Distance Match:
1) Pre-computing the distances of every sky object from other objects in the dataset:
We pre-compute the distances of every sky object from all other objects and store an ordered list of m - least distances of m-nearest points of the correspondent sky object. By doing this we are able to answer the future pattern queries with maximum number of m-points.
Here, is the result of this step: As I’ve said before, we can use quadtrees or octrees for this purpose. That will eliminate much computation.

	Astronomy dataset (the original catalogue + 2 new columns)

	star_id
	…
	m-partners
(in ascending distance order)
	partners-distances
(ascending order)

	…
	…
	
	

	s12
	
	s15, s18, s19, s21, s33, s35, …, sm
	d12_d15,…,d12_m

	s13
	
	…
	…

	…
	
	…
	…

	s46
	
	s41, s42, …
	d46_41, d46_42, …

	…
	
	…
	…

	s67
	
	s15, s65, …
	d67_15, d67_65, …

	…
	
	…
	…

2) Compute the pairwise query points distances:
For example in a query with k = 4 points, we compute all k(k-1)/2 pairwise distances and then choosing one of the points (here q0), Usually we want to choose the centroid we sort the distances in ascending order as following:
d0
q0
q1

d4
d1

q2
d3

d5
d2

q3

q0_partners (q1, q3, q2) (in ascending distance order)
q0-distances (d0, d3, d4)
We need the other pairwise distances as well, so:
Dist[q1][q2] = d1
Dist[q1][q3] = d5
Dist[q2][q3] = d2

3) Find the candidate solutions:
(I used the notation of Candidate solutions that means the list of possible solutions for our pattern query; every candidate solution contains at least one possible candidate match for every query point. The matching degree can be measured by a distance-metric and the match-cost differs from 0 to 1)
We look for candidate solutions like [q0_partners (q1, q3, q2)] with similar distances as [q0-distances (d0, d3, d4)] in the Astronomy-dataset. Here, we have the results: Yes!

	q0 candidate
(star-id)
	candidate partners sets (in ascending distance order)
<<q1 candidates >,<q3 candidates>,<q2 candidates>>
	Correspondent distances

	s12
	< <s15, s18> , <s18, s19, s21>, <s33, s35> >
	<<d12_15, d12_18>,
<d12_18,d12_19,d12_21>,<d12_33,d12_35>>

	s35
	<<s54>, <s70, s74, s71, s45>, <s45, s11, s89>>
	<<d35_54>,
<d35_70,d35_74,d35_71, d35_45>,
<d35_45,d35_11,d35_89>>

	s46
	<<s41>, <s42, s21>, <s56>>
	<<d46_41>, <d46_42,d46_21>,
<d46_56>>

	…
	…
	…

4) Finally, we find the solutions by the following query:
for each c in C (for each group of candidate stars)
 form a 1-1 correspondence between the stars in c and the k+1 query points based on the
 distances from point0, thus renaming the stars in c point0, point1, pointk consistently.
 For every pair pointu and pointv in point1, … pointk
 See whether dist(pointu, pointv) corresponds to dist(qu, qv) where qu is the uth point
 farthest away from q0 and qv is the vth point farthest away from q0
 If false, then c is not a match
 c is a match

Here are the final solutions:
<s12, s15, s19, s33>, Total-Match-cost = Tc1
<s12, s18, s19, s33>, Total-Match-cost = Tc2
<s12, s18, s21, s35>, Total-Match-cost = Tc3
<s46, s41, s42, s56>, Total-Match-cost = Tc4

And we cannot have a solution like this:
<s12, s54, s21, s56>

Right, but because we have sets, we can use joins.
Here is how: imagine a table
R(firstqueryelement, secondqueryelement, firstdatastar, seconddatastar)
q0, q1, s12, s15
q0, q1, s12, s18
q0, q3, s12, s18
q1, q3, s15, s18

Etc.
[bookmark: _GoBack]Then you work out the joins. Thanks, Dennis

