Michael Kasdan
Computational Thought

Scribe on 09/14/09

David Hilbert decides he is going to do better than Frege by successfully remodeling mathematics to form a system of logic; he wants one set of rules to be able to explain it all.

But, Kurt Goedel used a new form of the Russell Paradox (involving number theory) to disprove this.

Here’s the case: suppose there’s a person (has finite memory) with an infinite amount of paper in front of him (unbounded). This person should be able to make decisions based on procedure (ex. If current paper has value V then change to V’, or else move right).
Turing wanted to make a machine that could do this in place of a human- input is unbounded but memory is finite. This became the basis for modern computer programming.

Entscheidung’s (trans: decision’s) problem: can I design a program (a set of instructions that you can put in finite memory) for any problem?

Example: each sheet of paper contains one character. We’ll call the program “T”, for translate, which has the following instructions: if character is lower case make it upper case, or else leave alone).

Now the program can either halt or not halt:

Halt-limited

Not halt- unlimited (goes on forever)

For example if we executed T on itself- T(T)=IF CHARACTER IS LOWER CASE….

Applying a program to itself was actually quite a radical idea!

As a side, viruses work by finding a program, using the extra allocated space, filling up that space, and then putting in a new set of instructions (such as blow up computer). A virus is an example of a computer programming itself.
Goedle proposes that there are two statements which aren’t provable.

Turing- can I find a program “P” and input “I” for which I cannot decide whether P(I) will halt?

This all goes back to Russell!

Turing- suppose you can figure out whether P(I) will halt.

Program #1: Halt(I)= return yes if I(I) halts, return no if I(I) does not halt

Program #2: Haltcrazy(I)= if Halt(I) returns no then return yes, if Halt(I) returns yes then run forever. (e.g. Haltcrazy(T)= runs forever. See above for definition of T)
Example:
Program: Tz(I)= if character is lower case then make upper case, or else if character is Z then print Z forever

Haltcrazy(Tz)= let’s see:

1) Tz(Tz) will go on forever because there is a Z in the text

2) Thus, Halt(Tz)=no

3) Finally, Haltcrazy(Tz)=yes

Here’s the paradox: Haltcrazy(Haltcrazy)
Let’s explore the possible outcomes and their significance:

1) If Haltcrazy(Haltcrazy)=yes, that means that Halt(Haltcrazy)=no, which implies that Haltcrazy(Haltcrazy)=runs forever

2) If Haltcrazy(Haltcrazy)=runs forever, that means that Halt(Haltcrazy) returns yes, which implies that Haltcrazy(Haltcrazy) halts
Either way, there’s a contradiction in terms of what happens when Haltcrazy applies itself to itself.

This implies that something is wrong with Halt. In other words, if Halt is possible to be written down then so is Haltcrazy. Since Haltcrazy is no good, it logically follows that Halt is also faulty.

Thus, Turing showed that there are programs that can’t be written.

There are also useful things that can’t be written:

Thue, a Norwegian mathematician discusses strings and transformations.

Strings:
abbcdeeab, xbcdeeba

Transformations:
X=ab, ab=ba

Two strings are equivalent if you can go from S1 to S2 through some set of transformations.
Example: abbcdeeab becomes xbcdeeab (because x=ab), then that becomes xbcdeeba (because ab=ab), Thus, the two strings above are equivalent.
Practical use: phrases can be changed from one language to another.

Thue equivalence problem- anything can be transferred to something else.

Here’s the paradox: if you can do Thue equivalence problem then you can do Halt problem. Since Halt problem doesn’t work, it logically follows that Thue equivalence problem doesn’t work.

Going over Homework
Donna’s solution to Spies and Double Agents problem (look in book for question)- guessing and checking, starting with Spy B, by making either W, X, or Y true. Spy B could only be telling the truth if Y were true. By repeating this process for Spy A, it becomes apparent that Spy A cannot be telling the truth (regardless of if W, X, or Y were the true one) because his statements contradict each other. Thus, Spy B is loyal and Spy A is the double agent. This means that Y is true. Plugging that into Spy B’s statements yields all the other letters as false.
Matthew’s solution to Spacecraft Malfunction problem (look in book for question and diagram)- make a table arranged by columns with the letter of each unit at the top of each column. The rows will represent a different attempt. In each attempt, start by making a different unit faulty and exploring all the different possibilities. What results is that it is impossible for only one unit to be faulty. Additionally, if only two were faulty, it would have to be B and C.
Some short bios*:

Axel Thue- Norwegian mathematician, best known for his original work in Diophantine approximation, and combinatorics. Interestingly, the Thue equivalence problem was the start of the mathematical basis for a formal solution to the Rubik’s cube.

Alan Turing- English mathematician, logician, cryptanalyst, and computer scientist. In 1999, Time Magazine named him as one of the 100 most important people of the 20th century for his role in computer science. He began as a cryptanalyst breaking codes during the second world war. Towards the end of his life, he became interested in chemistry. He died at the age of 41 from Cyanide poisoning, apparently self-administered.
*information from wikipedia
