabolic process (“Alanine and aspartate metabolism” and “Urea cycle and metabolism of amino groups”) (Fig. 6). The VirtualPlant plugin for Cytoscape allows users to send genes in the selected nodes back to their cart. While the nodes are still selected, from Cytoscape’s menu bar select “Plugins”  “VirtualPlant”  “Login to VirtualPlant”. Enter your VirtualPlant password and click the “Login” button. Then again from the menu bar, select “Plugins”  “VirtualPlant”  “Send Selected nodes to VirtualPlant”. A window will appear where the user must select the species they are working with. Select “Arabidopsis thaliana” and then “Ok”. Give the new list a name. There are 58 genes that are present in the Supernode Nitrogen Metabolism and the Supernodes it interacts with, including transcription factors.

The Supernode network analysis has identified a network of nitrogen metabolic genes and their neighbors that are regulated during seed development. Nodes with the highest number of connections (“hubs”) in a biological network often play important roles in the network’s operation (Barabasi and Oltvai, 2004). To obtain a quantitative measure of the number of connections, the user can run the “Network Statistics” tool.  In the Analysis view, select the checkbox near the list of 58 genes and select the “Network Statistics” function from the Analysis pull down menu. This tool displays a table of the most highly connected nodes in the network.  The analysis revealed that several AP2-like transcription factors are among the most highly connected transcription factors in the nitrogen metabolic seed regulatory network, which suggests that they play an important role in regulating genes involved in nitrogen metabolism during the stages of seed development analyzed. To obtain a detailed view of all the molecular interactions of the 58 genes from the Supernode network analysis, e.g. individual transcription factors and their targets, the user can run the “Gene Networks” tool.  From the Analysis page, select the checkbox near the list of 58 genes and then “Gene Networks” from the Analysis pull down menu. Selecting the same options as before (primary enzymatic reactions, all the literature based interactions, post-transcriptional regulation, protein-protein interactions, and transcriptional regulation) will produce the result shown in Fig. 7. Five genes involved in nitrogen metabolism (NIR1, NIA1, NIA2, ASN1, ASN2), 3 different miRNA164 genes, and 39 transcription factors from many different transcription factor families are present in the network. In this network, only two nitrogen metabolic genes are targeted by the transcription factors; ASN1, which is induced during seed development (See Table III) and ASN2, which is repressed during seed development. The expression of ASN1 is positively correlated to the expression of one transcription factor and negatively correlated to the expression of two other transcription factors. In contrast, the expression of ASN2 is negatively correlated to the expression of all the transcription factors in the network. 

Previous studies have shown that when ASN1 is overexpressed using a 35S::ASN1 line, the seed contains a higher level of free asparagine (Lam et al 2003). This result is consistent with the hypothesis derived from our in silico network analysis that suggested ASN1 expression is important during seed development. In this analysis however, we can go a step further to predict that the expression of ASN1 is induced by a NAC-like transcription factor NAP (At1g69490) which itself is known to be required for leaf senescence (Guo and Gan, 2006) and suggested to be involved in senescence of reproductive tissue (Kuneida et al 2008). This result is consistent with the role of asparagine in N-remobilization from leaves to developing seeds. The repressors of ASN1 are TT8 and AGL87.  TT8 was isolated while screening for seed coat color and is expected to play a role in flavonoid metabolism (Nesi et al 2000). AGL87 is a transcription factor from the MADS-box family that has not been implicated during seed development. Little is known about ASN2, but this result supports a role for this gene during seed development. ASN1 and ASN2 are known to be reciprocally regulated, especially in light, thus it is interesting to see ASN1 and ASN2 also regulated reciprocally during seed development (see Table III). The network analysis hypothesizes that the five metabolic genes (NIR1, NIA1, NIA2, ASN1, ASN2,) are important in nitrogen metabolism during seed development and it also proposes putative regulators of ASN1 and ASN2, hypotheses that can be experimentally validated.

DISCUSSION

Data interpretation, not data generation, has become an important bottleneck for the advancement of science. In an effort to help biologists take advantage of the burgeoning amount of genomic data available, we have developed “VirtualPlant” as a software platform that enables scientists to integrate, analyze, and visualize genomic data for the generation of testable biological hypotheses. VirtualPlant implements and combines quantitative and visual approaches to data integration and analysis using a user-friendly, web-accessible interface. The tools available from the VirtualPlant website (www.virtualplant.org) help biologists mine genomic data to address relevant questions in plant biology. Here, we have provided a series of case study examples to demonstrate how a biologist can use VirtualPlant to analyze gene lists, gene networks and microarray experiments. For a complete list of tools available in VirtualPlant refer to the “Help” section in the website.

An important feature of VirtualPlant is the introduction of the Cart for data storage and analysis. A user can store gene lists or experiments as well as access different tools through the Cart. Most tools in VirtualPlant allow the user to send the results of the tool back to the Cart for further processing. The iterative nature of analysis enabled by the Cart helps filter and refine large data sets (gene lists, networks or microarray experiments) to develop concrete testable biological hypotheses (Gutierrez et al., 2007; Gifford et al., 2008; Gutierrez et al., 2008; Thum et al., 2008). Currently, the main data types the VirtualPlant system works on are lists of genes and microarray experiments. Our development efforts contemplate adding networks, metabolic pathways and other complex data types to be handled directly by the VirtualPlant software. 

When analyzing genomic data, biologists can often fail to discover interesting genes for experimental analysis when dealing with hundreds of putative candidate genes. They can also spend considerable time and effort copying and pasting lists of genes to perform such simple tasks as finding intersections between multiple lists. The first two case studies illustrate how a user can manage and analyze one or more lists of genes and easily perform set operations or the analysis of over-represented functional terms. Our third case study demonstrates more advanced uses of VirtualPlant to analyze microarray data and to generate gene networks. In that example, we used VirtualPlant to identify gene networks and regulatory hubs that control seed development. A list of 1,367 genes that are regulated during seed development was obtained from the statistical analysis of publicly available microarray data. The combined use of two different network analysis tools led to a small set of AP2-like transcription factors that are predicted to act as regulatory hubs of nitrogen metabolism during seed development. The potentially key role of these transcription factors in nitrogen metabolism during seed development is supported by the phenotypes in the seeds of some of the mutant transcription factors and their targets. VirtualPlant allowed us to recapitulate existing knowledge about seed development and it also allowed us to derive putative regulatory interactions, which may now be validated experimentally. Moreover, it allowed us to associate 147 genes of unknown function to seed development, thus prompting the hypothesis that these genes may have important functions during seed development.

With the widespread use of genomic technologies, the types of questions that are now common among biologists require a system that manages and analyzes sets of genes rather than individual genes. In addition, many biological processes are a result of interacting gene modules rather than isolated genes or gene products. The different types of data analysis (set operation, functional analysis, gene networks) and visualization tools supported by VirtualPlant enable biologists to analyze genomic data from a systems perspective. 

MATERIALS AND METHODS 

VirtualPlant software and database architecture. 

VirtualPlant is written in OO Perl using a Model-View-Controller (MVC) design and other well-established patterns of software design. Data persistence in the VirtualPlant system is facilitated by the open source MySQL v5.0 database server. Our database schema uses a parsimonious design inspired by the LIMBO system (Philippi, 2004), with only 4 tables (OBJECT, OBJECT_CONNECTION, OBJECT_ATTRIBUTE, CONNECTION_ATTRIBUTE) that allows for maximum flexibility to accommodate disparate data types. With careful attention to the indices and storage parameters of the database, we have found that this design provides high performance for a very small number of distinct queries. A detailed description of the software and database architecture is available upon request. VirtualPlant is freely available for use on the web and can be found at the URL: http://www.virtualplant.org. The source code is available upon request through a license agreement. 

VirtualPlant data

Currently the database containsmost recently updated versions of: (1) Arabidopsis Annotation from TAIR (ftp.arabidopsis.org) . (2) Gene Ontology terms and their association to Arabidopsis genes (http://www.geneontology.org)  . (3) MipsFuncat functional categories and their association to Arabidopsis genes (ftp.mips.gsf.de) (Mewes et al., 2004). (4) Affymetrix probes from ATH1 chips and their association to Arabidopsis genes downloaded from TAIR (ftp.arabidopsis.org). (5) Our Multinetwork that is queryied to create the network interaction discussed in Case Study 3 are comprise of biochemical Pathways, including enzymes, reactions, and small molecules from KEGG (ftp.genome.jp) and AraCyc (ftp.arabidopsis.org) , (6) Protein interaction data from Bind (ftp.blueprint.org) , AtPID (Cui et al., 2008) databases and experimentally determined protein interactions from Calmodulin(Popescu et al., 2007) and MADS BOX (de Folter et al., 2005) datasets. (7) Regulatory interaction data from the AGRIS database (arabidopsis.med.ohio-state.edu/) . 

The VirtualPlant database also contains publicly available microarray data obtained from the NASC Affy Watch subscription  . The AtGenExpress  and other widely used Arabidopsis microarray datasets are included in the NASC database of over 1,800 hybridizations, performed using the Affymetrix AG and ATH1 DNA Chips. All hybridizations were normalized using gcRMA (Irizarry et al., 2003) , provided by the BioConductor project (Irizarry et al., 2003) . These normalized experiments are loaded into VirtualPlant to enable users to make comparisons across treatments. The normalized gene expression patterns across the ~1,800 chips in NASC were then correlated using the Spearman method (Samuels and Witmer, 2003),  and the significant correlations (p≤0.01) were recorded and stored in the VirtualPlant database.

It is important to note that this network model does not currently contain all genes in the Arabidopsis genome.  At present, the Arabidopsis network model contains 16,562 nodes, of which 13,960 are genes, and 97,423 interactions, as described in detail in . The different types of interactions present in the network are summarized in Table 1. Genes or gene products that cannot be associated to another gene in the genome by any known or predicted molecular interaction are not included in the model. “Regulated edge” predictions have been described previously (Gutierrez et al., 2008). Briefly, consensus cis-acting motif sequences from AGRIS (Davuluri et al., 2003) were searched within the 3kb upstream regions of all genes in the Arabidopsis genome using the DNA pattern search tool available on the RSA tools server (van Helden, 2003). Upstream regions were not allowed to overlap with coding region of the upstream gene. The motifs were also not allowed to overlap. Our predicted regulatory network contains 21,698,658 regulatory edges where 1,187 transcription factors contain at least one binding site in the promoter region of 25,429 target genes. Surely not all of the predicted regulatory edges are valid. As discussed above there are two methods of reducing the putative edges: 1) look for binding sites that are over-represented compared to the genome and 2) only consider regulatory edges that are also correlated across a given microarray experiment. Using the combination of both of the methods has proven to useful in previous studies (Gutierrez et al., 2008). 
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Figure Legends

Figure 1. Conceptual diagram of the VirtualPlant software system. VirtualPlant follows the e-commerce site logic. In e-commerce sites, users browse and query the database and add products of interest to their shopping Cart. Users then check out and purchase the items in their Cart. Similarly, VirtualPlant allows biologists to browse lists of genes or microarray experiments with desirable properties. Having found interesting data, they can load the data into the Gene Cart and “check out” to analyze the selected genes. Biologists can then analyze or visualize the data in the Cart to generate biological hypothesis. Most tools in VirtualPlant can store their output in the Cart for a new round of analysis. This key feature allows for iterative filtering and refinement of large data sets.

Figure 2. The VirtualPlant web site. There are four main areas in the VirtualPlant website: 1) Navigation Window (top), 2) Cart Window (left), 3) Database Browser Window (bottom left), and 4) Analysis Window (center). The Navigation Window contains links to the different contents in VirtualPlant. The Cart Window displays the contents of the Cart, which are lists of genes and experiments that have been created and saved by the user. The Database Browser Window allows the user to navigate through different types of data stored in the database. Clicking on “Analyze” in the Navigation Window loads a detailed view of the Cart in the Analysis Window where the user can select the gene or experiment and the different visualization and analysis tools from the pull-down menu. 

Figure 3. Genes Correlated to NIA1 and their gene ontology annotations. A) Histogram representing the number of probes correlated with the NIA1 Affymetrix probe (259681_at). Orange bars represent the number of probes in the different correlation cut-off intervals. These can be selected by the “Range to graph” sliding tool on the right of the graph. Clicking on the bars will display probes from the selected interval in the table below. B) Pie-chart of the Gene Ontology terms associated to 23 genes selected in A). Each term has a different color in the pie chart. The legend to the right of the pie chart indicates the name of the GO term. The pie chart is generated by selecting the genes from the table and clicking on the “Pie” button at the bottom of the.

Figure 4. BioMaps results of genes that are induced by nitrate in both wild-type and NR-null mutant. BioMaps graphical output is a directed acyclic graph that shows the functional terms that are overrepresented in the gene list analyzed. The gray nodes contain the genes annotated to a functional term. The other colored nodes of the graph correspond to functional terms. The colors indicate the statistical significance of the overrepresentation as indicated in the legend included in the figure. For example, orange nodes correspond to functional terms overrepresented with a p≤ 1e-10.

Figure 5: Supernode and Gene Network Forms. Supernode analysis groups the genes based on the biological processes, functional terms and annotations associated with the genes. A) Supernode network form allows the user to choose from a selection of different functional term annotations and the depth of the annotation. In this case the grouping is based on “KEGG pathway and Gene Families” and only the “Direct Associated” annotations are used. In the Supernode analysis, interactions between the biological processes are determined by the Multi-network data. Therefore Supernode analysis will prompt the user with two forms, the Supernode network form and the multi-network form. B) The Gene Network form allows the user to select from the different molecular interactions that are present in the multi-network, see Table 1 for the list of resources available. In addition to the Supernode analysis, this form is also used for the Network Statistics tool.

Figure 6: Supernode Network analysis of genes differentially expressed during seed development. The Supernode Network graph allows the user to visualize relationships between biological processes. The nodes in the graph correspond to the supernodes, each grouping genes with common features, and edges connecting the nodes represent the different interactions between the genes in the supernodes (see text for details). Edge colors represent different interactions: blue edges protein-protein interactions, black arrows metabolic reactions, red arrows predictions for transcriptional induction, and green arrows predictions for transcriptional repression. The network shows “Nitrogen Metabolism” and its first neighbors in the Supernode Seed Regulated Network. The neighbors are mostly transcription factor families and two metabolic processes. The number near the names identifies the number of genes in the Supernode. 

Figure 7: Gene Network analysis of genes differentially expressed during seed development. The gene network graph shows interactions between genes, gene products and/or metabolites. Orange circles represent metabolites, green triangles represent transcription factors, purple diamonds represent miRNAs, and blue squares represent metabolic genes. Edge colors represent different interactions: blue edges protein-protein interactions, black arrows metabolic reactions, red arrows predictions for transcriptional induction, and green arrows predictions for transcriptional repression. Different miR164 genes are shown targeting two transcription factors that are indirectly connected to the metabolic genes. Out of the seven nitrogen metabolic genes present in this network, only ASN1 and ASN2 have predicted regulators based on correlated transcription analysis and predicted cis-element binding sites.

Table I: Data available in the VirtualPlant database.

	Data
	Source
	Statistics
	Reference

	Gene Annotation
	TAIR
	33,264 genes
	(Rhee et al., 2003)

	Functional Categories
	GeneOntology (TAIR)


	102,879 

associations
	(Ashburner et al., 2000)

	
	MIPSFuncat (MIPS)
	46,514 associations
	(Mewes et al., 2004)

	Microarray Data
	Data files (NASC)


	499 Experiments containing 3,829 hybridizations
	(Craigon et al., 2004; Redman et al., 2004)

	
	Probe to Gene associations (AFFYMETRIX)
	22,810 probes mapped to 23,334 genes
	(Rhee et al., 2003)

	Biochemical Pathways
	KEGG


	11,197 

	(Mueller et al., 2003)

	
	ARACYC
	17,498 
	(Kanehisa et al., 2004)

	Regulatory Interactions
	AGRIS
	343 interactions
	(Davuluri et al., 2003)

	
	

	
	

	Predicted Regulatory Interactions
	
	21,698,658 TF to target predictions.
	(Gutierrez et al. 2008)

	Protein interaction
	BIND


	
882 BIND,
	  (Bader et al., 2002) 

	
	INTEROLOGS
	39,317 Interolog
	(Yu et al., 2004) 


	
	AtPID
	24,418
	(Cui et al., 2008)

	
	MADS BOX
	263
	(de Folter et al., 2005)

	
	Calmodulin
	755 Calmodulin
	(Popescu et al., 2007)

	Literature based interactions
	GENEWAYS
	107 interactions
	(Rzhetsky et al., 2004)

	microRNA:mRNA interactions
	Collated by Dr. Pam Green’s laboratory (mirBASE and ASRP)
	582 interactions
	(Gustafson et al., 2005; Lu et al., 2005; Griffiths-Jones et al., 2006)


Table II: Several AP2 transcription factors are highly connected in the seed development gene network.

This table ranks genes by the degree (number of connections) in the seed development gene network (see text for details). 

	Gene  
	Connections  
	Annotation

	At5g65010 
	23  
	ASN2,ASN2 (ASPARAGINE SYNTHETASE 2); asparagine synthase (glutamine-hydrolyzing)

	At2g36270 
	22 
	ABI5,ABI5 (ABA INSENSITIVE 5); DNA binding / transcription factor/ transcriptional activator

	At5g18450 
	21 
	AP2 domain-containing transcription factor, putative

	At5g13330 
	20 
	RAP2.6L,RAP2.6L (related to AP2 6L); DNA binding / transcription factor

	At1g34180 
	19 
	ANAC016,ANAC016 (Arabidopsis NAC domain containing protein 16),ANAC016 (Arabidopsis NAC domain containing protein 16); transcription factor

	At4g36900 
	18 
	RAP2.10,RAP2.10 (related to AP2 10); DNA binding / transcription factor

	At3g62090 
	17 
	PIL2,PIL2 (PHYTOCHROME INTERACTING FACTOR 3-LIKE 2),PIL2 (PHYTOCHROME INTERACTING FACTOR 3-LIKE 2); transcription factor

	At1g01720 
	17 
	ATAF1,ATAF1 (Arabidopsis NAC domain containing protein 2); transcription factor

	At1g43160 
	17 
	RAP2.6,RAP2.6 (related to AP2 6); DNA binding / transcription factor

	At1g77450 
	17 
	ANAC032,ANAC032 (Arabidopsis NAC domain containing protein 32); transcription factor


Table III: Five Nitrogen metabolic genes that are regulated during seed development.

This table displays the five nitrogen metabolic genes and the stages of development that they are regulated and how (IND for induced and DEC for repressed).

	Genes
	ATGE 79-81
	ATGE 81-82
	ATGE 82-83
	ATGE 83-84

	ASN1
	
	IND
	
	

	ASN2
	
	DEC
	
	

	NIA1
	
	
	IND
	

	NIA2
	
	
	IND
	

	NIR1
	IND
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