Dynamic Factor Graphs for Gene Regulatory Networks (DFG4GRN)

What it does:


 A major problem with microarray data is noise.  The data that is used to infer gene regulatory networks is generally noisy and there is not much of it.  To combat noise, techniques such as taking the median or mean of separate microarrays can be used, however microarrays are currently quite expensive, and you are reducing your already small dataset.  The data used to infer a regulatory network may be based on only a few replicates.  What the Dynamic Factor Graphs for Gene Regulatory Networks (DFG4GRN) algorithm does is try to reduce this problem by using the noisy data to model the ideal data set: one that would be measured without noise.  Inference is then done on this modeled ideal dataset instead of the noisy one. Predictions about the noisy dataset are made assuming a fitted Gaussian noise model.
In order to do this, we use a dynamical state space model.  Generally, a state space is a graphical representation of the data over time, where the data at each time point is represented by a node y(t).  Each node’s state, or value, is decided by some number of previous nodes.  More specifically, if each node at time t is influenced by the node directly preceding it, (i.e. the node from time t-1), then the setup is known as a “First Order Markov Chain”.  We can also model the influence coming from any number of previous nodes: this is called an “m-Order Markov Chain”.  Keeping this idea in mind, we can tweak this model a bit, so now instead of the value of each previous node deciding the value of the next node by some function f, we can instead model the dynamics of the system, that is, the change between values.  In our case, this means that each node y(t) represents all of our expression values at time point t, and we want to come up with some function f that models the change in expression between times t and t+1.

** FIGURE OF MARKOV CHAIN **

One problem with the above model is that it is susceptible to the aforementioned noise problem.  The modification that DFG4GRN in order to try to model the idealized version of the data is to introduce what is called a “hidden state” to the model.  These are represented in the figure below by the z(t) nodes.  These hidden states represent the estimate of the noiseless version of the expression data.  
 
The hidden states are then used to generate the observed expression values by incorporating measurement uncertainty.  The relationship between the observed states and the hidden (or latent) states is assumed to be the hidden state’s value with added Gaussian noise.


So, we are now modeling two aspects of each gene over time.  That is, for each observed value, we model the noise of that state and add that noise to the observed value to obtain our idealized value.  At the same time, we also model the dynamics between the hidden states as we move through time.  We can now draw our state space like this:


** DRAW PIOTR’S DFG4GRN mRNA STATE SPACE **

Where y(t) are our observed expression values (observed states), and z(t) are our idealized expression values (hidden states).  The box between y(t) and z(t) represents the Gaussian noise used to calculate z(t) from y(t), and the box between z(t) and z(t+1) represents the function f.  The function f must be learned.

To do this, we must first make an assumption about how the function f works.  The assumption in DFG4GRN is that the hidden states behave like a Markov chain, that is, each hidden state z(t) is dependent only on the value of the previous hidden state z(t-1).  This means that each latent gene expression value is dependent on some linear combination of any number of the latent gene expression values at the previous time point.  We can formulate f as a kinetic ordinary differential equation (ODE) involving a kinetic time constant τ, the rate of change of the expression values, mRNA degradation, and a linear function fi that is simply the transcription factor concentrations for gene i:

** tau * (dzi(t) / dt) + zi(t) = fi(z(t)) + etai(t) **

If we linearize the above equation, we can see a bit better how each component influences the others.


** Linearized version of above eq **

Let’s start with the left hand side of the linearized equation.  The parameter τ can be thought of as a weight of how much influence the difference in time between z(t) and z(t+1) should have. If τ is high, then the change in zi between t and t+1 is weighted more heavily than the expression value of zi at time t, and if τ is low, then the change in zi is not weighted as heavily as the value of zi at time t.

Moving to the right hand side of the linearized equation, we can now think of f as an n x m matrix F, where m is, in the case of genes, the number of transcription factors and n is the total number of genes, including transcription factors.  In general, m is the number of possible influential factors and n is the number of possible targets of those influential factors (a target may be an influential factor). For concreteness, we will treat transcription factor genes as influential factors and all genes as targets. This matrix contains the weights of how each transcription factor affects each gene.  Calculation of these weights is done in the learning step, which will be described shortly.  So for each gene, we multiply the weight of each transcription factor Fi,j in the matrix F for that gene at time t by the latent expression of that gene, zj.  We are essentially weighting the influence that each transcription factor has on each gene at a given time.  We then add a bias factor b and our Gaussian error term, ηi.  The bias factor b is a weight of the importance of each transcription factor, and that is another parameter that is learned.  At each time point, each transcription factor also has a Gaussian error term associated with it. A key simplification is that the error term for each gene is uncorrelated with the error term of any other gene.
** TODO: Learning step.  Formalization of observation model.  Explanation of Gaussian noise and how we are using it to influence the data between Y and Z, intuitions behind it.
