Gene regulatory networks in plants: Learning causality from time and perturbation.
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Abstract
The ultimate goal of Systems Biology is to generate models that can predict how a system will react under untested conditions or in response to genetic perturbations. This area of research is particularly relevant to plants where such predictive models can be useful for interventions in agriculture, for example to engineer plants to improve their robustness to environmental change. In the present review we: i) describe experimental approaches to understand dynamic and causal gene relationships in plants using time series (kinetic) and other data, ii) review the analytical approaches used to infer causality in the Gene Regulatory Network (GRNs) from these types of genomic data, iii) review methods for high throughput validation of gene regulatory networks in plants. This systems biology cycle of experiment-model-experiment can lead to rapid understanding of TF-targeted gene network modules in plants.

Introduction: 

Due to their sessile mode of life, plants are subject to drastic variations in their environment that lead to rapid adaptation of their gene expression states resulting from their complex gene regulatory networks. The ultimate goal in Plant Systems Biology is to infer how such regulatory networks will respond under untested conditions for both scientific and practical gain. In prokaryotes, models to infer gene regulatory networks have successfully predicted genome-wide variations in untested environmental conditions as well as the causal relationships between genes 1-4


[ ADDIN EN.CITE ]
. However, there has been less success in generating predictive network models for multi-cellular organisms including plants. With the increasing availability of high throughput -omic techniques and data, we think it useful to review both experimental and informatic approaches for inferring causal relationships in Gene Regulatory Networks (hereafter, GRNs). Here the term GRN is understood as the set of transcriptional interactions between transcription factors and their targets, otherwise explained thereafter. One has to be aware that GRNs can be understood as a multimodal set of gene-to-gene or gene-to-metabolite interaction but this will only be evoked sparsely in the present article. 
This article consists of three parts: 1. A review of efforts to use time series and other –omic data to infer causal regulatory edges, and show the kinds of biological insights that can be obtained. 2. A description and a categorization of the informatic methods that are used to infer causal networks. 3. A discussion of recent high throughput experimental techniques to validate inferred GRNs in plants.

I) Successful case studies of learning Gene Regulatory Networks in Plants 
Different kinds of systems approaches are used to model GRNs in plants. One characterization of the approaches is whether they start either with a significant amount of prior experimental knowledge of the connectivity of the modeled gene regulatory network or not. Thus, we call them here “Strong Prior” and “Weak Prior” approaches, respectively. 

Strong Prior approaches. 
In our terminology, Strong Prior approaches are grounded in extensive previous knowledge about the components involved in the GRNs 5[]
 of well-studied functions, for example: auxin signaling 6-8


[ ADDIN EN.CITE ]
, the circadian clock 9-11


[ ADDIN EN.CITE ]
, or flower development 12-14


[ ADDIN EN.CITE ]
. This previous knowledge is paradigmatically derived using differential equation systems and Boolean models [described in part II]. Outputs of the models are then compared to experimental data in order determine their predictive power. When the predictions hold, the models can be used to explore in silico GRN behavior in untested conditions and to determine overall system properties/architecture. 
These kinds of investigations have led to some of the striking results discussed below.
For auxin signaling, Vernoux et al. (2011) 6


[ ADDIN EN.CITE ]
 built a model based on previous knowledge of the AUX/IAA-ARF transcription factor network and Yeast-2-hybrid experiments (taking into account the possibility of interactions between the protein partners). ADDINADDINThis model demonstrated that the GRN built (Resolution of ODE) display a strong buffering capacity (the transcriptional induction of auxin-induced genes is stabilized even when auxin inputs display strong variations). This property was experimentally revealed in planta, in the shoot apical meristem, by using DII-VENUS as a reporter of the input of signaling pathway and the DR5 reporter gene as  output. 
The circadian clock is also a well-studied gene regulatory system (for a comprehensive review see Bujdoso and Davis (2013) 15[]
) that consists of interlocked transcription factor feedback loops 16-18


[ ADDIN EN.CITE ]
. GRN modeling of the circadian system has been successful in determining its evolution in time and the critical components involved in some key features of the oscillations. For instance, in Pokhilko et al. (2010) 17


[ ADDIN EN.CITE ]
, the GRN model was central to the discovery of the role of PRR5 as a night inhibitor of the LHY/CCA1 expression, including its role in the control of the phase of the of morning gene expression. In the same work, this GRN-generated hypothesis was validated by matching the behavior of prr5 mutants to gene expression predicted by the model 17


[ ADDIN EN.CITE ]
. Alternatively, Akman et al. (2012) 10[]
 used Boolean logic to describe circadian circuits in a quantitative model. The simplified model with decreased parameterization was able to accurately simulate observed circadian oscillations and identify regulatory structures consistent with experimental data.
Flower development (the ABC model) is a textbook example of a conserved GRN that controls the fate of cells into sepals, petals, stamens, and carpels 19[]
. A successful approach using a discrete network model (gene expression is coded into discrete values) has been to simulate the cell-fate determination during floral organ primordial formation in Arabidopsis 12


[ ADDIN EN.CITE ]
. This particular GRN dynamically converges towards different steady states in gene expression, each of which defines the different cell fates in flower organs. Plants arrive at these cell fate-associated steady states (or basins of attraction) independently of the initial gene expression values. This shows that this GRN has feedback/buffering capacities that direct gene expression behavior towards a dedicated state (e.g. to make a particular organ) 12


[ ADDIN EN.CITE ]
. More recent studies have taken advantage of the wealth of interaction and expression data available in public databases to construct extensive 13


[ ADDIN EN.CITE ]
 and condensed 14[]
 models of GRNs involved in floral development, resulting in time-evolving molecular regulatory networks for the development of sepal primordium 13


[ ADDIN EN.CITE ]
 as well as floral transition 14[]
.

These few examples of successful Strong Prior approaches demonstrate that gene regulatory networks confer robust emergent properties supporting developmental or environmental adaptations.

 Weak Prior approaches. 

The Strong Prior approaches described above begin with some physical connection data and then use time series and other experiments to model behavior 5[]
. However, for many systems - in plants, animals and microbes - this initial knowledge has yet to be discovered.

“Weak Prior” approaches infer potential connections in GRNs from Omic datasets. Many techniques are used to infer unknown networks in the field of systems biology (for reviews see 
 ADDIN EN.CITE 
[1, 20, 21]
). These techniques have enjoyed great success in simpler systems such as bacteria. For instance, a striking success story is the model of gene regulatory programs built from a multi-level dataset (including transcriptomic data and CRE inference) to describe the response of Halobacterium salinarum to environmental cues 2


[ ADDIN EN.CITE ]
. The model was built de novo by a machine learning procedure based on 72 transcription factors responding to 9 environmental factors. The same model was able to predict correct gene response (80% of the genome) in 147 untested conditions 2


[ ADDIN EN.CITE ]
. This study clearly demonstrates the feasibility of Weak Prior approaches in prokaryotic systems. In plant science, since this eukaryotic system is far more complex than yeast or bacteria, the field of GRN de novo learning is far less advanced 22[]
. However, Weak Prior approaches have been developed with some success, as described below.
In the plant field of gene regulatory network modeling the three most popular/used top-down approaches methods are i) classical correlations networks (in combination with other information in order to establish causality), ii) Graphical Gaussian Models (based on partial correlation), iii) Machine learning modeling or combinations of the above. 

Correlation networks have been used extensively to study GRNs in plants even if, by themselves, they do not directly determine causality in networks 23[]
. When combined with other experimental information, correlation networks help to identify key features of plant regulatory networks. For example, an Arabidopsis multi-network was constructed from all available information about putative TF(Cis-Regulatory-Elements (CRE), protein-protein interactions, and miRNA--| mRNA interactions 24[]
. Significantly, correlation data integrated with the Arabidopsis multi-network has uncovered i) biomodules involved in carbon/nitrogen signal integration 25


[ ADDIN EN.CITE ]
 and ii) a central role for CCA1, the central component of the circadian clock in nutrient control 26


[ ADDIN EN.CITE ]
. Additionally, correlation network approaches were strikingly successful in identifying two genes (a myo-inositol-1-phosphate synthase, and a Kelch-domain protein) correlating with biomass accumulation in plants 27[]
. The individual role of these two genes was further supported by an association mapping study that demonstrated coherent allelic diversity at their loci 27[]
. 

Graphical Gaussian Models can be viewed as an approximate method to find partial correlation networks. Partial correlation is a measure of correlation between pairs while controlling for other factors. Mathematically if A, B, and C correlate together, partial correlation correlates A and B by “subtracting” the correlation due to A and C. Practically, partial correlation is the correlation between the residuals resulting from the linear regression of A with C, and of B with C. Graphical Gaussian Models have been successfully developed 28[]
 and applied to plant GRN 
 ADDIN EN.CITE 
[29, 30]
. ADDINADDINIn Ingkasuwan et al. (2012) 29


[ ADDIN EN.CITE ]
 time series were analyzed to identify genes regulated across diurnal cycle. Then a sub-network of starch metabolism genes together with the diurnally regulated TFs were modeled using Graphical Gaussian Models. This model was tested and validated by studying regulator mutants that displayed starch granule defects in plastids 29


[ ADDIN EN.CITE ]
.

Machine learning methods have also been employed to learn GRNs from time series and other data. State-space modeling is a modern machine learning technique devoted to detecting causality in networks by inferring ordinary differential equations specifying the relationships among genes in those networks while avoiding over-fitting. In plants, this technique has been applied to probe GRNs involved in leaf senescence 31


[ ADDIN EN.CITE ]
 and GRNs involved in regulating early, time-dependent transcriptional responses to NO3- 32


[ ADDIN EN.CITE ]
. Breeze et al. (2011) 31


[ ADDIN EN.CITE ]
 provided a high-resolution temporal picture of the aging leaf transcriptome. Machine learning revealed modules that play various roles at different times, where each module involves particular TF families and CREs. This approach resulted in a GRN model that correctly predicted the influence of the TF ANAC092, and proposed several new regulatory edges that remain to be validated 31


[ ADDIN EN.CITE ]
. In another study 32


[ ADDIN EN.CITE ]
, state-space modeling and machine learning were applied to an Arabidopsis, high-resolution time course of genome-wide transcriptional response to NO3- treatments. A subset of TFs and N transport and assimilation genes have been modeled in order to propose a GRN that explains NO3- signal propagation. The model has been tested in silico as well as experimentally. In silico validation demonstrated that the model trained on the beginning of the kinetic is able to predict gene expression modulation on later time point (not used to train the model). Experimental validation consisted in studying the effect of over-expressing a predicted hub (SPL9 TF) on NO3- response of other NO3- regulated genes. Indeed, SPL9 over-expression modified the regulation of the NIR gene, NIA2, but also of many NO3- regulated TFs 32
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. ADDINADDIN
II) Analytical approaches used to infer causality in the Gene Regulatory Network (a mathematical point of view).

Inferring a causal link between objects is useful in many applications in plant biology, from genomics to ecology. If some population of objects A can cause an increase in the population of object B (where A could be a gene in our context, a hormone, or a species in ecology), then lowering the population of B can be done by i) removing some members of B, ii) removing some members of A, or iii) interfering with the link from A to B. Conversely, making B achieve a higher population can be done by i) adding more members of B, ii) adding more members of A, or iii) enhancing the efficiency of the link from A to B. Commonly, causal relationships in biology may involve several elements A1, ..., Ak influencing some B, sometimes positively and sometimes negatively. The influences can be "linear" in which each element has either a positive or negative weight (or coefficient) or "non-linear" in which case the elements work synergistically. An example of synergy would be a dependency of B on the product of the concentrations of some genes X and Y. 

Generally, simpler models scale to larger numbers of genes, but are less informative as summarized by the classes of network inference methods listed in Table 1. Virtually all approaches deteriorate as the size of networks becomes larger, some more than others. Fortunately, biology tends to be modular, so large analyses can be broken down into smaller ones and then recombined 5[]
. 

The approaches to network inference fall into the following categories, that can be classified based on level of information richness (low, medium and high) and scalability of the derived network (large, medium and small networks), as shown in Table 1. High information richness would for example allow the inference of the dynamic behavior of a network 21[]
 whereas low information richness would give some approximation to the connectivity of a causal GRN network. 
Correlation techniques are techniques that try to find single source-target relationships. To try to isolate the possibly mutual influence of one gene on another, many researchers make use of partial correlations. Schaefer and Strimmer (2005) 33[]
 and Ingkasuwan et al. (2012) 29
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 present an analysis of Graphical Gaussian Models. These models assume a Gaussian noise distribution and try to infer partial correlations (gene X influences gene Y while holding the effects of other genes constant). Partial correlations can be computed indirectly by calculating regressions and correlations among the residuals. Such analyses require heuristic approximations for large networks because the number of experiments (e.g. microarrays) is always far less than the number of genes. Thus, partial correlation approaches can result in medium sized networks (up to 100 genes) (Table 1).
Like correlation, Mutual Information 28[]
 seeks pairwise relationships among variables but without assumptions of linear or rank dependencies. Also like correlation, mutual information can be used for large scale networks and does not try to compute the weight of influence of one gene on another in predicting the target’s expression value. 

Use of Ordinary Differential Equations (ODE), often based on mass action, yields equations of the form: rate of change in Gene A concentration = Synthesis rate - Decay rate. Such approaches work especially well for small, information rich networks such as the auxin networks mentioned above 5


[ ADDIN EN.CITE , 34]
. An issue with the mass action approach is that it assumes that different inputs interact in a multiplicative manner (product of concentration of each component), whereas the interaction is likely more complex in biological as opposed to chemical settings.  
An alternative approach to network inference is to use a Boolean approach, which allows other logical relationships among regulators and their targets 5


[ ADDIN EN.CITE , 10, 12]
. Logic gates are based on thresholds, e.g. an “AND gate” will have an effect on target if the minimum input reaches a certain threshold, thus permitting non-linear relationships. These tend to work better on smaller networks than linear equations and better than multiplicative relationships in modeling regulation (Table 1).

Closely related to Boolean approaches are Decision/Regression Tree approaches that embody paths of threshold tests (where each path represents a Boolean conjunction of conditions) leading to a prediction (e.g. of expression values). GENIE3 (GEne Network Inference with Ensemble of Trees), is a regression tree algorithm that can be applied to steady state, time series, and/or mutational transcriptome data 35[]
. This approach has worked particularly well in DREAM3 (Dialogue for Reverse Engineering Assessments and Methods) competitions that use in silico data as benchmarks for validating the predictive power of inferred networks 36[]
.
”Integrative genomic” techniques analyze how changes can cause divergent behavior over time 37


[ ADDIN EN.CITE ]
. The idea is that genes are in some steady state before some perturbation occurs and the technique follows the genes that change first, that change second, and so on to try to guess causality. This is the qualitative idea behind the differential equation approaches. 

Pipeline Approaches typically combine different algorithms on different data types. For example, the Inferelator is a network inference approach that uses differential equation techniques and mutual information to integrate many different data types including steady state, time series, and mutation/perturbation data 38


[ ADDIN EN.CITE , 39]
. These algorithms treat knowledge in a pipelined fashion. Thus, if physical experiments show that a target gene Z has potential connections from X and Y but not from W, then only X and Y will be considered in the subsequent analysis. The time series-based inference algorithm then might use these potential edges to derive an ordinary differential equation model that may combine linear and non-linear terms. The result of such a pipeline is a set of equations that estimate the change in transcription level of a target gene based on transcriptional levels of other genes using time series data. Figure 1 illustrates the concept of such pipeline approaches, which refine large, information poor networks into smaller information rich networks with predictive power.

Finally, other work importantly suggests trying many network inference methods in combination (Marbach et al. (2012) 20


[ ADDIN EN.CITE ]
) showing empirically that a combination of strategies often lead to the best network resolution supporting the widespread popular use of the  wisdom of crowds concept.
III) Validations of inferred GRNs (an experimentalist’s point of view).

GRN modeling described in the above sections complements genetic studies and generates hypotheses for TF-target interactions to be tested, thus inspiring a new round of the systems biology cycle of high throughput experimentation for model validation and refinement (Fig. 1). A variety of methods have been used to uncover the global structure of gene networks by inferring regulatory relationships between transcription factors (TFs) and their target genes from genomic data 6


[ ADDIN EN.CITE , 40-43]
, in particular transcriptional analysis and chromatin immuno-precipitation. 

The most common approach has been TF perturbation in stable over-expression or knock-out/down lines followed by transcriptional analysis 44-47


[ ADDIN EN.CITE ]
. However, it remains unclear in such analyses whether changes in transcript levels are a direct consequence of TF manipulation, or whether these changes are caused by indirect or possibly pleiotropic effects. To overcome the limitation of this approach, several other techniques have been used to supplement transcriptional data including yeast-one-hybrid 40


[ ADDIN EN.CITE ]
, and electrophoretic mobility shift assays 48-50


[ ADDIN EN.CITE ]
. However, while these methods can result in a significant enrichment of direct targets, they are often time consuming and not easily applicable to high-throughput analyses. 

The introduction of ChIP-X, chromatin immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-seq) or tiling array (ChIP-chip), has greatly improved the genome-wide identification of TF binding sites and has uncovered many potential direct targets 51-53


[ ADDIN EN.CITE ]
. Importantly though, ChIP-X reveals the binding of a TF onto a promoter, but does not indicate if this results in activation/repression of gene expression 54


[ ADDIN EN.CITE ]
. Therefore, ChIP-X has often been combined with genome-wide transcriptional analysis to characterize the primary targets of a TF 55-57


[ ADDIN EN.CITE ]
.
Recently, novel combinations of these technologies have yielded vastly improved knowledge about TF(target interaction. For example, whole plant studies using dexamethasone (DEX)-inducible TF translocation into the nucleus followed by separate ChIP-X experiments identified target genes both bound and regulated by a TF of interest 58-60


[ ADDIN EN.CITE ]
. Another new technology was recently described by Bargmann et al. (2013) 61[]
 where a protoplast system combined with fluorescent activated cell-sorting (FACS) has been employed to scale-up validation of GRNs in vivo. Briefly, plant protoplasts are transformed with plasmid harboring a fluorescent selection marker together with the over-expression of a studied TF fused to GR (glucocorticoid receptor (from rat)). Protoplasts co-treated with DEX and the protein synthesis inhibitor cycloheximide (CHX), which blocks secondary target response, results in the identification of only primary TF targets. This rapid technique makes possible high throughput investigations/validations of TFs and the GRNs they regulate in plants 61[]
. Data from such high throughput TF-target validations can then be fed back into network inference pipelines to refine predicted edges in the derived GRNs, in a true systems biology cycle (Fig. 1).

Conclusion

Plant Systems Biology is at the beginning of a new era, in which machine learning techniques and experimental investigations mutually and iteratively reinforce one another. We believe that this experimental-analytical symbiosis will lead plant biologists to better and deeper insights into biological phenomena and lead computer scientists to develop new algorithms. Together this symbiotic collaboration should accelerate the understanding of plants as system.
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TABLE & FIGURE LEGENDS
	Methods
	Information Richness
	Scalability
	References

	Correlation /Mutual Information
	Low
	High (thousands of genes)
	[20, 28]

	Partial Correlation
	Medium
	Medium (up to 100 genes using heuristics)
	[29, 33]

	Differential equations
	Medium
	Medium
	[2, 32, 34, 36]

	Linear regression
	Medium
	Medium
	[38]

	Non-linear regression
	High
	Low (up to 25 genes)
	[38]

	Boolean
	High
	Low (up to 25 genes)
	[11, 35]


Table 1. Methods for Network Inference.

Trade-off between information richness (the number of factors that can be applied to predict gene expression) and the size of the analyzed network. Small networks can be handled by methods that are highly complex and information rich (many linear and non-linear factors can influence a gene within the method). Combining several small network modules holds the potential to analyze a large network 5[]
, though this may not always work.

Figure 1. An experimental/computational Systems Biology cycle using different data types and feedback. 
Starting from many possible edges, different data types and their analyses successively reduce the size of the network while increasing confidence in edges. 1. Correlation leads to pairwise associations of genes. 2. Transgenics permits the determination of the effect of mutations and over-expression of single genes. 3. Binding experiments (e.g. Chip-SEQ) reveals physical connectivity of a source gene to a target. 4. Time series experiments along with machine learning techniques lead to a weighted network where the weight on the edge from A to B determines the extent of influence of A on B. 5. Subsequent predictions followed by validations may then suggest the need for new experimentation, refueling the systems biology cycle.
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