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Abstract. It is well known that, when defining Householder transformations,

the correct choice of sign in the standard formula is important to avoid cancel-

lation and hence numerical instability. In this note we point out that when the
“wrong” choice of sign is used, the extent of the resulting instability depends

in a somewhat subtle way on the data leading to cancellation.

1. Introduction. The QR factorization is a standard tool in numerical linear alge-
bra, and Householder transformations provide the best general method to compute
it. Following [1, Sec. 19.1], a Householder transformation (or Householder reflector)
has the form

P = I − 2

vT v
vvT , (1)

where I is the identity matrix and v is a nonzero vector. It is easily verified that
P is an orthogonal matrix, i.e., PTP = I. The first step in the Householder
reduction of an m × n matrix A, with m ≥ n, to triangular form is to define a
Householder transformation P1 that maps x, the first column of A, to a multiple of
the first coordinate vector e1 = [1, 0, . . . , 0]T ∈ Rm. Since P1x must have the same
Euclidean length as x, we require P1x = σ‖x‖e1, where σ = ±1 and ‖ · ‖ denotes
the 2-norm. Thus we need

P1x = x− 2vTx

vT v
v = σ‖x‖e1

which implies that v is a scalar multiple of x−σ‖x‖e1, and since P1 is independent
of ‖v‖, without loss of generality we can choose

v = x− σ‖x‖e1. (2)

To avoid numerical cancellation in (2), it is generally recommended to use

σ = −sgn(x1) (3)

where x1 is the first component of the vector x and sgn is the standard sign function,
which for convenience we define to be +1 if its argument is zero. The transformation
P1 is then applied to the remaining columns of A as well, exploiting the formula
(1) for efficiency, yielding the matrix P1A whose first column has all zeros except in
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the first position. The factorization is completed by repeating the process for every
column of A, working only with the data in rows k throughm and columns k through
n at the kth step, yielding a total of n Householder transformations P1, P2 . . . , Pn,
along with the upper triangular final matrix R. Then in exact arithmetic, A = QR,
with Q = P1P2 . . . Pn.

In this note we examine exactly what occurs if the “wrong” sign1

σ = sgn(x1) (4)

is used to compute v in (2).
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Figure 1. The 2-norm of A−QR, where Q and R are the comput-
ed Q and R factors of a 3×2 matrix A with first column [1, δ, 0]T ,
using Householder reduction with the correct choice of sign (3)
(blue circles), the wrong choice of sign (4) (red asterisks) and mat-
lab’s built-in qr function (cyan crosses), all plotted as a function
of δ.

2. Observation. We consider the following experiment. We would like to choose
A so that using the wrong sign (4) results in as much cancellation as possible; an
easy way to do this is to choose the first column to have much smaller entries, in
magnitude, than the (1,1) entry, so that sgn(x1)‖x‖ approximately cancels with x1
in (2). Here, we report the results of an experiment computing Q and R using both
choices of sign for a 3× 2 matrix A with a11 = 1, a21 = δ, a32 = 0 and the second
column chosen randomly, for δ taking the successive values 10−p, p = 1, 2, . . . , 16.

1It is pointed out in [1, Sec. 19.1] that the sign (4) may be used if the formula for v is rearranged;
see [4] for details. While this is useful if consistent signs are preferred in computing the QR

factorization, it is not relevant to the subsequent discussion.
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The experiment was conducted using matlab on a MacBook Pro, for which the
machine epsilon εmch (the gap between 1 and the next larger floating point number)
is approximately 10−16 (as matlab uses IEEE double precision by default).

Figure 1 shows the computed 2-norm ‖A−QR‖ for each choice of δ and for three
algorithms: using the correct sign (blue circles), the wrong sign (red asterisks),
and using matlab’s built-in qr (cyan crosses); note the log-log scaling. Unsurpris-
ingly, the results using the correct choice of sign or the built-in qr are, for all δ,
approximately εmch. Surprisingly, however, the results using the wrong sign appear
in an inverted-V pattern with respect to δ. This is somewhat reminiscent of the
well-known V pattern that is often used, for example in [3, Chap. 11], to show
how the truncation error and rounding error respectively dominate the error in the
approximation of a derivative of a function f at a point x by a finite difference

quotient f(x+h)−f(x)
h , the former dominant for large h and the latter dominant for

small h. The comparison even extends to noting that the right side of the inverted
V is ragged, indicating dominance by rounding error, while the left side is a straight
line, indicating purely linear dependence; in the finite-difference example, the roles

of left and right are reversed. Note that the choice of δ ≈ ε
1/2
mch, the square root of

the machine precision, gives the most inaccurate result, while in the finite difference

example, it is well known that h ≈ ε
1/2
mch is the best choice, assuming appropriately

scaled data. The results shown in Figure 1 are essentially unchanged if much larger
matrices are used.

3. Explanation. The right side of the inverted V, where the error increases as
δ decreases, is what we expected as the cancellation error in (2) becomes more
dominant. But what about the left side, where the error decreases as δ continues
to decrease? In fact, this is easily explained. In the experiment, the first column

of A is [1, δ, 0]T , whose 2-norm is
√

1 + δ2, so for δ somewhat less than ε
1/2
mch, the

computed 2-norm is precisely 1. This results in the first component of the vector v
defining the first Householder transformation being zero. The second component of
v is δ and the third is zero, so the normalized vector v/‖v‖ is the second unit vector.
This means that the first Householder transformation is the identity except with
−1 instead of +1 in the (2,2) position. Thus the first column of Q, the product of
all (in this case two) Householder transformations, is the first unit vector. Since the
computed matrix R is upper triangular, this means the first column of the computed
product QR is [1, 0, 0]T . Thus, the norm of the first column of A−QR is exactly
δ. There is no reason for ‖A−QR‖ to be more than δ, so the result is that the error

‖A − QR‖ decreases linearly as δ drops below ε
1/2
mch; although cancellation occurs,

the result is to give an increasingly accurate answer as δ is reduced. An interesting
consequence is that the cancellation apparently cannot result in arbitrarily poor
results; the example illustrated here suggests that, for A with norm one, ‖A−QR‖
will perhaps never be significantly greater than ε

1/2
mch when the wrong sign is used,

compared to εmch when the correct sign is used (a standard result in numerical
linear algebra, e.g.[1, Theorem 19.4], [6, Theorem 16.1]).

4. History. According to both Higham [1] and Stewart [5], the first known use of
Householder transformations was by Turnbull and Aitken in 1932. Stewart writes
“Householder, who discovered the transformations independently [in 1958], was the
first to realize their computational significance.” Stewart also writes “Householder
seems to have missed the fact that there are two transformations that will reduce
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a vector to a multiple of [the first unit vector] and that the natural construction of
one of them is unstable. This oversight was corrected by Wilkinson [in 1960].” In
Householder’s 1964 book [2] he writes “a singularity would arise with one choice of
sign” (when the two terms cancel exactly) and hence he recommends the other choice
of sign, but, rather surprisingly, he does not mention possible cancellation. Virtually
all later books on numerical linear algebra focus on the latter issue, motivating the
choice (3), but we are not aware of any discussion of the “inverted V” phenomenon
discussed here. Nor is there any hint that the error ‖A−QR‖ may be bounded by

approximately ε
1/2
mch when A has norm one and the wrong sign is used. Of course,

we are not arguing that using the wrong sign is acceptable. There is no reason

to do so, and indeed, even if the worst case error is bounded by ε
1/2
mch, this is still

unacceptable when using the correct sign results in a perfectly stable algorithm.
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