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Abstract. Robust controllers that stabilize dynamical systems even under disturbances and
noise are often formulated as solutions of nonsmooth, nonconvex optimization problems. While
methods such as gradient sampling can handle the nonconvexity and nonsmoothness, the costs of
evaluating the objective function may be substantial, making robust control challenging for dynam-
ical systems with high-dimensional state spaces. In this work, we introduce multifidelity variants
of gradient sampling that leverage low-cost, low-fidelity models with low-dimensional state spaces
for speeding up the optimization process while nonetheless providing convergence guarantees for a
high-fidelity model of the system of interest, which is primarily accessed in the last phase of the
optimization process. Our first multifidelity method initiates gradient sampling on higher-fidelity
models with starting points obtained from cheaper, lower-fidelity models. Our second multifidelity
method relies on ensembles of gradients that are computed from low- and high-fidelity models. Nu-
merical experiments with controlling the cooling of a steel rail profile and laminar flow in a cylinder
wake demonstrate that our new multifidelity gradient sampling methods achieve up to two orders
of magnitude speedup compared to the single-fidelity gradient sampling method that relies on the
high-fidelity model alone.
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1. Introduction. Robust controllers are a ubiquitous tool to overcome uncer-
tainties in the control of real-world applications resulting from the gap between math-
ematical modeling and reality. Constructing such controllers via minimizing the \scrH \infty -
norm of closed-loop systems is numerically challenging for at least two reasons. First,
the optimization objective induced by \scrH \infty -control leads to a challenging optimization
problem due to its nonsmooth and nonconvex nature. Second, each evaluation of the
objective entails computing the \scrH \infty -norm, which incurs costs that grow rapidly with
the dimension of the state space of the system model. Gradient sampling methods
[20, 25, 36] can handle the nonsmooth, nonconvex objectives underlying \scrH \infty -control;
however, each evaluation of the objective remains computationally expensive. We
introduce multifidelity approaches that build on gradient sampling and leverage hi-
erarchies of low-fidelity models of the system of interest for speeding up the opti-
mization while still providing convergence guarantees for the high-fidelity model of
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A934 S. W. R. WERNER, M. L. OVERTON, B. PEHERSTORFER

the system. Our new multifidelity variants of gradient sampling make finding \scrH \infty -
controllers tractable for models of systems with high-dimensional state spaces, where
relying on the expensive high-fidelity model alone quickly becomes computationally
prohibitive.

Multifidelity methods for optimization have a long tradition, especially in the
engineering community; see, e.g., the survey [56]. Early work on multifidelity opti-
mization was based on trust-region methods [1, 5, 30, 31, 60]. Other works use a
combination of reduced and full models in optimization [53, 54, 57, 66] and especially
target optimization under uncertainty, where the objective depends on stochastic aux-
iliary variables [26, 37, 38, 46, 47, 55]. For optimization problems with constraints
given by partial differential equations (PDEs), e.g., optimal control problems with
smooth objective functions, hierarchies of discretizations of PDEs have been used for
efficient preconditioning [19, 30, 35, 51]. In the context of uncertainty quantifica-
tion, warm-starting iterative processes are a common multifidelity approach; see, e.g.,
[3]. There are also derivative-free multifidelity methods [40, 41, 65]; however, these
still require a smooth objective function and thus are not well suited for nonsmooth
optimization problems arising in \scrH \infty -control.

There is a large body of work on reduced modeling for control and control for
large-scale systems; see, e.g., [8, 13, 48, 59]. The problem of efficiently designing
\scrH \infty -controllers for large-scale systems has been addressed before from different view
points. While in [44] a new large-scale \scrH \infty -norm computation routine was used to im-
prove performance of optimization algorithms, reduced-order surrogates were instead
exploited in [15]. In [12, 45], analytical formulas for (suboptimal) \scrH \infty -controllers are
used rather than an optimization algorithm, relating the low-order controller design
problem under additional assumptions to the solution of large-scale sparse nonlinear
matrix equations.

The multifidelity variants of gradient sampling that we introduce in this work can
cope with nonconvex, nonsmooth objectives and at the same time leverage low-fidelity
models for reducing the optimization costs. In the first multifidelity method that we
introduce, we start by optimizing the objective corresponding to a low-fidelity model
and then use the last iterate from the lower level as a starting point for optimization
of the objective corresponding to the next level. This process is repeated until we
eventually optimize with respect to the most expensive, high-fidelity model with a
good starting point. The second variant uses the high-fidelity model to compute
the objective function and its gradient throughout the calculation but restricts the
typically expensive gradient sampling process to gradients of the lower-fidelity models
until the final phase of the computation. Numerical experiments demonstrate that
speedups of up to two orders of magnitude can be obtained compared to single-fidelity
gradient sampling that uses the high-fidelity model alone.

The paper is organized as follows: We first discuss \scrH \infty -control and gradient
sampling methods in section 2. We then introduce two new multifidelity variants
of gradient sampling in section 3. We present numerical experiments for both vari-
ants on two real-world applications, control of the cooling of a steel rail profile and
control of a laminar flow in a cylinder wake, in section 4. Conclusions are drawn in
section 5.

2. Mathematical preliminaries. This section reviews the concepts of linear
state-space systems, robust \scrH \infty -controller design, and the gradient sampling method.

2.1. Dynamical systems and feedback controllers. Consider a finite-
dimensional open-loop state-space model of the form

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

1/
23

 to
 1

28
.1

22
.1

49
.9

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



MULTIFIDELITY GRADIENT SAMPLING A935

(2.1) G :

\left\{     
E \.x(t) = Ax(t) + B1w(t) + B2u(t),

z(t) =C1x(t) +D11w(t) +D12u(t),

y(t) =C2x(t) +D21w(t) +D22u(t),

where x(t) \in \BbbR n is the internal states, u(t) \in \BbbR m2 the control inputs, w(t) \in \BbbR m1

the disturbances, z(t) \in \BbbR p1 the performance of the system, and y(t) \in \BbbR p2 the
measurements. The matrices describing the model have corresponding dimensions:
E,A \in \BbbR n\times n, B1 \in \BbbR n\times m1 , B2 \in \BbbR n\times m2 , C1 \in \BbbR p1\times n, C2 \in \BbbR p2\times n, D11 \in \BbbR p1\times m1 ,
D12 \in \BbbR p1\times m2 , D21 \in \BbbR p2\times m1 , and D22 \in \BbbR p2\times m2 ; see, e.g., [32, 67]. The system struc-
ture of (2.1) is motivated by the observation that mathematical models are inevitably
idealized and that allowance must be made for perturbations to the system, either
because of its complexity in practice or because of unpredictable external input. The
system (2.1) therefore has two different types of inputs: a deterministic signal u that
is the output of a controller and a second signal w that accounts for modeling errors
and random perturbations. Furthermore, (2.1) has two outputs, one called y that
represents state measurements, typically obtained by sensors, and a second output
z, which may not be measured in practice but represents the overall performance of
the system. We consider (2.1) without any direct feed-through term, i.e., D22 = 0,
to simplify the exposition. In the general case with D22 \not = 0, it is described in [67,
sect. 14.7] how one may first construct a controller K with transfer function K(s) for
the system with D22 = 0 and then obtain the controller for the system with D22 \not = 0
from K(s)(Ip2

+D22K(s)) - 1. Also, we assume the matrix pencil \lambda E  - A in (2.1) to
be regular; i.e., there exists a \lambda \in \BbbC such that \lambda E - A is invertible so that (2.1) has a
classical frequency domain representation in terms of a transfer function.

The goal is to construct a continuous-time, finite-dimensional, feedback controller,
which maps the measurements taken from (2.1) onto an appropriate control signal,
K : y \mapsto \rightarrow u. The controller takes the form of a linear state-space model with

(2.2) K :

\Biggl\{ 
\.xK(t) =AKxK(t) +BKy(t),

u(t) =CKxK(t) +DKy(t),

where AK \in \BbbR n\mathrm{K}\times n\mathrm{K} , BK \in \BbbR n\mathrm{K}\times p2 , CK \in \BbbR m2\times n\mathrm{K} , and DK \in \BbbR m2\times p2 . Here, nK \in \BbbN 
is the order of the controller, assumed to be a fixed number that is much smaller than
the state-space dimension n of the system to be controlled, so nK\ll n. Note that, in
contrast to the open-loop system (2.1), the controller (2.2) does not have a descriptor
(mass) matrix EK; this is motivated by engineering practice that avoids the use of
active algebraic constraints in the controller. The control loop of (2.1) is closed by
connecting the controller (2.2) with the system (2.1), which yields the closed-loop
system Gc : w \mapsto \rightarrow z with

(2.3) Gc :

\Biggl\{ 
Ec \.x\sansc =Acx\sansc +Bcw(t),

z(t) =Ccx\sansc +Dcw(t),

where the system matrices are given by

(2.4)

Ec =

\biggl[ 
E 0
0 In\mathrm{K}

\biggr] 
, Ac =

\biggl[ 
A+B2DKC2 B2CK

BKC2 AK

\biggr] 
,

Bc =

\biggl[ 
B1 +B2DKD21

BKD21

\biggr] 
, Cc =

\bigl[ 
C1 +D12DKC2 D12CK

\bigr] 
,

Dc =D11 +D12DKD21.
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A936 S. W. R. WERNER, M. L. OVERTON, B. PEHERSTORFER

2.2. \bfscrH \infty -controller design. The requirement for the feedback controller (2.2)
that we consider here is the stabilization of the closed-loop system (2.3); i.e., the
design of (2.2) ensures that the closed-loop matrix pencil sEc - Ac is regular and that
all of its finite eigenvalues lie in the open left half-plane. Thus, we define the set of
stabilizing controllers as

\scrK = \{ (AK,BK,CK,DK) | \lambda \in \BbbC with det(\lambda Ec  - Ac) = 0 \Rightarrow Re(\lambda )< 0\} .

Let \| \cdot \| \scrH \infty denote the \scrH \infty -norm, defined for the closed-loop system (2.3) by

\| Gc\| \scrH \infty := sup
\lambda \in \BbbC ,Re(\lambda )\geq 0

\| Gc(\lambda )\| 2,

with the transfer function Gc(s) =Cc(sEc - Ac)
 - 1Bc+Dc, where s\in \BbbC ; see, e.g., [4].

In optimal \scrH \infty -control, a controller K \in \scrK is sought as a solution to the constrained
minimization problem

(2.5) min
K\in \scrK 
\| Gc\| \scrH \infty .

The task of \scrH \infty -optimal control can be interpreted as finding a stabilizing controller
that minimizes the worst-case amplification of all admissible disturbances.

In this paper, we focus on the case where the open-loop system (2.1) and, con-
sequently, the closed-loop system (2.3) are described by large-scale sparse systems of
differential-algebraic equations. The spectral abscissa of the pencil sEc  - Ac is the
real part of its right-most finite eigenvalue; we denote this by

(2.6) \alpha (Ac,Ec) :=max\{ Re(\lambda ) | \lambda \in \BbbC with det(\lambda Ec  - Ac) = 0\} .

The maximum peak of the spectral norm of the transfer function on the imaginary
axis is known as the \scrL \infty -norm, which is for the closed-loop system (2.3) given by

(2.7) \| Gc\| \scrL \infty := sup
\omega \geq 0
\| Gc(i\omega )\| 2,

where i denotes the imaginary unit, and the supremum is over the nonnegative imag-
inary axis because the data are real.

Using (2.6) and (2.7), the \scrH \infty -norm is

(2.8) \| Gc\| \scrH \infty =

\Biggl\{ 
\| Gc\| \scrL \infty if \alpha (Ac,Ec)< 0,

\infty otherwise.

Now we define our objective function to be minimized as

(2.9) f(x) := \| Gc\| \scrH \infty 

with the design variable

(2.10) x=

\left[    
vec(AK)
vec(BK)
vec(CK)
vec(DK)

\right]    \in \BbbR N , where N = n2
K + nKm2 + p2nK + p2m2,

defining a controller (2.2) via the matricesK = (AK,BK,CK,DK), with the closed-loop
system matrices defining Gc in (2.8) depending on K via (2.4). It is also convenient
to define the constraint function

(2.11) h(x) := \alpha (Ac,Ec),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MULTIFIDELITY GRADIENT SAMPLING A937

where again the closed-loop system matrices Ac and Ec depend on the controller
matrices K = (AK,BK,CK,DK) via (2.4). Using this notation, the optimization
problem (2.5) may be equivalently given as either

(2.12) min
x

f(x) or min
x:h(x)<0

f(x).

This optimization problem is challenging because the \scrH \infty -norm (2.8) is nonconvex
and, at points x where the supremum in (2.7) is attained at more than one value of
\omega , nonsmooth. However, f is locally Lipschitz on the set of stabilizing controllers
\{ x\in \BbbR N : h(x)< 0\} .

2.3. Gradient sampling method. It has been known for decades that the
steepest descent method (gradient descent with a line search) generally fails on non-
smooth optimization problems, typically converging to a nonstationary (and nonop-
timal) point where the objective function is not differentiable. The gradient sampling
method is a stabilized steepest descent method devised to overcome this difficulty.
It was presented by Burke, Lewis, and Overton in 2005 [25], along with an exten-
sive convergence theory that was subsequently refined by Kiwiel in 2007 [36]. The
algorithm is nondeterministic in the sense that it generates (samples) gradients at
randomly generated points within an appropriately sized ball around a given iterate.
In this paper, we rely on the detailed description of the method and its convergence
theory in the survey [20]. The main convergence result for Algorithm GS of [20] (with
specific parameter choices) is stated as Theorem 6.1 there: Suppose that f is locally
Lipschitz on \BbbR N and continuously differentiable on an open set with full measure.
Then, with probability one, Algorithm GS is well defined and does not terminate and
generates a sequence of iterates for which either the function values diverge to  - \infty or
every cluster point of the sequence is Clarke stationary for f . Clarke stationarity is a
standard measure of stationarity for locally Lipschitz, nonsmooth functions [18].

The gradient sampling method relies on the computation of the function f and its
gradient \nabla f at the sequence of iterates generated by the method, using a ``gradient
paradigm"" [6], as opposed to the``subgradient paradigm"" often used for nonsmooth
functions, in particular by the ``subgradient method,"" which is usually very slow. The
gradient paradigm observes that, since locally Lipschitz functions are differentiable
almost everywhere by Rademacher's theorem and since, in practice, it is essentially
impossible to verify whether a nontrivial function f is differentiable or not at a given
iterate x, a method can reasonably compute an approximate gradient at any given
point, for example, by ignoring ``ties"" in a max function. The idea is that it is only in
the limit of the sequence of iterates that the function is actually not differentiable. Of
course, sampled gradients computed at nearby points in this way may vary greatly,
and the gradient sampling algorithm exploits this property. These key points are
discussed at greater length in the references given above.

The gradient sampling method has been applied to solve \scrH \infty -norm optimization
and related stabilization problems since it was first introduced [21, 22, 24]. We follow
the same basic strategy used in [21]: First, in order to find a stabilizing controller for
the \scrH \infty -norm optimization problem described in subsection 2.2, we apply gradient
sampling to the constraint function h(x) defined in (2.11); then, once a point x0 with
h(x0) < 0 has been found, we apply gradient sampling to the \scrH \infty -norm objective f
defined in (2.9), initialized at x0. If this results in f being evaluated at a nonstabilizing
controller, the function value \infty that is returned will result in the controller being
rejected by the line search; according to the gradient sampling convergence theory, as
long as f is differentiable at x0, the line search must eventually return a new point

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

1/
23

 to
 1

28
.1

22
.1

49
.9

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A938 S. W. R. WERNER, M. L. OVERTON, B. PEHERSTORFER

x1 with f(x1) < f(x0). The functions f and h are differentiable almost everywhere
(in the former case, almost everywhere on \scrK ), and the formulas for their gradients
may be derived from the formulas for the gradients of the \scrH \infty -norm and the spectral
abscissa given in Appendices A and B, respectively.

3. Multifidelity gradient sampling. In this section, we introduce two multi-
fidelity versions of the gradient sampling method to design controllers for high-fidelity
models for which a hierarchy of cheap low-fidelity models is available. We first in-
troduce the notation of hierarchies of models in subsection 3.1. Then we define our
two new methods: gradient sampling with multifidelity restarts in subsection 3.2 and
gradient sampling with multifidelity approximate gradients in subsection 3.3.

3.1. Hierarchies of models. We consider the situation where there is a hier-
archy of L models of the form (2.1) available. The accuracy of the models increases
with a corresponding index from level 1 to level L, the most accurate model. We find
such a situation, for example, when (2.1) is given as spatial discretization of PDEs,
where the model hierarchy with levels \ell = 1, . . . ,L is due to different refinements of the
discretization. The hierarchy of models gives rise to a hierarchy of objective functions
for \scrH \infty -controller design,

(3.1) f \ell (x) = \| Gc
\ell \| \scrH \infty ,

with \ell = 1, . . . ,L. A key point to note is that the dimension N of the vector x in (3.1)
representing the controller K = (AK,BK,CK,DK) is independent of the model level
\ell . Instead of (2.4), we now have closed-loop system matrices defined by

E\ell 
c =

\biggl[ 
E\ell 0
0 In\mathrm{K}

\biggr] 
, A\ell 

c =

\biggl[ 
A\ell +B\ell 

2DKC
\ell 
2 B\ell 

2CK

BKC
\ell 
2 AK

\biggr] 
, Bc

\ell =

\biggl[ 
B\ell 

1 +B\ell 
2DKD

\ell 
21

BKD
\ell 
21

\biggr] 
,

C\ell 
c =

\bigl[ 
C\ell 

1 +D\ell 
12DKC

\ell 
2 D\ell 

12CK

\bigr] 
, Dc

\ell =D\ell 
11 +D\ell 

12DKD
\ell 
21,

where the matrices superscripted by \ell are the open-loop system matrices. The corre-
sponding transfer functions of the closed-loop systems areG\ell 

c(s) =C\ell 
c(sE

\ell 
c - A\ell 

c)
 - 1B\ell 

c+
D\ell 

c.
Our aim is to find a controller that is optimal with respect to the high-fidelity ob-

jective function fL while leveraging the less accurate but cheaper objective functions
f \ell on levels \ell = 1, . . . ,L  - 1. The objective functions have gradients \nabla f1, . . . ,\nabla fL,
which are increasingly more expensive to compute as \ell increases; see Appendix A for
the formulas.

Besides hierarchies of discretizations, the model hierarchy may alternatively be
obtained via model reduction techniques. These allow the computation of reasonably
accurate, cheap-to-evaluate surrogates that can serve as low-fidelity models in our
setting. See, for example, [9, 10, 16, 17, 58] for overviews on potential methods or
[12, 45] for model reduction methods in the context of \scrH \infty -controller design.

In the following, our starting point is a hierarchy of objective functions f1, . . . , fL

that is ordered from cheap to expensive and less accurate to more accurate, but we
make no assumptions on where the objective functions originate. It is sufficient to
have an oracle that allows the evaluation of the functions f \ell and their gradients \nabla f \ell 

at the design variable x corresponding to the given controllerK. Besides hierarchies of
objective functions, we must also at least implicitly consider hierarchies of constraint
functions h\ell (x). We return to this topic below.

3.2. Restarted multifidelity gradient sampling. Our restarted multifidelity
gradient sampling (RMF-GS) method uses controllers obtained with lower-fidelity
models to warm-start the optimization for controllers of higher-fidelity models.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MULTIFIDELITY GRADIENT SAMPLING A939

3.2.1. Multifidelity restarts. The proposed RMF-GS approach iterates over
the levels \ell = 1, . . . ,L and, at each level \ell , solves an optimization problem of the form
(2.12) with the objective function f \ell , where the initial guess is the solution of the
previous level. So, letting xk\ell  - 1 denote the final iterate at level \ell  - 1, the initial guess
at level \ell \geq 2 is xk\ell  - 1 . The motivation for RMF-GS is that the objective functions
become progressively more accurate with increasing level \ell , and thus, the solution
xk\ell  - 1 at the previous level \ell  - 1 should be a good starting point at the current level \ell ,
implying that fewer gradient sampling steps are necessary than with a generic initial
guess. Hence, the aim is to take many iterations on lower levels, where the initial
starting points are poor but where objective and gradient evaluations are cheap, while
taking fewer of the expensive evaluations on higher levels as the starting points get
closer to a minimizer of the high-fidelity objective function fL.

For any level \ell , the function f \ell is monotonically decreasing on \{ xk\} as k increases
from k\ell  - 1 to k\ell . Note, however, that, for \ell < L, there is no guarantee that the high-
fidelity objective fL is lower at xk\ell than it was at xk\ell  - 1 . Indeed, it might not even be
finite since the objective function is finite only if the closed-loop system is stable, and
even if this is the case for the model at one level, it might not be at another level.

3.2.2. Algorithmic description of RMF-GS. The new method is summa-
rized in Algorithm 3.1. The main difference from the original (single-fidelity) gradient
sampling method [20, Alg. GS] is the new outer loop starting in line 2 of Algorithm
3.1, which iterates over the available levels \ell = 1, . . . ,L. Lines 7 to 12 consist of
an inner iteration describing the single-fidelity gradient sampling method using the
objective function f \ell and its gradients \nabla f \ell at the current level. This has three parts:

Algorithm 3.1 RMF-GS.

Input: Initial point x0 \in \BbbR N ,
sample size q\geq N + 1, initial sampling radii \epsilon \ell ,0 > 0,
initial stationarity targets \nu \ell ,0 > 0,
termination tolerances \epsilon \ell ,opt \in (0, \epsilon \ell ,0), \nu \ell ,opt \in (0, \nu \ell ,0),
reduction factors \theta \ell ,\epsilon \in (0,1), \theta \ell ,\nu \in (0,1), and
line search parameters \beta \ell \in (0,1), \gamma \ell \in (0,1) for \ell = 1, . . . ,L.

Output: Approximation xk \in \BbbR N to a minimizer of fL.
1: Initialize k= 0.
2: for \ell = 1 to L do
3: if f \ell (xk) is not finite then
4: Apply stabilization step for f \ell to xk.
5: end if
6: Set \nu k+1 = \nu \ell ,0 and \epsilon k+1 = \epsilon \ell ,0.
7: repeat
8: Independently sample \{ xk,1, . . . , xk,q\} uniformly from \scrB (xk, \epsilon k).
9: Compute gk as the solution of ming\in \scrG \ell ,k

1
2\| g\| 

2
2, where

\scrG \ell ,k = conv
\bigl\{ 
\nabla f \ell (xk),\nabla f \ell (xk,1), . . . ,\nabla f \ell (xk,q)

\bigr\} 
.

10: Compute xk+1, \epsilon k+1, \nu k+1 using Algorithm 3.2 with inputs
xk, gk, f \ell , \epsilon k, \nu k, \theta \ell ,\epsilon , \theta \ell ,\nu , \epsilon \ell ,opt, \nu \ell ,opt, \beta \ell , \gamma \ell .

11: Increment k\leftarrow k+ 1.
12: until (xk == xk - 1) and (\epsilon k == \epsilon k - 1) and (\nu k == \nu k - 1).
13: end for
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A940 S. W. R. WERNER, M. L. OVERTON, B. PEHERSTORFER

Algorithm 3.2 Gradient sampling step.

Input: Iterate x\in \BbbR N , vector g \in \BbbR N , objective function f ,
current sampling radius \epsilon and stationarity target \nu ,
reduction factors \theta \epsilon and \theta \nu , termination tolerances \epsilon opt and \nu opt, and
line search parameters \beta and \gamma .

Output: Updated iterate \^x, sampling radius \^\epsilon , and stationarity target \^\nu .
1: if (\| g\| 2 \leq \nu opt) and (\epsilon \leq \epsilon opt) then
2: Set \^\nu = \nu , \^\epsilon = \epsilon , and \^t= 0.
3: else
4: if \| g\| 2 \leq \nu then
5: Set \^\nu = \theta \nu \nu , \^\epsilon = \theta \epsilon \epsilon , and \^t= 0.
6: else
7: Set \^\nu = \nu and \^\epsilon = \epsilon .
8: Set \^t=max\{ t\in \{ 1, \gamma , \gamma 2, . . .\} : f(x - tg)< f(x) - \beta t\| g\| 22\} .
9: end if
10: end if
11: Update \^x= x - \^tg.

(a) in line 8, sampling gradients uniformly from \scrB (xk, \epsilon k), the 2-norm ball around
the current iterate xk with radius \epsilon k;

(b) in line 9, computing the vector gk, which is easily done by standard software
for convex quadratic programming, and observing that the convex hull of
vectors v1, . . . , vq \in \BbbR N is\bigl\{ 

\alpha 1v
1 + \cdot \cdot \cdot + \alpha qv

q | \alpha 1 + \cdot \cdot \cdot + \alpha q = 1, \alpha 1 \geq 0, . . . , \alpha q \geq 0
\bigr\} 

(as explained in [20, sect. 6.1], the vector  - gk is not only a descent direction
for f \ell , but more importantly it is a stabilized or robust descent direction,
which allows for longer steps to be taken in the line search in the next part);

(c) in line 10, the computation of the gradient sampling step as described in
Algorithm 3.2, which includes checking the convergence criteria, updating
the algorithm parameters accordingly, and, if the termination criteria are not
yet met, updating the current iterate using a line search along  - gk.

The inner iteration for a given f \ell terminates when the gradient sampling step
has no effect, i.e., if the new iterate is the same as the previous one and the sampling
radius and stationarity target did not change. Looking at Algorithm 3.2, we see that
this can only occur if the algorithm satisfies the convergence criteria specified by the
parameters. According to the gradient sampling theory, this must happen eventually;
see [20, Cor. 6.1], taking into account the initialization of the parameters in Algorithm
3.1. In practice, it is necessary to set a limit on the number of steps in each inner
iteration, both because of the possible effects of rounding errors and to limit the overall
computation time. Likewise, in theory, the line search in line 8 of Algorithm 3.2 must
terminate in a finite number of steps, although, in practice, because of rounding errors,
a limit must be placed on this and the line search terminated if this limit is reached.
Whichever way the iteration for level \ell < L terminates, the method continues with
the next model level in the outer loop. In this case, the current iterate xk is the final
iterate xk\ell of level \ell < L and the initial iterate of level \ell + 1.

The algorithm allows for its parameters to depend on the level \ell so that adjust-
ments for each level are possible. The last step of the outer loop in Algorithm 3.1 is
gradient sampling with the objective function of interest fL; i.e., each step of the inner
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MULTIFIDELITY GRADIENT SAMPLING A941

loop in Algorithm 3.1 is as expensive as each step of classical single-fidelity gradient
sampling. In terms of global computational costs in comparison to the single-fidelity
method [20, Alg. GS], we can potentially save function and gradient evaluations using
Algorithm 3.1 under the assumption that the computed approximations of minimizers
on each level are indeed good initial guesses for optimization on subsequent levels.

Algorithm 3.2 implements the update step of gradient sampling and is the same as
in Algorithm GS in [20], except for the differentiability check of the objective function
f at the next iterate \^x. This check is needed in theory in order to be able to rigorously
state the convergence results in [20], but in practice, with the inevitable rounding
errors incurred in floating point arithmetic, it makes little or no sense to attempt
it. As already noted, our objective functions are differentiable almost everywhere,
and while encountering a point where the function is actually not differentiable is
not technically a probability zero event, it may be considered extremely unlikely in
practice. This issue is discussed further in [20, sect. 6.4.2].

3.3. Approximate multifidelity gradient sampling (AMF-GS). A valid
criticism of Algorithm 3.1 is that, although our primary interest is in minimizing
the highest fidelity model fL, this does not enter the computation until the gradi-
ent sampling algorithm has been run on all lower-fidelity objectives f1, f2, . . . , fL - 1.
Although we justified this by arguing that the final iterate for one level should be a
good starting point for the next level, an alternative viewpoint is that we might want
to involve the highest fidelity model fL at earlier stages of the computation. This
can be done efficiently by using fL as the objective function from the beginning but
replacing the expensive gradient sampling of fL by gradient sampling of the cheaper
models f1, f2, . . . , fL - 1.

3.3.1. Multifidelity ensembles of gradients. In the AMF-GS method, we
retain the idea of an outer loop over all L levels, but, unlike in the RMF-GS method,
we involve the high-fidelity function fL at every stage of the outer loop. For this
reason, we enforce the property that the high-fidelity function fL is monotonically
decreasing on \{ xk\} as k increases. However, although we evaluate fL at every iterate
xk, and in the line search that produces these iterates, it is only at the final level L
that we actually sample q \geq N + 1 gradients of the high-fidelity function fL. At all
earlier levels, we sample gradients of lower-fidelity functions instead. Thus, we replace
the definition

\scrG \ell ,k = conv
\bigl\{ 
\nabla f \ell (xk),\nabla f \ell (xk,1), . . . ,\nabla f \ell (xk,q)

\bigr\} 
in line 9 of Algorithm 3.1 with

\scrG \ell ,k = conv
\bigl\{ 
\nabla fL(xk),\nabla f \ell (xk,1), . . . ,\nabla f \ell (xk,q)

\bigr\} 
.

3.3.2. Algorithmic description of AMF-GS. The AMF-GS method is sum-
marized in Algorithm 3.3. The basic structure of the algorithm is the same as that of
Algorithm 3.1. However, a major difference between them is that, in AMF-GS, we are
minimizing the high-fidelity objective function fL at all levels \ell = 1, . . . ,L, while in
RMF-GS, at level \ell , we minimize the objective f \ell . Consequently, each step of level \ell 
of AMF-GS (Algorithm 3.3) is computationally more expensive than the correspond-
ing step in RMF-GS (Algorithm 3.1). However, for \ell < L, it is less expensive than a
step at level L of either method due to the use of cheaper-to-evaluate approximations
in the gradient computations of the sampled evaluation points in line 9 of Algorithm
3.3. A key point, however, is that, at the current iterate xk, we use the gradient of
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A942 S. W. R. WERNER, M. L. OVERTON, B. PEHERSTORFER

Algorithm 3.3 AMF-GS.

Input: Initial point x0 \in \BbbR N ,
sample size q\geq N + 1, initial sampling radii \epsilon \ell ,0 > 0,
initial stationarity targets \nu \ell ,0 > 0,
termination tolerances \epsilon \ell ,opt \in (0, \epsilon \ell ,0), \nu \ell ,opt \in (0, \nu \ell ,0),
reduction factors \theta \ell ,\epsilon \in (0,1), \theta \ell ,\nu \in (0,1), and
line search parameters \beta \ell \in (0,1), \gamma \ell \in (0,1) for \ell = 1, . . . ,L.

Output: Approximation xk \in \BbbR N to a minimizer of fL.
1: Initialize k= 0.
2: if fL(x0) is not finite then
3: Apply stabilization step for fL to x0.
4: end if
5: for \ell = 1 to L do
6: Set \nu k+1 = \nu \ell ,0 and \epsilon k+1 = \epsilon \ell ,0.
7: repeat
8: Independently sample \{ xk,1, . . . , xk,q\} uniformly from \scrB (xk, \epsilon k).
9: Compute gk as the solution of ming\in \scrG \ell ,k

1
2\| g\| 

2
2, where

\scrG \ell ,k = conv
\bigl\{ 
\nabla fL(xk),\nabla f \ell (xk,1), . . . ,\nabla f \ell (xk,q)

\bigr\} 
.

10: Compute xk+1, \epsilon k+1, \nu k+1 using Algorithm 3.2 with inputs
xk, gk, fL, \epsilon k, \nu k, \theta \ell ,\epsilon , \theta \ell ,\nu , \epsilon \ell ,opt, \nu \ell ,opt, \beta \ell , \gamma \ell .

11: Increment k\leftarrow k+ 1.
12: until (xk == xk - 1) and (\epsilon k == \epsilon k - 1) and (\nu k == \nu k - 1).
13: end for

the high-fidelity objective function fL in the definition of \scrG \ell ,k, regardless of the level
\ell in the outer loop. This guarantees that  - gk is a descent direction for fL, although
how ``robust"" of a descent direction it is depends on how well the sampled gradients
of f \ell approximate gradients of fL. If the approximation is not very good, the result
may be that the line search needs to take a very short step to obtain a reduction in fL

along  - gk. The main differences between Algorithms 3.1 and 3.3 are the definition
of \scrG \ell ,k and that the function we pass to Algorithm 3.2 is f \ell in the first case and fL

in the second case. Note that both methods, Algorithms 3.1 and 3.3, boil down to
the classical (single-fidelity) gradient sampling method from [20, Alg. GS] in the last
step of each outer loop, so the rationale for both methods is ultimately to provide a
good starting point for this final optimization at level L.

3.4. Stabilization. As explained in subsection 2.3, in order to obtain initial
points for minimization of the \scrH \infty -norm objective, it may be necessary to first apply
gradient sampling to the stabilization constraint function. Thus, in Algorithm 3.1,
in order to initiate gradient sampling optimization of f \ell at step \ell of the outer loop,
it may be necessary to first apply gradient sampling to the corresponding constraint
function h\ell . This applies not only at level 1 but at higher levels as well because there is
no guarantee that, at level \ell > 1, the function f \ell is finite at the starting point xk, even
though f \ell  - 1 is necessarily finite there. However, we note that this stabilization step
at level \ell > 1 was never needed in our computational results presented in section 4.
In contrast, for Algorithm 3.3, at most one initial stabilization is necessary to obtain
a point x0 where fL is finite.
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MULTIFIDELITY GRADIENT SAMPLING A943

3.5. Theoretical guarantees. Provided step \ell in the outer loop of Algorithm
3.1 is initiated at a point where f \ell is finite and differentiable and that f \ell is also dif-
ferentiable at subsequent iterates (see the discussion at the end of subsection 3.2), the
convergence theory given in [20] states that, with probability one, using exact arith-
metic, and in the absence of maximum iteration limits, eventually the convergence
criteria imposed by the parameters \epsilon \ell ,opt and \nu \ell ,opt must be satisfied. It is important
to note that these stopping criteria, namely,

\| g\ell ,k\ell \| 2 \leq \nu \ell ,opt and \epsilon \ell ,k\ell 
\leq \epsilon \ell ,opt,

essentially provide an approximate Clarke stationarity certificate. More precisely,
if the parameters \epsilon \ell ,opt and \nu \ell ,opt were set to zero, then all cluster points of the
resulting sequence of iterates must be Clarke stationary for f \ell (see [20, Thm. 6.1]),
which amounts to a first-order optimality condition given the Clarke regularity of f \ell 

[25, p. 753]. However, for \ell < L, no such statement can be made about step \ell in the
outer loop of Algorithm 3.3 because the gradients sampled are not gradients of fL.
In contrast, the statement can be made about the final step \ell = L in the outer loop
of Algorithm 3.3.

4. Numerical experiments. In this section, we present results of applying
the new multifidelity gradient sampling algorithms to two applications. We start by
introducing two special cases of the general system (2.1) that we will use. We then
describe the experimental setup and subsequently present the computational results.

4.1. Two open-loop systems. We test the new methods for the design of \scrH \infty -
controllers on two special instances of open-loop systems (2.1) that are motivated by
applications discussed subsequently. First, we consider systems of the form

(4.1)

E \.x(t) =Ax(t) +Bw1(t) +Bu(t),

z1(t) =Cx(t),

z2(t) = u(t),

y(t) =Cx(t) +w2(t).

In (4.1), the disturbances are separated into two independent parts w1(t) and w2(t),
where w1(t) has the same influence on the system dynamics as the controls and
w2(t) disturbs the measurements taken for the controller. Also, the performance
of the system consists of the nondisturbed measurements taken for the controller
and the control signal itself. Note that an open-loop system of the form (4.1) is
known in the literature as normalized linear-quadratic Gaussian formulation; see, e.g.,
[12, 45]. We may write (4.1) in the form (2.1) by defining

B1 =
\bigl[ 
B 0

\bigr] 
, B2 =B, C1 =

\biggl[ 
C
0

\biggr] 
, C2 =C,

D11 = 0, D12 =

\biggl[ 
0

Im2

\biggr] 
, D21 =

\bigl[ 
0 Ip2

\bigr] 
, D22 = 0.

As a second instance of (2.1), we consider

(4.2)

E \.x(t) = Ax(t) + B1w(t) + B2u(t),

z(t) =C2x(t) +D12u(t),

y(t) =C2x(t) +D21w(t).

Due to the nature of the benchmark problems that we use, the performance and
control measurements are based on the same state observations, i.e., we have C1 =C2
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A944 S. W. R. WERNER, M. L. OVERTON, B. PEHERSTORFER

in (2.1). The feed-through term D12 is taken as the first columns (m2 \leq p2) or rows
(m2 > p2) of the max(m2, p2)-dimensional identity matrix and the feed-through term
D21 as the first columns (m1 \leq p2) or rows (m1 > p2) of the max(m1, p2)-dimensional
identity matrix.

For the controller design in both cases, we consider only the problem formulation
of the controller (2.2) without a feed-through term, i.e., DK = 0, which is in line
with known analytically derived formulas for the construction of (suboptimal) \scrH \infty -
controllers for (4.1) and (4.2); see, e.g., [12, 29].

4.2. Experimental setup. We performed our experiments using two publicly
available data sets of spatial discretizations of PDEs [64]: heat flow on a steel bar
profile (rail example) and laminar fluid flow behind a cylinder obstacle (cylinder exam-
ple). The dimensions of the discretizations and the corresponding open-loop systems
are given in Table 1. For the cylinder example, the data set provides three different
discretizations. For the rail example, the data set provides nine different discretiza-
tions, of which we chose to use the first five, which allowed us to obtain a sufficiently
accurate approximation while keeping computational costs managable. We set nK,
the order of the controller, to 2 in all of the experiments.

In our experiments, we set the parameters of the multifidelity gradient sampling
algorithms as shown in Table 2. While the reduction factors and the line search

Table 1
Properties of models used in numerical experiments.

Rail example Cylinder example

Discretization levels \ell = 1 n= 109 n= 6618

and state dimensions \ell = 2 n= 371 n= 10645
\ell = 3 n= 1357 n= 22060

\ell = 4 n= 5177 ---

\ell = 5 n= 20209 ---

Inputs system (4.1) m1 = 13, m2 = 7 m1 = 14, m2 = 6

system (4.2) m1 = 3, m2 = 4 m1 = 3, m2 = 3

Outputs system (4.1) p1 = 13, p2 = 6 p1 = 14, p2 = 8

system (4.2) p1 = 6, p2 = 6 p1 = 8, p2 = 8

Table 2
Algorithm parameters used in numerical experiments.

HF-GS RMF-GS AMF-GS

Init. sampling radii, \epsilon 0 = 0.1, \epsilon 1,0 = \nu 1,0 = 0.1 \epsilon 1,0 = \nu 1,0 = 0.1

stationarity targets \nu 0 = 0.1 \epsilon 2,0 = \nu 2,0 = 0.01 \epsilon 2,0 = \nu 2,0 = 0.01
\epsilon 3,0 = \nu 3,0 = 0.001 \epsilon 3,0 = \nu 3,0 = 0.001

\epsilon 4,0 = \nu 4,0 = 10 - 4 \epsilon 4,0 = \nu 4,0 = 10 - 4

\epsilon 5,0 = \nu 5,0 = 10 - 4 \epsilon 5,0 = \nu 5,0 = 10 - 4

Termination tol. \epsilon \mathrm{o}\mathrm{p}\mathrm{t} = 10 - 4, \epsilon 1,\mathrm{o}\mathrm{p}\mathrm{t} = \nu 1,\mathrm{o}\mathrm{p}\mathrm{t} = 10 - 4 \epsilon 1,\mathrm{o}\mathrm{p}\mathrm{t} = \nu 1,\mathrm{o}\mathrm{p}\mathrm{t} = 0.01
\nu \mathrm{o}\mathrm{p}\mathrm{t} = 10 - 4 \epsilon 2,\mathrm{o}\mathrm{p}\mathrm{t} = \nu 2,\mathrm{o}\mathrm{p}\mathrm{t} = 10 - 4 \epsilon 2,\mathrm{o}\mathrm{p}\mathrm{t} = \nu 2,\mathrm{o}\mathrm{p}\mathrm{t} = 0.001

\epsilon 3,\mathrm{o}\mathrm{p}\mathrm{t} = \nu 3,\mathrm{o}\mathrm{p}\mathrm{t} = 10 - 4 \epsilon 3,\mathrm{o}\mathrm{p}\mathrm{t} = \nu 3,\mathrm{o}\mathrm{p}\mathrm{t} = 10 - 4

\epsilon 4,\mathrm{o}\mathrm{p}\mathrm{t} = \nu 4,\mathrm{o}\mathrm{p}\mathrm{t} = 10 - 4 \epsilon 4,\mathrm{o}\mathrm{p}\mathrm{t} = \nu 4,\mathrm{o}\mathrm{p}\mathrm{t} = 10 - 4

\epsilon 5,\mathrm{o}\mathrm{p}\mathrm{t} = \nu 5,\mathrm{o}\mathrm{p}\mathrm{t} = 10 - 4 \epsilon 5,\mathrm{o}\mathrm{p}\mathrm{t} = \nu 5,\mathrm{o}\mathrm{p}\mathrm{t} = 10 - 4

Reduction factors \theta \epsilon = 0.1, \theta \ell ,\epsilon = \theta \ell ,\nu = 0.1 \theta \ell ,\epsilon = \theta \ell ,\nu = 0.1

\theta \nu = 0.1 for \ell = 1, . . . ,L for \ell = 1, . . . ,L

Line search \beta = 10 - 4, \beta \ell = 10 - 4 \beta \ell = 10 - 4

\gamma = 0.5 \gamma \ell = 0.5 \gamma \ell = 0.5

for \ell = 1, . . . ,L for \ell = 1, . . . ,L
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MULTIFIDELITY GRADIENT SAMPLING A945

Table 3
Number of sampled gradients per problem instance.

Rail example Cylinder example
system (4.1) system (4.2) system (4.1) system (4.2)

\# sampled gradients q 32 26 34 24

parameters were set to default values that do not depend on the discretization level, we
chose the initial sampling radii and stationarity targets to decrease with the increasing
model level. The rationale for these choices is that the multifidelity gradient sampling
algorithms are designed with the idea that final iterates of the optimization on one
level should provide good starting points for the next level and that as the level
increases it makes sense to set more demanding termination criteria. Note that we set
iteration limits on each level of the multifidelity algorithms. These values are varied
with the problem and are listed in the column headed ``Max. iters."" in the tables
that appear below. In the tables, the point xk\ell denotes the final iterate at level \ell . In
the case of the rail example, we steadily decrease the maximum number of allowed
iterations per level as the computed iterates approach a minimizer of the highest
fidelity objective. In the case of the cylinder example, we observed some stagnation
in the lowest fidelity objective for high maximum iteration numbers, perhaps resulting
from a mismatch in the approximation to the highest fidelity objective. Therefore, we
chose here a smaller maximum iteration number than for the second level. The number
of sampled gradients for all methods and in all problem instances is set to q=N +2,
where we recall that N , the number of optimization variables, is given by (2.10). The
resulting numbers are listed in Table 3. All methods are initialized with a randomly
generated controller based on the same random seed, which is then stabilized by a
gradient sampling method applied to the constraint function (2.11).

We compare RMF-GS and AMF-GS to the single-fidelity gradient sampling
method from [20, Alg. GS] applied directly to the high-fidelity objective function fL,
denoted subsequently as HF-GS. We compare the results for the different methods
by comparing the evolution of the high-fidelity objective fL on the iterate sequence
\{ xk\} . In the case of RMF-GS, which does not access fL until its final outer loop, we
computed fL(xk) a posteriori.

For each problem instance that we solve, since we do not know the minimal value
of fL, it is convenient to define

fmin :=min
\bigl( 
fL(xHF-GS), f

L(xRMF-GS), f
L(xAMF-GS)

\bigr) 
,

where the three quantities on the right-hand side are, respectively, the minimal values
of fL found by the three different methods. Then, in the figures below, for each
problem instance we show two different plots of the evolution of fL(xk). In the plots
on the left, the vertical axis shows the values of fL computed by each of the three
methods, with different symbols indicating the discretization level, i.e., the index of
the outer loop in the case of RMF-GS and AMF-GS. For HF-GS, only the highest
fidelity discretization symbol is used. In the plots on the right, the vertical axis shows
the relative error

fL(xk) - fmin

fmin
,

using fmin as our best estimate of the true minimal value. In both cases, the horizontal
axis shows the running time in hours.
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The experiments were run on compute nodes of the Greene high-performance
computing cluster of the New York University using 16 processing cores of the Intel
Xeon Platinum 8268 24C 205W CPU at 2.90GHz and 16GB main memory. We used
MATLAB 9.9.0.1467703 (R2020b) running on Red Hat Enterprise Linux release 8.4
(Ootpa). For the single-fidelity gradient sampling method, we used the implementa-
tion in HANSO, Hybrid Algorithm for Non-Smooth Optimization, version 3.0 [49].
The new multifidelity codes are also based on this. All the examples discussed below,
except the first two levels of the rail example, use MATLAB's sparse data structure.
For the computation of the \scrH \infty -norm we employ the normTfMaxPeak and normTfPeak

routines from ROSTAPACK (RObust STAbility PACKage), version 3.0 [43]; see also
[14] for the implemented algorithms. As normTfPeak does not do a stability check, we
implemented this using MATLAB's eigs function. The source code, data, and results
of the numerical experiments are open source/open access and available at [64].

4.3. Optimal cooling of a steel rail profile. We consider the heat flow on a
two-dimensional cross section of a steel bar for optimal cooling; see [61] for further
details and [62] for the data set. The underlying heat equation is discretized on
multiple grid levels using finite elements. The resulting dimensions of the two open-
loop systems (4.1) and (4.2) can be found in the rail example column of Table 1.

We first consider the example formulation (4.1). The results are shown in Figure 1
and Table 4. Even a quick glance reveals that both new methods are faster and more
accurate than the single-fidelity method HF-GS, with RMF-GS being faster and more
accurate than AMF-GS. Indeed, already level 1 of the RMF-GS method obtains in
less than 0.1 h about the same value for fL as the final value found by HF-GS after 45
h. Furthermore, although the plot on the left side of Figure 1 suggests that RMF-GS
stagnates, the plot on the right side shows that this is not the case, with additional
digits of accuracy steadily attained as the hierarchy level of RMF-GS is increased.
Overall, RMF-GS achieves a speedup of 452 compared to HF-GS to reach the same
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(b) distance to lowest objective value
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Fig. 1. Rail example with formulation (4.1): To reach the final objective function value found by
HF-GS, RMF-GS achieves a speedup of 452, and AMF-GS achieves a speedup of 30 in comparison.
Additionally, RMF-GS and AMF-GS ultimately obtain lower objective function values than those
found by using only the high-fidelity model in HF-GS.
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MULTIFIDELITY GRADIENT SAMPLING A947

Table 4
Rail example with formulation (4.1): The table reports the wall-clock time of the computations,

the number of iterations taken versus the maximum allowed number, and the objective function
values corresponding to the low-fidelity models (in the case of RMF-GS) and high-fidelity models.

Time (h) Iters./Max. iters. f\ell (xk\ell ) fL(xk\ell )

HF-GS 45.895 120 / 120 --- 0.464284

RMF-GS level 1 2.5594 5000 / 5000 0.440143 0.440511

level 2 3.3656 1000 / 1000 0.440312 0.440399
level 3 8.5062 500 / 500 0.440365 0.440375

level 4 7.4379 100 / 100 0.440372 0.440372

level 5 17.113 50 / 50 --- 0.440370

38.982 6650 / 6650 --- 0.440370

AMF-GS level 1 0.7683 66 / 5000 --- 0.467422

level 2 13.901 1000 / 1000 --- 0.449315
level 3 13.983 500 / 500 --- 0.445053

level 4 8.8870 100 / 100 --- 0.444489

level 5 16.805 50 / 50 --- 0.444229

54.363 1716 / 6650 --- 0.444229

high-fidelity objective function value. AMF-GS achieves a speedup of 30 compared to
HF-GS. For all methods, the stabilization of the initial guess took only a single step
of gradient sampling for the spectral abscissa constraint function. Even for Algorithm
3.1, no subsequent stabilization steps were required.

The second experiment that we consider for this application is for formulation
(4.2). The disturbances are set to be the lower boundary temperatures, and the
controls are restricted to the boundary temperatures of the upper segments; see also
[11, sect. 3.2] where the same setup is used. The results are shown in Figure 2 and
Table 5. In this case, although the results in absolute terms are not as much in favor
of the new methods as they were for the previous example, in relative terms, RMF-
GS is much better than either of the other methods, and AMF-GS gives much better
results than the single-fidelity method until after 10 h of computation. RMF-GS and
AMF-GS reach the same level of the final objective function value of HF-GS in about
1.5 h, and both provide at the end of the iterations a smaller objective function value
than HF-GS. All methods needed only a single gradient sampling step to stabilize the
closed-loop system at initialization.

4.4. Robust stabilization of laminar flows in a cylinder wake. We now
consider the stabilization of laminar flow in a two-dimensional wake resulting from
a circular obstacle. The flow is modeled as the linearization of the Navier--Stokes
equations at Reynolds number 90 around the unstable nonzero steady state; see [7]
for details. The spatial discretization is obtained with Taylor--Hood finite elements
resulting in open-loop systems of the forms (4.1) and (4.2) described by differential-
algebraic equations; i.e., the E matrices are singular. The model matrices have been
obtained in differently sized discretizations using the codes from [7]. The resulting
dimensions of the systems are given in the cylinder example column of Table 1.

We first consider the formulation (4.1). The results of the computations can be
found in Figure 3 and Table 6. The visible gaps in the lines of RMF-GS and AMF-GS
in Figure 3 result from the amount of computation time needed to switch between
levels and to perform the first optimization step on the next level. The RMF-GS
method provides the lowest final objective function value of all methods within about
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(c) enlargement of the objective function values plot for the first 7 h
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Fig. 2. Rail example with formulation (4.2): To reach the final objective function value found
by HF-GS, RMF-GS achieves a speedup of 17 and AMF-GS a speedup of 2 in comparison.

the same runtime as HF-GS. AMF-GS converges in less than half of the runtime
than that of RMF-GS and HF-GS but to a different objective function value than
the one found by the other 2 methods, higher by a factor of about 1.0058. AMF-GS
finds a good approximation to a stationary point already for \ell = 1, which cannot be
improved further by taking more accurate gradient sampling steps. Table 6 shows
exactly this with its reported numbers of iterations since, for \ell = 2, only two steps are
performed (one to decrease the target tolerances of the algorithm and one to verify
that no better point can be found) and only one step for \ell = 3, which just confirms
that the approximate stationary point cannot be improved using the given target
tolerances. However, this point appears to be approximating a local minimizer, as
is indicated by the other two methods obtaining smaller objective function values.
An interesting point to observe here that we did not see earlier is that, for RMF-
GS, the high-fidelity objective function value fL(xk) is not monotonically decreasing
as k increases. Particularly between 5 and 15 h, the high-fidelity function value fL

increases. This indicates a mismatch in the approximation of the high-fidelity model
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Table 5
Rail example with formulation (4.2): The table reports the wall-clock time of the computations,

the number of iterations taken versus the maximum allowed number, and the objective function
values corresponding to the low-fidelity models (in the case of RMF-GS) and high-fidelity models.

Time (h) Iters./Max. iters. f\ell (xk\ell ) fL(xk\ell )

HF-GS 18.085 120 / 120 --- 0.198720

RMF-GS level 1 1.5963 5000 / 5000 0.197222 0.197473

level 2 2.6002 1000 / 1000 0.195428 0.195475
level 3 4.2480 500 / 500 0.194404 0.194740

level 4 3.6196 100 / 100 0.194148 0.194543

level 5 7.3114 50 / 50 --- 0.194028

19.375 6650 / 6650 --- 0.194028

AMF-GS level 1 1.2626 86 / 5000 --- 0.200531

level 2 3.4359 69 / 1000 --- 0.198870
level 3 3.8725 29 / 500 --- 0.198732

level 4 0.2885 1 / 100 --- 0.198732

level 5 8.1653 50 / 50 --- 0.198707

17.043 235 / 6650 --- 0.198707
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Fig. 3. Cylinder example with formulation (4.1): AMF-GS requires less than half of the runtime
time of HF-GS to converge, but it converges to a different objective function value, higher by a factor
of about 1.0058. RMF-GS finds the lowest final objective function value of all three methods.

by the low-fidelity model. Such convergence behavior cannot occur for AMF-GS,
which directly optimizes the high-fidelity objective function fL. Indeed, in the region
between 10 and 15 h, the objective function values obtained by AMF-GS are smaller
than for RMF-GS and HF-GS. However, when the discretization is refined, RMF-GS
overtakes AMF-GS and eventually obtains a significantly better result. As previously,
all three methods needed only a single gradient sampling step to stabilize the initial
controller.

Finally, we consider the formulation (4.2) for the cylinder example. The orig-
inal controls of the benchmark example are modeled to steer the flow velocities in
horizontal and vertical directions behind the circular obstacle. We consider only the
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Table 6
Cylinder example in formulation (4.1): The table reports the wall-clock time of the computa-

tions, the number of iterations taken versus the maximum allowed number, and the objective function
values corresponding to the low-fidelity models (in the case of RMF-GS) and high-fidelity models.

Time (h) Iters./Max. iters. f\ell (xk\ell ) fL(xk\ell )

HF-GS 86.390 50 / 50 --- 1.174923

RMF-GS level 1 12.552 40 / 40 1.399568 1.298534

level 2 33.007 50 / 50 1.152272 1.153551
level 3 36.802 20 / 20 --- 1.137206

82.360 110 / 110 --- 1.137206

AMF-GS level 1 26.924 35 / 40 --- 1.181741

level 2 7.1769 2 / 50 --- 1.181741
level 3 3.7238 1 / 20 --- 1.181741

37.852 38 / 110 --- 1.181741
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Fig. 4. Cylinder example with formulation (4.2): Both RMF-GS and AMF-GS obtain smaller
objective function values than HF-GS does and in a shorter runtime, corresponding to speedups of
4 and 2, respectively.

first half of these controls to introduce disturbances into the system, which is, for
example, the case when control units are defective. The second half of the controls
remain as given for the design of feedback controllers. The results for this example
are shown in Figure 4 and Table 7. As earlier, RMF-GS performs much better than
AMF-GS, which in turn performs much better than HF-GS, obtaining lower values of
fL in less runtime. It requires AMF-GS 10 h more computation time than RMF-GS
to reach a value of fL that agrees with RMF-GS to two digits. Compared to the final
objective function value of HF-GS, AMF-GS performs around 2 times faster than
HF-GS, and RMF-GS is around 4 times faster than HF-GS. For all three methods,
only a single gradient sampling step is necessary to stabilize the initial guess for the
controller.

As an alternative to the relatively expensive gradient sampling method, we also
experimented with using the BFGS method, which has proved very effective in
other nonsmooth optimization applications [28, 39, 50]. However, we found that,
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Table 7
Cylinder example with formulation (4.2): The table reports the wall-clock time of the com-

putations, the number of iterations taken versus the maximum allowed number, and the objective
function values corresponding to the low-fidelity models (in the case of RMF-GS) and high-fidelity
models.

Time (h) Iters./Max. iters. f\ell (xk\ell ) fL(xk\ell )

HF-GS 35.803 50 / 50 --- 0.725212

RMF-GS level 1 5.1153 40 / 40 0.786143 0.787230

level 2 13.262 50 / 50 0.696799 0.696859
level 3 14.795 20 / 20 --- 0.681304

33.172 110 / 110 --- 0.681304

AMF-GS level 1 13.169 40 / 40 --- 0.817351

level 2 15.055 50 / 50 --- 0.702572
level 3 15.415 20 / 20 --- 0.685316

43.663 110 / 110 --- 0.685316

particularly for the cylinder example, the behavior of gradient sampling was more
consistent and reliable, perhaps reflecting its very satisfactory convergence theory,
which is not shared by the BFGS method.

5. Conclusions. We have introduced two multifidelity gradient sampling ap-
proaches for the robust control of expensive, high-fidelity models that leverage low-
cost, low-fidelity models for speedup. The numerical experiments demonstrate that
speedups of several orders of magnitude can be achieved compared to a single-
fidelity approach that uses the high-fidelity model alone. Furthermore, our RMF-GS
(restarted multifidelity gradient sampling) method, which does not access the high-
est fidelity model until the final phase of the computation, consistently outperforms
our AMF-GS (approximate multifidelity gradient sampling) method, which uses the
high-fidelity model throughout the computation, using lower-fidelity gradients in the
sampling step. One might have expected the opposite since AMF-GS monotonically
reduces the high-fidelity objective function on the sequence \{ xk\} . However, as the
cylinder example demonstrated (see Figure 3), even when RMF-GS fails to reduce
the high-fidelity function on a lower level of optimization, it can still recover when
it continues to the next level of optimization. In fact, its robustness seems to reflect
its stronger convergence properties. As explained in subsection 3.5, the convergence
guarantees of the gradient sampling algorithm apply at every level of the RMF-GS
method, while, because of the approximate gradients used by AMF-GS, they apply
only at the final level of AMF-GS, which, in a sense, means that its convergence guar-
antees are no stronger than those of HF-GS. One could argue that the consequence
of this is that the result of optimization on one level of RMF-GS really does provide
a good starting point for optimization at the next level; the same argument cannot
be made for AMF-GS.

An interesting question that we leave for future work is what convergence guar-
antees one might be able to derive for a variant of RMF-GS where the discretization
level increases without bound so that it asymptotically approximates a limit objective
function that is computationally intractable. Such a situation can be found when the
dynamical system stems from a discretization of an underlying PDE and the limit
\ell \rightarrow \infty means driving the mesh width to zero to asymptotically approximate the con-
tinuous solution of the PDE and its corresponding objective function. Such a setting
is considered in the context of uncertainty quantification in, e.g., [27, 33, 52].
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Appendix A. Gradients of the \bfscrH \infty -norm of the closed-loop system.
For the use of gradient sampling in \scrH \infty -controller design, the gradients of the \scrH \infty -
norm (2.8) of the closed-loop system (2.3) with respect to the controller matrices
from (2.2) are needed. These are well known in the \scrH \infty -control community, and for
the case of an identity descriptor matrix in (2.1), i.e., E = In, they can be found,
for example, in [42]. We summarize these gradients here for completeness and also
include the case of descriptor matrices as in (2.1). We are concerned with comput-
ing the gradients at a given design variable given by (2.10). We need to assume
that, given these controller variables, the supremum in (2.7) is attained only at one
finite point \omega \scrH \infty , with \| Gc(i\omega \scrH \infty )\| 2= \| Gc\| \scrH \infty , and that the largest singular value
of Gc(i\omega \scrH \infty ) is simple. Then the \scrH \infty -norm of the closed-loop system (2.3) is indeed
differentiable, and its gradients with respect to the closed-loop system matrices are
given by

(A.1)
\nabla A\mathrm{c}
\| Gc\| \scrH \infty =Z - \sansH Cc

\sansT uv\sansH Bc
\sansT Z - \sansH , \nabla B\mathrm{c}

\| Gc\| \scrH \infty =Z - \sansH Cc
\sansT uv\sansH ,

\nabla C\mathrm{c}\| Gc\| \scrH \infty = uv\sansH Bc
\sansT Z - \sansH , \nabla D\mathrm{c}\| Gc\| \scrH \infty = uv\sansH ,

where Z = i\omega \scrH \infty Ec  - Ac and u and v are the right and left singular vectors cor-
responding to the largest singular value of Gc(i\omega \scrH \infty ). Note that the gradient with
respect to Ec is not needed since it does not involve any of the controller matrices; i.e.,
it contains no optimization variables for which the gradients need to be evaluated.
However, the matrix Ec plays a role in (A.1) in terms of the frequency-dependent
matrix pencil Z. Using the chain rule of differentiation we can directly obtain the
requested gradients with respect to the controller matrices from (A.1). Additionally
applying realification to the single terms, since we are only interested in the design of
controllers realized by real-valued matrices, yields the following results:

(A.2)

\nabla A\mathrm{K}\| Gc\| \scrH \infty =Re

\biggl( \bigl[ 
0 In\mathrm{K}

\bigr] 
\nabla A\mathrm{c}\| Gc\| \scrH \infty 

\biggl[ 
0

In\mathrm{K}

\biggr] \biggr) 
,

\nabla B\mathrm{K}
\| Gc\| \scrH \infty =Re

\biggl( \bigl[ 
0 In\mathrm{K}

\bigr] 
\nabla A\mathrm{c}
\| Gc\| \scrH \infty 

\biggl[ 
In
0

\biggr] 
C\sansT 

2

\biggr) 
+Re

\bigl( \bigl[ 
0 In\mathrm{K}

\bigr] 
\nabla B\mathrm{c}
\| Gc\| \scrH \infty D\sansT 

21

\bigr) 
,

\nabla C\mathrm{K}
\| Gc\| \scrH \infty =Re

\biggl( 
B\sansT 

2

\bigl[ 
In 0

\bigr] 
\nabla A\mathrm{c}
\| Gc\| \scrH \infty 

\biggl[ 
0

In\mathrm{K}

\biggr] \biggr) 
+Re

\biggl( 
D\sansT 

12\nabla C\mathrm{c}\| Gc\| \scrH \infty 

\biggl[ 
0

In\mathrm{K}

\biggr] \biggr) 
,

\nabla D\mathrm{K}
\| Gc\| \scrH \infty =Re

\biggl( 
B\sansT 

2

\bigl[ 
In 0

\bigr] 
\nabla A\mathrm{c}
\| Gc\| \scrH \infty 

\biggl[ 
In
0

\biggr] 
C\sansT 

2

\biggr) 
+Re

\bigl( 
B\sansT 

2

\bigl[ 
In 0

\bigr] 
\nabla B\mathrm{c}
\| Gc\| \scrH \infty D\sansT 

21

\bigr) 
+Re

\biggl( 
D\sansT 

12\nabla C\mathrm{c}
\| Gc\| \scrH \infty 

\biggl[ 
In
0

\biggr] 
C\sansT 

2

\biggr) 
+Re

\bigl( 
D\sansT 

12\nabla D\mathrm{c}
\| Gc\| \scrH \infty D\sansT 

21

\bigr) 
.

Given the \scrH \infty -frequency point \omega \scrH \infty , the gradients in (A.2) can be cheaply obtained.
This is especially the case when Ac and Ec are large-scale and sparse by using appro-
priate factorizations of the matrix products above. There have been recent advances
in the computation of the \scrL \infty -norm of large-scale sparse systems [2, 14], which also
yield an efficient approximation of \omega \scrH \infty .
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Appendix B. Gradients of the spectral abscissa for initial stabilization.
The gradients of (2.6) with respect to the controller matrices (2.2) are well known in
the literature for the standard system case, i.e., Ec = In+n\mathrm{K}

; see, for example, [23]
and the implementation in [42]. Let the design variable be given by (2.10). We need
to assume that the spectral abscissa of the corresponding matrix pencil (Ac,Ec) is
attained at only one eigenvalue in the closed upper half of the complex plane, say
\lambda \alpha with Re(\lambda \alpha ) = \alpha (Ac,Ec), and that this eigenvalue is simple. Then the spectral
abscissa is indeed differentiable, with the gradient, with respect to Ac, given by

\nabla A\mathrm{c}
\alpha (Ac,Ec) =wv\sansH ,

where v is the right generalized eigenvector of \lambda \alpha and w is the corresponding left
eigenvector, normalized with respect to the inner product with Ec, i.e., such that

w\sansH Ecv= 1.

Note that we do not need the gradient with respect to Ec since this matrix does not
contain any matrix of the controller (2.2). Applying the chain rule and realification
of the resulting terms, since we are only interested in controllers with real-valued
matrices, yields the gradients of interest given by

\nabla A\mathrm{K}\alpha (Ac,Ec) =Re

\biggl( \bigl[ 
0 In\mathrm{K}

\bigr] 
\nabla A\mathrm{c}\alpha (Ac,Ec)

\biggl[ 
0

In\mathrm{K}

\biggr] \biggr) 
,

\nabla B\mathrm{K}
\alpha (Ac,Ec) =Re

\biggl( \bigl[ 
0 In\mathrm{K}

\bigr] 
\nabla A\mathrm{c}

\alpha (Ac,Ec)

\biggl[ 
In
0

\biggr] 
C\sansT 

2

\biggr) 
,

\nabla C\mathrm{K}
\alpha (Ac,Ec) =Re

\biggl( 
B\sansT 

2

\bigl[ 
In 0

\bigr] 
\nabla A\mathrm{c}

\alpha (Ac,Ec)

\biggl[ 
0

In\mathrm{K}

\biggr] \biggr) 
,

\nabla D\mathrm{K}\alpha (Ac,Ec) =Re

\biggl( 
B\sansT 

2

\bigl[ 
In 0

\bigr] 
\nabla A\mathrm{c}\alpha (Ac,Ec)

\biggl[ 
In
0

\biggr] 
C\sansT 

2

\biggr) 
.

The right-most eigenvalues and eigenvectors of large-scale sparse matrix pencils can
be efficiently computed using an Arnoldi or Krylov--Schur method with the shift-and-
invert operator and a suitable shift \sigma with a real part larger than or close to \alpha (Ac,Ec);
see, e.g., [34, 63]. The shift \sigma can be efficiently updated during an optimization
approach using the previous computations of \alpha (Ac,Ec). In our numerical experiments,
we use the eigs function from MATLAB, which in its latest version implements the
Krylov--Schur algorithm [63].
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