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Abstract.

The ultimate goal of Systems Biology is to generate models that can predict how a system will react to untested conditions or genetic perturbations. This area of research is particularly relevant to plants where such predictive models can be useful for interventions in agriculture, and to engineer plants to improve their robustness to environmental change.  In the present review we: i) describe experimental approaches to understand such dynamic and causal gene relationships in plants using time-series (kinetic) and other data, ii) review the analytical approaches used to infer causality in the Gene Regulatory Network (GRNs) from these types of genomic data, iii) using benchmark data, we test and suggest best practices in experimental design and analytical approaches for future efforts of this kind, iv) review methods for high throughput validation of gene regulatory networks in plants. A surprising conclusion from this work is that replicates are more helpful for time-series experiments than for steady state experiments. Accompanying this paper is a tool to help researchers decide on an efficient experimental plan.
Introduction:  

Due to their sessile mode of life, plants are subject to drastic variations in their environment that lead to rapid adaptation of their genes mediated through a series of complex gene regulatory networks. The ultimate goal in Plant Systems Biology, is to infer how such regulatory networks will respond under untested conditions, for both scientific and practical gain.  In prokaryotes, models to infer gene regulatory networks have been successful in predicting genome-wide variations in untested environmental conditions as well as the causal relationships between genes ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[1, 2]
 ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[3, 4]
. However, there has been less success in generating predictive network models for multi-cellular organisms including plants.  With the increasing availability of high throughput -omic techniques and data, we think it useful to review both experimental and informatic approaches to inferring causal relationships in Gene Regulatory Networks (hereafter, GRNs). This article consists of three parts: 1. A review of efforts to use time-series and other –omic data to infer causal regulatory edges, showing the kinds of biological insights that can be obtained. 2. A description and a categorization of the informatic methods that are used to infer causal networks. 3. An in silico exploration using the DREAM framework (Dialogue for Reverse Engineering Assessments and Methods) [Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G: Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One 2010, 5:e9202] as a benchmark to determine questions of practical interest, notably how to plan experiments (e.g. trade off of replicates vs. additional data-points) to gain the maximum insight from each experiment.  4. A discussion of recent high throughput experimental techniques to validate inferred regulatory networks in plants.

I) Successful case studies of learning Gene Regulatory Networks in Plants 
Different kinds of systems approaches are used to model GRNs in plants. One characterization of the approaches is whether they start from a lot of prior knowledge (thanks to extensive prior data) or not. We call these “Strong Prior” and “Weak Prior” approaches respectively. 

Strong Prior approaches. 
In our terminology, Strong Prior approaches are grounded in extensive previous knowledge of the gene regulatory networks 5[]
 for well-studied functions such as for instance: auxin signaling ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[6]
, circadian clock ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[7, 8]
, or flower development ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[9]
. For auxin signaling, Vernoux et al., 2001 ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[6]
 built a model based on experimentally validated edges of the AUX/IAA-ARF transcription factors network and protein-protein interactions from Yeast-2-hybrid experiments. This model demonstrated that the constructed GRN, modeled as ordinary differential equations, displays a strong buffering capacity.  This buffering capacity was revealed in planta in the shoot apical meristem using DII-VENUS as a reporter of the input of signaling pathway and DR5- auxin responsive reporter gene as an output {Vernoux, 2011 #1375;Ulmasov, 1997 #331}. [Becca: Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ: Aux/IAA proteins  repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 1997, 9:1963-1971.]

The circadian clock is also a well-studied gene regulatory system that consists in interlocked transcription factor feedback loops ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[10, 11]
. GRN modeling of the circadian system has been successful in determining its evolution in time and the critical components involved in some key features of the oscillations. For instance, in Pokhilko et al., (2010) ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[10]
, the GRN model was central to the discovery of the role of PRR5 as a night inhibitor of the LHY/CCA1 expression including its role in the control of the phase of the of morning gene expression. In the same work, this GRN-generated hypothesis was validated by matching the behavior of prr5 mutants to gene expression predicted by the model ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[10]
. 

Flower development (the ABC model) is a textbook example of a conserved GRN that controls the fate of cells into sepals, petals, stamens, and carpels 12[]
. A successful approach using a discrete network model (gene expression is coded into discrete values), has been to simulate the cell-fate determination during floral organ primordial formation in Arabidopsis ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[9]
. This particular GRN dynamically converges towards different steady states in gene expression, each of which defines the different cell fates in flower organs. These steady states (or basins of attraction) are obtained independent of the initial gene expression values. This shows that this GRN has buffering capacities that direct gene expression behavior towards a dedicated state (e.g. to make a particular organ) ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[9]
.

 Weak Prior approaches. 

In Strong Prior approaches (above), the key prerequisite is to start with at least the knowledge of the connectivity of some relevant GRN in order to then model its intrinsic behavior 5[]
. However, for many systems - in plants, animals and microbes - this initial knowledge still needs to be discovered.

“Weak Prior” approaches begin without knowledge of gene network connectivity, and thus use computational algorithms to infer potential connections/causality in GRNs from -omics datasets and assign weights for those edges. In general, many techniques are used to infer GRNs in the field of systems biology (for reviews see ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[1, 13]
). A striking success story, is the model built from the multi-level dataset (including transcriptomic data and CRE inference) of the gene regulatory programs that lead Halobacterium salinarum’s response to environmental cues ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[2]
. The model has been built de novo by a machine learning procedure based on 72 transcription factors responding to 9 environmental factors. The same model was able to predict correct gene response (80% of the genome) in 147 untested conditions ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[2]
. In our opinion, this clearly demonstrates that the “weak prior” approaches can work, though it has to be scaled up in order to reach the same predictive power in eukaryotic multi-cellular system 14[]
. Even now, however, we can cite some successful case studies for plants.

Correlation networks are very popular in the plant science field, and in Arabidopsis in particular 15[]
. When combined with other information, correlation networks are able to identify key features of GRNs in plants. For instance, an Arabidopsis multinetwork that integrates correlation data with putative TF(Cis-Regulatory-Elements (CRE), protein-protein, and miRNA--| mRNA interactions uncovered biomodules involved in carbon/nitrogen signal integration ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[16, 17]
.  In another application, correlation networks combined with the Arabidopsis multinetwork  were able to uncover a central role for CCA1, the central component of the circadian clock, validated biology – nutrient control of the clock.ADDINADDINADDINADDIN Moreover, correlation network approaches were strikingly successful in identifying two genes (a myo-inositol-1-phosphate synthase, and a Kelch-domain protein) correlating with biomass accumulation in plants 20[]
. Their individual role was further supported by an association mapping study that demonstrated coherent allelic diversity at their locus 20[]
.  

Because causality moves forward in time, time-series experiments can provide valuable information regarding causality.  In Ingkasuwan et al. (2012) ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[21]
, time-series were used to identify genes regulated across a diurnal cycle. Then a sub-network of starch metabolism-involved genes together with regulated TFs, were subjected to a partial correlation (Gaussian Graphical Model) analysis. The connections in this model were largely validated by the study of regulator mutants that displayed starch granule defects in plastids ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[21]
.

Machine learning methods have also been employed to learn GRNs from time-series and other data.  For example, State-Space modeling is one modern machine learning technique that is devoted to detecting causality in networks by inferring ordinary differential equations specifying the relationships among genes. In plant science, this technique has been applied to probe GRNs involved in leaf senescence ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[22]
, as well as on GRNs involved in regulating early, time-dependent transcriptional responses to NO3- ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[23]
.  Breeze et al. (2011) ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[22]
 provided a high-resolution temporal picture of the aging leaf transcriptome. The authors demonstrate that different programs are deployed across time which involve particular TF families and CREs. They propose a GRN model that correctly predicts the influence of ANAC092, and proposes several new connections that still need to be validated ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[22]
.  In Krouk et al. (2010) ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[23]
, a high resolution time-course in response to NO3- treatments, identified different clusters of gene regulation involving different Gene Ontology categories over time in order to prepare a plant to reduce NO3-. A subset of TFs and N transport and assimilation genes were modeled with transcriptional regulators, in order to propose a GRN that explains NO3- signal propagation.  In silico validation demonstrated that the state space model trained on the beginning of the time series was able to predict gene expression modulation on later time points (not used to train the model). Experimental validation consisted of studying the effect of over-expressing a predicted hub (SPL9 TF) on the response of other NO3- regulated genes. Indeed, SPL9 over-expression modified the regulation of the predict target genes in the subnetwork (e.g. NIR, NIA2), but also of many other NO3- regulated TFs in the GRN ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[23]
. This supports the idea that network relationships lead to adaptation to genetic perturbations. 

II) Analytical approaches used to infer causality in the Gene Regulatory Network (a mathematical point of view).

Inferring a causal link between objects is useful in many applications in plant biology, from genomics to ecology. If some object A can cause some object B to take on a high value (where A could be a gene in our context, a hormone, or a species in ecology), then preventing B from taking such a value can be done by removing some B, by removing some A or by interfering with the link from A to B. Conversely, making B achieve a higher value can be done by adding more B, adding more A, or enhancing the efficiency of the link from A to B. Commonly, causal relationships in biology may involve several elements A1, ..., Ak influencing some B, sometimes positively and sometimes negatively. The influences can be "linear" in which each element has either a positive or negative weight (or coefficient) or "non-linear" in which case the elements work synergistically.  An example of synergy would be a dependency of B on the product of the concentrations of some genes X and Y. 

Generally, simpler models scale to larger numbers of genes, but are less informative as summarized by the following Table 1. Virtually all approaches deteriorate as the size of networks becomes larger, some more than others. Fortunately, biology tends to be modular, so large analyses can be broken down into smaller ones and then recombined 5[]
. 
The approaches to network inference fall into the following categories, we include references to papers that use them (Table 1). 

Use of Ordinary Differential Equations (ODE), often based on mass action, yielding equations of the form change in mRNA concentration = Transcription rate - Decay rate.  Such approaches work especially well for small networks such as the auxin networks mentioned above ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[5, 24]
. An issue with the mass action approach is that it assumes that different inputs interact in a multiplicative manner (product of concentration of each component), whereas the interaction is likely more complex in biological as opposed to chemical settings.  

An alternative approach to network inference is to use a Boolean approach, which allows other logical relationships among regulators and their targets ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[5, 9]
. Logic gates are based on thresholds, e.g. an AND gate will fire if the minimum input reaches a certain threshold, thus permitting non-linear relationships. These tend to work better on smaller networks than linear equations. One special case of the Boolean approach is to use tree-based methods which attempt to characterize the expression of a target gene g based on a family of conjunctions (Boolean ANDs) of some condition of the expression of other genes. For example, GENIE3 (GEne Network Inference with Ensemble of Trees), is a regression tree approach that can be applied to applied to steady state, time series, or mutational transcriptome data 25[]
.  
Correlation techniques are techniques that try to find single source-target relationships. To try to isolate the effects of one gene on another, many researchers make use of partial correlations. Schaefer and Strimmer (2005) 26[]
 and Ingkasuwan et al. (2012) ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[21]
 present an analysis of Graphical Gaussian Models. These models assume a Gaussian noise distribution and try to infer partial correlations (gene X influences gene Y while holding the effects of other genes constant). Partial correlations can be computed indirectly by computing regressions and then computing the correlations among the residuals. Such analyses require heuristic approximations because the number of experiments (e.g. microarrays) is always far less than the number of genes. As we saw in the previous section, for small circuits the heuristics can work well.

Like correlation, mutual information 27[]
 seeks pairwise relationships among variables  but without assumptions of linear or rank dependencies. Like correlation, mutual information can be used for large scale networks and does not try to compute the weight of influence of one gene on another in predicting the target’s expression value. 

”Integrative genomic” techniques analyze how changes can cause divergent behavior over time ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[28]
. The idea is that genes are in some steady state before some perturbation occurs and the technique follows the genes that change first, that change second, and so on to try to guess causality. This is the qualitative idea behind the differential equation approaches. 


Finally, there are network inference/differential equation techniques that integrate many different data types including steady state, time-series, and mutation/perturbation data (Greenfield et al. (2013) 29[]
). These algorithms treat knowledge in a pipelined fashion. Thus, if physical experiments show that some target gene Z has potential connections from X and Y but not from W, then only X and Y will be considered in the subsequent analysis. The time series based inference algorithm then might use these potential edges to derive an ordinary differential equation model that may combine linear and non-linear terms. The result of such a pipeline is a set of equations that estimate the change in transcription level of a target gene based on transcriptional levels of other genes using time series data. 
Finally, other work suggests trying lots of network inference methods in combination (Marbach et al. (2012) ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[13]
) showing empirically that a combination of strategies (wisdom of crowds) often lead to the best outcomes.

III) Determining the best experimental approaches to infer gene regulatory networks .

The DREAM competition (Dialogue for Reverse Engineering Assessments and Methods) [Becca: Please put in a reference number. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G: Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One 2010, 5:e9202]. 30[]
 invites research groups to try their algorithms on a common dataset (usually generated by a simulator), and then compares them along various criteria, notably precision and recall.  In this section, we have focused on algorithms that had the best precision/recall performance in the DREAM benchmark competition.  The software we provide with this paper is extendible, so other algorithms (including ones referred to in the previous sections) can be incorporated to improve the results. Our intent here is not to advocate any particular algorithm, but rather to give tools to experimenters trying to allocate their labs’ time and money on experimental data points.
The benefit of using simulated data is that we can change the size of the network, the noise level, the number of time points to take, the number of replicates, and the algorithms all while being able to judge the quality of inferences because the underlying network is known. Using the DREAM3 benchmark data, we analyze three questions that can be useful to experimentalists trying to construct causal networks:

For example, given a fixed number of tests that can be done, where each test is some kind of whole genome expression readout, should we prioritize tests at more time-points or more replicates per time-point? (The time points in every case are spread out evenly over 1008 simulation time units, so when there are fewer time points, the interval between them is more than when there are many.) Practically speaking given an experimental budget, can we characterize data in such a way that we can determine whether to use more replicates or more time-points assuming the data is varying over time? What is the corresponding answer for steady state experiments?

In the first set of tests, we consider transcriptome data from steady-state, mutational, and time-series experiments. For the purposes of the steady state experiments, there are as many steady state tests as there are genes. In each such test, every gene has a changed expression and we allow the system to evolve until it hits some steady state. This corresponds to treating the organism with some condition. (So there are 20 steady state tests for the 20 gene case and 100 tests for the 100 gene case.) For the knockout experiments, each gene is knocked out by itself and there is one test per knockout. Again, we allow the system to reach steady state. This corresponds to a full knockout. So the knockout tests require 20 tests in the 20 gene case and 100 tests in the 100 gene case. For the time series, there are 60 tests in total for both the 20 and 100 gene case. 

We answer these questions in low, medium and high (Gaussian) noise contexts for 20 gene as well as 100 gene networks. Low noise is a level that is not normally reached using current techniques (average variance is 0.013 in the 20 gene case for four replicates per time point and average variance 0.010 in the 100 gene case). Medium noise is meant to represent microarray noise levels (average variance is 0.015 in the 20 gene case for four replicates per time point and also 0.015 in the 100 gene case). High noise is noisier still (average variance is 0.022 in the 20 gene case for four replicates per time point and 0.026 in the 100 gene case). 

We use the GENIE3 25[]
 algorithm in every case because it handles mutational, steady state and time-series data. As explained above, GENIE3 is an algorithm that uses an ensemble of regression trees to infer networks from steady state, time series, or mutational experiments. However, our framework could be used to test any algorithm or combination of algorithms.

Our figure of merit is precision-recall shown in the graph in Fig. 1. That is, we measure “Area Under Precision Recall” (AUPR) curve.  Interpret this as follows: we display the recall and precision of the inferred edges between genes in descending order of their confidence score (given by whatever algorithm we use). At any given number of edges laid out in this order, we evaluate the precision (Fig. 1, Y-axis) and recall (Fig. 1, X-axis). When all real edges in the simulated DREAM model are found, the curve reaches the right side of the graph. The area under the curve (AUPR) is our figure of merit. We show three typical Precision-Recall curves in Figure 1: one taken from a random ordering of edges (20 genes random), a second from a confidence ordering for the 20 gene case, and a third from a confidence ordering for the 100 gene case.  As in this and the other results shown, the GENIE3 algorithm achieves an AUPR significantly better than random.

Fig. 2 (20 gene experiments) and Fig. 3 (100 gene experiment) show comparative AUPR values for different noise assumptions and different data inputs in our Gene Regulatory Network (we reserve the full precision-recall curves to the supplement). We can state some take-home lessons:

1. Network inference is feasible with noisy data: Acceptable Area Under Precision Curve values can be obtained even for fairly large networks (100 genes) when combining time-series and steady state-data (160 tests in all) (Fig. 3B). These values correspond to useful edge predictions in the sense that roughly 25% of the predicted edges are correct among the 100 edges that GENIE3 assigns highest confidence to. Because less than 2% of the possible 10,000 edges (176 of the 10,000) are in fact real, this shows that inference has value (see caption, Fig 3).

2. More replicates often trump more time points: For the 100 gene network under medium or high noise (Fig. 3), GENIE3 performs generally better when allocating the tests to few time-points having more replicates, rather than to more time-points having fewer replicates.  This can hold even for 20 genes (Fig. 2).  For example, 6 replicates on each of 10 time points yielded better AUPR than 4 replicates on 15 time points. This contradicts the conventional wisdom followed in most transcriptome studies that three replicates are sufficient. 

3. Many different steady state experiments may be more useful than highly replicated ones for small networks.  By contrast, under the model that a steady state experiment is simply an initial perturbation to all genes where different experiments are different perturbations, it is better to spread tests among different perturbations (one test per perturbation) rather than replicating each perturbation. For example, given a budget of 80 steady state tests for the 20 gene network under a medium noise setting (Fig. 2B), we obtain the following: 20 perturbations having 4 replicates per perturbation yielded an AUPR of 0.21. By contrast, 80 perturbations with 1 test per perturbation yielded an AUPR of 0.27.  This pattern does not carry over to the 100 gene network, possibly because the inherent  uncertainty in such a network benefits from redundancy approximately  as much as from more experimental conditions. Thus, small network inference craves variety, but that is less the case for larger networks (see supplementary material for more of these results).

Because our simulator software including Dreamweaver and a large set of network inference algorithms we have collected is available (see supplementary material for links to software and documentation), we suggest that researchers set up simulated data that resembles their real data in its noise characteristics and in the number of genes under study, choose an algorithm or set of algorithms, and then run the simulator to decide how to design experiments.

IV) Experimental validations of inferred GRNs.
GRN modeling provides strong hypotheses that need to be experimentally probed/validated. So far, experimental techniques used to validate TF(target relationships are i) Electrophoretic Mobility Shift Assay (EMSA), ii) chromatin immune-precipitation (ChIP) followed by genome-wide techniques (Deep-seq or Arrays) or iii) the use of Glucocorticoid receptor fusion to the TF of interest followed by Dexamethasone (DEX)- regulated TF entry into the nucleus, iv) Yeast one hybrid (Y1H). Such direct evidence of TF actions on DNA, can be supported by functional genetic evidence (mutant or over-expression studies).

The first approaches, ChIP and EMSA, identifies the transcription factor binding to the DNA, while the  DEX-induced TF translocation into the nucleus or Y1H detects TF action on target gene transcription. In the latter, binding is neither necessary (because of indirect influences) nor sufficient (because of interactions) for gene activation. This method for target gene identification genome-wide has been empirically demonstrated in Arabidopsis for a handful of transcription factors ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[31, 32]
. These techniques can be time-consuming because transgenic lines need to be produced in order to tag the studied TF with GFP, GR (or any other specific tag) in order to proceed with ChIP-Seq or DEX activation ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 

[31, 32]
. 

Recently, a protoplast system and fluorescent activated cell-sorting have been employed together, in order to scale-up the validation procedure of GRNs in a live plant system.  Briefly, plant protoplasts are transformed with plasmid harboring a selective marker (Red Fluorescent Protein- RFP), together with the over-expression of a studied TF fused to GR (glucocorticoid receptor (from rat)). Fluorescent Activated Cell Sorting (FACS) sorts only successful transformation events. This technique allows to i) overproduce the studied TF but ii) controls its massive entrance in the nucleus by dexamethasone (DEX) treatment. This permits one to co-treat protoplast with DEX and cycloheximide (CHX:Translation inhibitor), so as to only identify primary TF targets. This rapid technique (named TARGET: Transient Assay Reporting Genome-wide Effects of Transcription factors) allows the TF target identification in less than a week of experimentation. This approach makes possible high throughput investigations/validations of GRNs in plants 33[]
.
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FIGURE LEGENDS

[image: image1.png]Methods Expressiveness Scalability References
Correlation /Mutual [15, 27]
Information Low High (thousands of genes)

Medium (up to 100 genes | [21, 26]
Partial Correlation Medium using heuristics)
Differential equations Medium Medium 12,5, 23, 24]
Linear regression Medium Medium [29]
Non-linear regression High Low (up to 25 genes)
Boolean High Low (up to 25 genes) 19, 25]





Table 1 

Trade-off between complexity (the number of factors that can be applied to determine gene expression) and the size of the analyzed network. Small networks can be handled by methods that are highly complex (many linear and non-linear factors can influence a gene within the method). Combining several small network modules holds the potential to analyze a large network [Becca: It’s reference 5 (Middleton)], though this may not always work. (Becca: please Add inferrelator reference for non-linear regression)  (Becca: please CHANGE HEADING Expressiveness TO COMPLEXITY)
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Figure 1
The precision-recall curves are constructed from left to right in descending order by the confidence score that GENIE3 assigns to the edges. We see that generally speaking, edges in which we have more confidence tend to be correct more often. Also, precision-recall is better for the 20 gene network than for the 100 gene network. The lowest curve is for random edges. The higher the edge the greater the Area Under the Precision-Recall (AUPR) curve, which is the single number we use to represent quality in Figs. 2 and 3.
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Figure 2

20 Gene Network.  A comparision of Area Under Precision-Recall curve (AUPR) with the AUPRs when using time series data only (panel A); Time series with Steady State data (panel b) and Time series with Steady State and Knock out data (panel c). Control are a random ordering of edges which, unsurprisingly, has a very low AUPR.  Adjacent histograms represent the same measurements under different noise characteristics.   Reading from left to right, replicates increase ( 4, 6, 12 replicates), while the number of time points decrease (15, 10, 5 time points). Depending on the noise characteristics, we may get better performance if we allocate our tests to many replicates and fewer time points. This goes against the conventional wisdom that two or three replicates are sufficient. For the pure time series case with medium noise and 12 replicates over 5 time points, the first 100 edge predictions yield 18 that are correct (panel A). Adding in steady state data (panel B) raises the overall Area Under Precision-Recall curve (AUPR) by about 0.05. When both steady state and mutant data are added to time series data (panel C), performance goes up by an additional 0.03. 
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Figure 3

100 gene network.  Sample order is the same as described for the 20 gene network in Fig. 2. With time-series alone (panel A), the Area Under the Precision-Recall Curve is only at best about 0.05, though it is much better when more replicates are used instead of more time points. Adding steady state data to time series (panel B) brings the AUPR up to 0.15 which is much more reasonable. Once again, more replicates beats more time points though only by a little. Adding knock-out data to steady state and time series helps still further (panel C).  Reinforcing the utility of this approach, we also find that under medium noise and 12 replicates over 5 time points using time series and steady state data, the first 100 edge predictions yield 26 that are correct out of a total of 176 edges in the correct network.  Because the network has 10,000 possible edges, a random selection of 100 edges would be expected to have less than 2 edges (See Supplemental Table I). 
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