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1. INTRODUCTION
In this paper, we construct a block Lanczos method for the following problem.

Compute the k greatest singular values and associated vectors of a large and
sparse m X n matrix A, where k is much smaller than m or n.

This problem finds applications in factor analysis, regression, and image enhance-
ment (cf. [6]).

We assume without loss of generality that m =z n. Fori=1,2,..., n, let o, be
a singular value of A, and let u, and v, be the corresponding left and right singular
vectors, respectively. The singular values are ordered so that

G102 = -+ =0y (L1)
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Let us exploit an idea of Lanczos’ [10, Chapter 3] and consider the (m + n)

X (m + n) matrix
- 0 A
A= (A‘ 0), (L.2)

whose eigenvalues are %61, 03, ..., £0,, plus (m — n) zeros. The eigenvectors
corresponding to +o; and —o, are

() = (%)
Vv, Vi

respectively, for i = 1, 2, ..., n. The remaining eigenvectors are all of the form
(8), where u is a vector of order m, which is orthogonal to u,, ug, ..., u.. We
address the equivalent problem:

Compute the % algebraically greatest eigenvalues and corresponding eigenvec-
tors of the large and sparse matrix A of (1.2).

An efficient scheme for this eigenproblem is the block Lanczos method developed
by several researchers, in particular, Cullum and Donath ([1] and [2]), Golub and
Underwood ([9] and [18]), Lewis [11], and Ruhe [15]. We choose to consider the
variant described by Golub and Underwood.

We are going to present a theoretical development of the block Lanczos method
and give two theorems on its convergence rate. The practical implementation
aspects are then discussed and particular attention is paid to the choice of the
block size. Our paper includes a discussion of the various ways for computing the
singular-value decomposition of an upper triangular band matrix; this problem
arises as a subproblem to be solved in the block Lanczos procedure. We should
mention that Cullum and Willoughby have recently published a related point
Lanczos algorithm for computing singular values and vectors (see [3]).

An alternative procedure for solving our problem would be to apply a standard
Lanczos method to find the greatest eigenvalues and the corresponding eigenvec-
tors of the matrix A‘A or AA°‘. This approach is probably adequate for determining
the greatest singular value, but the loss of accuracy can become severe for the
smaller singular values. This point is discussed and well illustrated in [3].

In this paper, we use the Euclidean vector norm

Ixl = =] = xx)"2,
and refer to an n X b matrix X with n = b as an orthonormal matrix if
XX=1I

2. BLOCK BIDIAGONALIZATION ALGORITHM

We first study the generation of a block bidiagonal form with the use of a block
Lanczos procedure. This bidiagonalization algorithm was suggested by Golub and
Kahan [5] and described in detail by Paige [13] for the single-vector recurrence.
Palmer [14] discussed the block recurrence in his doctoral thesis.

Let us develop the block Lanczos method for

5 0 A
A=<A‘ O) (1.2)

ACM Transactions on Mathematical Software, Vol 7, No. 2, June 1981
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with the initial (m + n) X b orthonormal matrix

0
Xl = <Ql>, (2'1)
where @ is an n X b matrix. It follows that
M] = iz‘i'Xl = 0,

Z, = <A§"), and X,= (1;1),

where P, is an m X b matrix. Thus,
M2 = XéA'Xz = (.

Using the relations defining the block Lanczos method (cf. [18]), we can prove by
induction that, forj=1,2, ...,

Xy = ( 0 and M., =0, (2.2)
Q
where @, is an n X b orthonormal matrix, and
P,
Xy = 0 and M, =0, (2.3)

where P, is an m X b orthonormal matrix. Since the X, form a sequence of
mutually orthonormal matrices, that is,

XX, =0 for i},

we deduce that the P, and @, form two sequences of mutually orthonormal
matrices.
Let us carry out 2s steps of the block Lanczos scheme. We obtain the matrix

equation

AX,, = ngTzs + Zzs, (2.4)
where
0 R
0
R, 0 R
Tos = . . >
(2.5)
RZs—l O Rés
0
Ry, 0
XZs = (Xl, Xz, ey Xzs), Z—zs = (O, ey 0, Z23+1),
and

0
Zsers = ( AP, — QSR53>' (2.6)
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Let
P,=(P, P, ..., Py (2.7)
and

Q= (@, Qs ...,Qs). (2.8)

We can rewrite eq. (2.4) as

0 A\(P., 0\ _ (P, 0\(O0 J. 0 o
(A‘ 0)(0 @)'(0 Qs)(Jé 0)+<Z2s+1 0)’ 29)

where
R: R} 0
R, R (2.10)
J, = . ...
0 Ra2 R
R2s
and
Zoes1 = (0, ..., 0, Zoerr). (2.11)

Furthermore, the matrix eq. (2.9) is reducible into two lower order matrix
equations,

AQ, =P, (2.12)
and
Atps = Q_ng + 22s+1- (213)

The block Lanczos method therefore generates a block bidiagonal matrix </, of
order bs. As the R, are upper triangular matrices, the matrix J; is also a band
upper triangular matrix with & superdiagonals. Therefore we have constructed a
scheme that produces a block bidiagonal matrix /s from a given rectangular
matrix A while preserving the singular values. In Section 4 we discuss how to
compute the singular-value decomposition of /..

ALGORITHM 2.1 (Block Bidiagonalization Method)

1. Let @, be a given n X b orthonormal matrix.
Compute

W] = AQl,
and factorize W, so that
W, =P 1R2,

where P; is orthonormal and R; is upper triangular.
2. Fori=23,...,sdo
(a) Compute

Zz = At -1 Qz—lRél—Z)
and factorize Z, so that
Zl = Q1R2l—1’

where @, is orthonormal and R,._; is upper triangular.
ACM Transactions on Mathematical Software, Vol. 7, No 2, June 1981
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(b) Compute
W,=AQ,— PR},
and factorize W, so that
W, = PR,
where P, is orthonormal and Rj, is upper triangular.

In Algorithm 2.1, if the matrix Z, were rank deficient, we would choose the
columns of @, so that they are orthogonal to those of all previous @,. The remedy
is similar for a rank-deficient matrix W,. We may use the Householder transfor-
mations for this construction.

Suppose that y, is a singular value of J, with corresponding left and right
singular vectors w, and z,, respectively. Let

p=Pw, and q, = Q.z.
From (2.12) and (2.13) we get
Aq, = pp. (2.14)
and
AP, = pq, + Zoor1W,,
or equivalently,

Atpr, = ,U«zq; + Z2s+1hz, (2.15)

where the vector h, is a vector of order b consisting of the last & components of
w,. Accordingly, if we had that Z,+h, = 0, then the value p, would be a singular
value of matrix A with corresponding left and right singular vectors p. and q,,
" respectively. In the next section we give error bounds that indicate that the
greatest singular values of JJ; are usually accurate approximations to those of A.

3. ERROR BOUNDS FOR THE SINGULAR-VALUE APPROXIMATIONS
Let us consider the matrix
~ 0 A
A= (A, O). (12)

Its (b + 1) algebraically greatest eigenvalues are 61 = 62 = -+« = 0p+1, and its
algebraically smallest eigenvalue is —¢1. For i = 1, 2, ..., b, the normalized
eigenvector of A corresponding to the eigenvalue o, is

-3
3 \/5 v, .
Now, the eigenvalues of the block tridiagonal matrix Tss of (2.5) are ; = pz =

e s = —fies Z -+ = —2 = —. But_the matrix T is generated by 2s steps of
the block Lanczos method applied to A with initial matrix

- (3)
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If we let
Gi=(g,8,...,8) and Vi=(vy,Vy...,Vs),
then

1
Gin = 7_5 ViQ]

The following theorem is a direct consequence of a theorem due to Underwood
[18, pp. 37-38].

THEOREM 3.1. Assume that o, > 0p+1. Let py = p2 = - -+ = pps be the singular
values of the bs X bs matrix J, generated by the block bidiagonalization method
with an initial n X b orthonormal matrix .. Suppose that the b X b matrix

1
W = 72 th Q},
where
V1 = (Vl, Vo, ..., Vb),

is nonsingular so that its smallest singular value t is positive. Note that T <
1/ V2. Then, fori=1,2,..., b, we have that

2
0= =0, = €,
where

s (o + o1)tan’0
€ = —

I

8 = cos™'r,
O, — Op+1
Y=
o, + 0,

and T is the (2s — 1)st Chebyshev polynomial of the first kind.

Example 3.1. Suppose that A is an m X n matrix with singular values o, = 1.0,
o2 = 0.9, 03 = 0.5, .... Let us apply the block bidiagonalization algorithm with &
= 2 and s = 5. Then

1.0 — 0.5
Y= = .25,
1.0 + 1.0
09 - 05
=0T 021
=gex 10 O2b

+
Ty (1 Y‘) = Ty(1.67) = 1.0 X 10%,

and

1—‘}'2

To (1 + Yz) = To(1.53) = 3.7 X 10°.
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Let
! X 0.04
T = — .04,
V2
so that
tan? § = 1249,
Thus,
2.0 X 1249
e = 925% 1077
4T Tox 10°
and
1.9 X 1249
20 7 L= 17%107Y
C 13T x 107

The two greatest singular values g, and po of J; therefore satisfy the inequalities

0= =0 2.5 X 107°
and
02 = p2 = 02 — 1.7 X 1074,

However, we suspect that the bounds of Theorem 3.1 may be gross overesti-
mates. Suppose that

Q= V.
Then we have
_ 1
TR
and
tan § = 1.

The last value is quite unsatisfactory for an initial matrix consisting of the correct
singular vectors.

We seek to construct tighter bounds. From the matrix equations

AQ.=P.J, (2.12)
and
AP, = Q.J! + Zou, (2.13)
we get
A'AQ, = A'P,J,
= Q. Jids + Zoorids.
Thus,

A'AQ, = QuJid, + (0, ..., 0, ZpsriRys). 3.1)

We observe that the matrix @, is orthonormal and that the matrix J%J; is block
tridiagonal. It can be proved (cf. [18, Chapter 2]) that the matrix equation (3.1)
characterizes an application of the block Lanczos method to the matrix A°A with
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the initial matrix @;. Since the matrix A’A has eigenvalues 6} = 63 = --. = o2
and corresponding normalized eigenvectors vy, Vv, ..., V,, we obtain the next
result from Underwood’s theorem [18, pp. 37-38].

THEOREM 3.2. Assume that o, > 0p+1. Let py = pp = - - - = uss be the singular
values of the bs X bs matrix J; generated by the block bidiagonalization method
with an initial n X b orthonormal matrix @.. Suppose that the b X b matrix

W = Vin,
where
V] = (V1, V2, ...y Vb),

is nonsingular so that its smallest singular value r is positive. Note that v < 1.
Then, fori=1,2,..., b, we have that

0, = 1, = (0f — €)%,

or

where

0 -1

=cos T,
2 2

0, — O0%+1

YeF =3
ol — o}

and T, is the (s — 1)st Chebyshev polynomial of the first kind.

Example 3.2. We use the same given data as in Example 3.1, with the additional
assumption that o, = 0.0. Thus,

o? = 1.00, 03 = 0.81, 03 = 0.25, . . ., 02 = 0.00,

so that
1.00 — 0.25
n=To00—=000 >
081 — 025
Y= 58— 000 6%
1+
T, ( Yl) = Ty(7) = 1.88 x 10*,
1 - Y1
and

1"72

ACM Transactions on Mathematical Software, Vol. 7, No 2, June 1981
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Also,
tan® @ = 624.
Consequently,
1.00 X 624
e 2 17%107°
1T 355 x 10°
and
0.81 X 624
eE=x———==11x10""
4.65 X 10
As
1 2 . —6
—ei=17%x10
a
and

1
—e3=12x107%
02

the two greatest singular values g, and y; of J; therefore satisfy the inequalities

01 = M1 = 0y — 1.7 X 1078
and
02 = Uz = 02 — 1.2 X 1078,

We observe that the bounds given by Theorem 3.2 are much smaller than those
given by Theorem 3.1.

4. COMPUTATION OF SINGULAR VALUES AND VECTORS OF J

We wish to compute the singular values and vectors of the bs X bs block
bidiagonal matrix J;. In the rest of this section we omit the subscript s from oJ;
and denote its order by ¢ = bs. Since the b X b blocks that form the block diagonal
of J are upper triangular and the & X b blocks that form the block superdiagonal
are lower triangular, we see that the blocks all fit together to form an upper
triangular band matrix, dense within the band and with bandwidth (number of
superdiagonals) equal to b. The rest of this section treats the problem of
computing the singular values and vectors of an upper triangular band matrix J.
The case where the vectors are not required is also considered, since this section
may be useful outside the block Lanczos context.

The method consists of two phases. The first phase reduces </ to bidiagonal
form by a finite sequence of orthogonal transformations. The problem of doing
this efficiently is the main subject of this section. The singular values of J are
preserved under the transformations. The second phase reduces the bidiagonal
form to diagonal form by a modified version of the @R algorithm. This process is
described in detail in Golub and Reinsch {8] and is not discussed any further
here. The singular values of JJ are the final diagonal elements, and the matrices
of left and right singular vectors are the products of all the left and right
transformations (respectively) used in the two phases of the reduction.

We are left with the first phase, reducing </ to bidiagonal form. The methods of
Givens and Householder for reducing a full symmetric matrix to tridiagonal form
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preserving eigenvalues are well known and are described, for example, in Wilk-
inson [20]. In order to preserve eigenvalues, the same elementary transformations
(either Givens or Householder) are applied to both the left and right sides of the
matrix.

A similar method for reducing a nonsymmetric matrix to bidiagonal form
preserving singular values (but not, of course, eigenvalues) is described in Golub
and Reinsch [8]. Singular values are preserved when different elementary trans-
formations are applied to the left and right sides of the matrix. Golub and Reinsch
use Householder transformations, but Givens transformations could easily be
used instead. For the reduction of a full matrix to bidiagonal or tridiagonal form,
the method of Householder is about twice as fast as the method of Givens.
However, in 1973 Gentleman [4] showed how “fast Givens” transformations can
be implemented. These are also described in Van Loan [19], and it appears that
there is now little difference in the speed or effectiveness of the two methods.

Reducing a symmetric band matrix to tridiagonal form in a straightforward
manner immediately fills in the zeros off the band. Rutishauser [16] shows how
this may be avoided and the reduction completed while preserving the band
structure, using either Givens or Householder transformations. Here we describe
how to generalize this to the reduction of an upper triangular band matrix to
bidiagonal form. In general, a similar process would apply to any nonsymmetric
band matrix.

Recall that a Givens transformation matrix P*” is given by

i J
1
1
i c d
1
P =
1
J -d c
1
i 1]

where ¢ + d® = 1 and has the property that if it is applied to J on the left, then
the resulting matrix o/’ = P*”"J has elements different from </ only in rows i and
J, with zeros in both rows in those columns where there were zeros in both before,
and, if ¢ and d are chosen appropriately, with its (j, i) element equal to zero. Let
us write J = (y,), J’ = (v};). Then, in particular, we have

Yie =y + dyr,  Yp=-—dyatoym 1=k=t,
S0 Y, = 0, if
c= Y”/(‘lel + Y.lzl)l/zy

2
d= Y;;/(Y;zz + 'szt)l/ .
ACM Transactions on Mathematical Software, Vol 7, No 2, June 1981
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[xxc b

a
xXxxxxc
cxxxxxb

bxxxxx a
axxXxxxx
XXX X Xc
cCxXXxX X Xxx
bx x xx
axxx
x x
i

STEP 1.
(1) Zero yi5 and chase it a a a a off the matnx:
Rotate column 5 against column 4 to zero yis and introduce 5.
Rotate row 5 against row 4 to zero yss and mtroduce yi
Rotate column 9 against column 8 to zero yie and mtroduce yés.
Rotate row 9 against row 8 to zero yos
—chased off
(1) Zero yis and chase it & b b b off the matrix similarly.
(iii) Zero yi3 and chase it ¢ ¢ ¢ ¢ ¢ ¢ also
STEP 2: Repeat for the second row, etc

Fig. 1. Bidiagonalizing a pentadiagonal upper triangular matrix of order 11 using
Givens rotations by the method band Givens I,

The price paid for the annihilation is that a new nonzero element appears in one
row wherever there was one already in the other. We say that row j is rotated
against row i by the transformation. Similarly, if P®” is applied on the right, only
columns i and j of J are changed with v, = 0, if ¢ and d are chosen correctly.

To describe the reduction process, let us suppose that o/ is an upper triangular
band matrix with order ¢t = 11 and b = 4 superdiagonals. Then the first thing the
algorithm does is to zero y5 by multiplying </ on the right by P*® with ¢ and d
chosen correctly, or, in other words, by rotating column 5 against column 4. This
introduces one new nonzero element yis.. This new element is annihilated by
multiplying J’ on the left by P*“® that is, by rotating row 5 against row 4. This
in turn introduces a new nonzero element yi. Two more transformations, one
from the left and one from the right, are now required to completely “chase the
element off the matrix.” At this point the resulting matrix has the same zero
pattern as the original matrix J, except that y;; has been annihilated. Now the
process is repeated for yi4 and then for y;3, and then the first row has the desired
bidiagonal form. Finally, the entire process is repeated for every row until the
matrix becomes bidiagonal. The method is illustrated in Figure 1. Let us call this
method band Givens 1.

Reducing the matrix to bidiagonal form in this way requires approximately 4b¢>
multiplications using ordinary Givens transformations, or 2b¢* using “fast Giv-
ens,” assuming 1 << b < ¢. This compares with a count of approximately 4¢°/3
multiplications required to do the reduction by the standard Golub-Reinsch
algorithm using Householder transformations and ignoring the band structure,
filling in the zeros off the band. This is, of course, a big savings if b < ¢

ACM Transactions on Mathematical Software, Vol. 7, No. 2, June 1981
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furthermore, only (b + 1)¢ storage locations are required to store the band matrix,
while ¢2 storage locations are required for the standard Golub-Reinsch reduction.
If left and right singular vectors are required, however, the rotations used in band
Givens I must be accumulated as the computation proceeds. This requires 4¢°
multiplications using ordinary Givens transformations or 2¢* using “fast Givens,”
as opposed to 8¢°/3 multiplications for the Golub-Reinsch reduction. Therefore,
if the vectors are required, band Givens I still requires fewer multiplications than
Golub-Reinsch if the “fast Givens” transformations are used. Both methods
require approximately 2¢* storage locations.

There are several other possible methods to reduce o to bidiagonal form. The
method we shall call band Givens II applies a sequence of rotations to .J as before,
but instead of reducing each row in turn to two elements, it systematically reduces
the bandwidth by zeroing each superdiagonal in turn. In other words, in the
example presented in Figure 1, after zeroing vi5 and chasing it off the matrix, it
next turns to vz instead of yi. This method requires more rotations, since the
decreasing bandwidth causes more nonzero elements to be introduced before a
certain element is chased off the matrix; but for the same reason each rotation is
less work if the vectors are not required. The two considerations cancel each
other out, so band Givens I and II require about the same number of multiplica-
tions if vectors are not required; but the latter is slower by a factor of about In &
if vectors are required.

A third method called band Householder zeros all & — 1 elements in a row with
a single Householder transformation, introducing a triangle of fill-in on the other
side of the band at every step. Another method called triangle Givens does not
attempt to preserve the band structure, but only the triangle structure. These
methods are less efficient than band Givens 1. Finally, a complicated version of
band Givens I called band Givens II1, which requires fewer multiplications when
vectors are required, has been devised. The details of these methods appear in
[7]. They are omitted here since in the block Lanczos context ¢ may not be large;
so there may be little payoff in using a special method. Furthermore, reducing
the bidiagonal form to diagonal form to obtain the singular values in the second
phase typically takes 8¢° multiplications using ordinary Givens or 4¢° using fast
Givens, so this may dominate any slight savings in the reduction phase. None-
theless the operation counts for the various methods are summarized in Table I,
since they may be useful in other contexts.

5. ITERATING TO IMPROVE ACCURACY

Let us restate our computational procedure. We use the block bidiagonalization
method to generate a block bidiagonal matrix J; of small order and then apply
some technique to compute the singular-value decomposition of JJ;. Our conver-
gence test depends on the next two lemmas.

LEMMA 5.1 (Weinstein’s Inequality) [12, p. 56]. Given a symmelric matrix B
and a normalized vector X, if there is a scalar p such that

| Bx — px| =6,
then there is an eigenvalue A of B within 8 of p.
ACM Transactions on Mathematical Software, Vol. 7, No 2, June 1981
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LEMMA 5.2 [12, pp. 59-60). Let B be an I X I symmetric matrix with eigenval-
ues A1, Ag, ..., A and let | Bx — px|| < & for some normalized vector x. Suppose
that, for some j,

lp—A|=d>0  for i#].
Then B has a normalized eigenvector y; corresponding to A, such that
Ix =yl = v+ )"
where y = 8/d.
From eqs. (2.14) and (2.15), we obtain

0 A\ fp) _ P: 0
( ‘ 0) (q') ks (%) * (ZZS+1h1). (5.1)

" Zos+1h, " =4 (5.2)

for some given tolerance 8, then there is a singular value o, of A such that

Thus, if

lw. — ] = 6.
If it is also true that
[t = ox|=d >0  for ksj

where 6, 03, . . ., 6, are the singular values of 4, then A has normalized left and
right singular vectors u, and v,, respectively, corresponding to o, such that

I — wi* + llq. = vil* = ¥ + ¥,

where y = §/d. For the more complicated case of multiple singular values, we
refer the reader to an excellent paper of Stewart [17].

Suppose that our procedure has not computed all the % greatest singular val-
ues to the desired accuracy. In Theorem 3.2, the error bounds contain the term
tan 6, where @ is the angle between the two subspaces spanned by the columns of
Vi and Ql. Let

G =(q1, Q2 ..., qs).

The results of the last section indicate that the matrix Ql is a better approximation
to the matrix V; than the initial matrix ;. Thus, we expect to compute more
accurate approximations to the greatest singular values of A if we reapply the
block bidiagonalization method with the initial matrix @:. This idea leads to the
following iterative scheme, where we assume that b equals k.

ALGORITHM 5.1

1. Let b, s, and 8 be given parameters and let ¢, be a given n X b orthonormal matrix.
2. Repeat until all b greatest singular values have converged:
(a) Use the block bidiagonalization method with initial matrix @, to generate the
matrices J;, P, and Q.
(b) Compute the singular value p, and corresponding left and right singular vectors w,
and z,, respectively, of J,, fori=1,2,..., bs.
(c) Estimate the accuracy of p, as an approximation to 6, for i = 1, 2, ..., b (cf.
inequality (5.2)).
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(d) Let

Ql = (Qh qz ..., qb)’
where

q = Q.z, for i=1,2,...,0b.

This iterative algorithm provides a convenient means for estimating the accu-
racy of the computed singular values. We can show that the ith column of the
matrix Z, in the block bidiagonalization method computed in each iteration of
Algorithm 5.1 after the first is the residual vector for the singular value p,
computed in the previous iteration. It is thus possible to determine at the start of
an iteration the accuracy of the singular values computed at the end of the
previous iteration. We also observe that the matrices P, and R: of the block
bidiagonalization method are readily available from the prior iteration.

However, once a few singular values and singular vectors have converged, we
need not iterate with them any longer. Since the desired singular values may
have different rates of convergence, as indicated by the error bounds of Theorems
3.1 and 3.2, we should modify Algorithm 5.1 so that (1) it does not iterate with
those singular values and singular vectors that have converged, and (2) it allows
the values of b and s to change from one iteration to the next. We are going to
examine these issues in the next two sections.

6. BLOCK BIDIAGONALIZATION METHOD WITH REORTHOGONALIZATION

Suppose that we are given accurate approximations to the ko greatest singular
values 01, 0, ..., 0k, and corresponding singular vectors of the matrix A. Let Po
and Qo be the m X ky and n X ko orthonormal matrices consisting of those given
left and right singular vectors, respectively. We want now to compute the next
(k — ko) greatest singular values of A.

Let us consider the matrix
- 0 A
A= ( AL 0 ) (1.2)

If we apply the block Lanczos method to compute the eigenvalues oy, +
Okyt2, - - -, £ 0x Of the matrix A, then we must maintain the orthogonality of the
matrices Xi, Xz ..., X, with respect to the eigenvectors corresponding to the
eigenvalues * 03, + 03, ..., £ ox, (cf. [18]). But these eigenvectors are accurately
approximated by the columns of the matrix (see [10, Chapter 3])

%o -a)
Jo\& —6o/
We have that

I——l— P, P\ 1 (P, P t__: I — PyP§ 0
V2 \& -G o \Q —Qo 0 I-@Qi)
Therefore, if we want to apply the block bidiagonalization method to compute

the (¢ — ko) next greatest singular values of A, we need to maintain the
orthogonality of the matrices P, P, ..., Ps with respect to Py, and the orthogo-
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nality of the matrices @,, ., ..., @ with respect to §o. We are thus computing
the (& — ko) greatest singular values of the “deflated” matrix

A = (I - PPHA - QuQ)). (6.1)

Suppose that
|AQe — PoZolff + | A'Po — Qoolff < &° (6.2)
where || - || is the Frobenius matrix norm and Z, = diag(os, 0, . . ., o). Note that

if both matrices P, and ¢, had been computed by the block Lanczos procedure,
then (cf. eq. (2.12))

lAQo — PoZo| = O(mkoe), (6.3)

where ¢ is the machine precision. Using arguments similar to those in Under-
wood’s thesis [18, pp. 62-66], we get from (6.2) that the (2 — ko) greatest singular
values of A differ from the (2 — ko) next greatest singular values of A by quantities
that are less than |§| in modulus.

Now, the block bidiagonalization method may be numerically unstable. Al-
though the matrices P, and @, form two sequences of orthonormal matrices in
exact arithmetic, they lose orthogonality rapidly in practice owing to the loss of
figures in the computation of the matrices Z, and W,. To maintain stability in the
scheme, we choose to reorthogonalize the matrices P, and @, with respect to all
the previous P, and @, respectively (cf. [18]). We have also implemented the idea
of local reorthogonalization due to Lewis [11] (see [7]). But we now feel that
complete reorthogonalization is more appropriate for our application of comput-
ing a few greatest singular values.

ALGORITHM 6.1 (Block Bidiagonalization Method with Reorthogonalization)
1. Let @, be a given n X b orthonormal matrix.

Compute
W, = AQ.
Orthogonalize W; with respect to P,. Factorize W; so that
W, = PiR,,

where P; is orthonormal and R; is upper triangular.
2. Fori1=2,3,...,s,do
(a) Compute

Z; = Ath—l - Ql—lRél—Z'
Orthogonalize Z, with respect to Qo, @, ..., @.-1. Factorize Z, so that
Zl = Q¢R21—1’

where @, is orthonormal and R, is upper triangular.
(b) Compute

VV, = AQL - Px—lRéz—-l-
Orthogonalize W, with respect to P, Py, ..., P,-1. Factorize W, so that
W, =P, Ry,

where P, is orthonormal and” Ry, is upper triangular.
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In case of rank deficiency of the matrix Z, or W,, we apply a remedial procedure
similar to that for Algorithm 2.1.

7. ITERATIVE BLOCK LANCZOS METHOD

We should point out that the reorthogonalization process of the last section not
only requires a large number of arithmetic operations but also requires that each
of the P, and @, be in memory during each step of Algorithm 6.1. Since m and n
are large numbers in this application, the available computer memory places an
upper bound ¢ on the product bs. It is then necessary to determine optimal values
for b and s subject to this upper bound constraint. But the error bounds of
Theorem 3.2 indicate that we need accurate knowledge of the singular-value
spectrum of the given matrix, which is precisely the same information we are
trying to obtain.

A good initial choice of the block size b is the number % of singular values to be
computed (see [2] and [18]). This may not be the best choice, as we can see from
Example 8.4 of the next section. Our experiments have shown that it seldom pays
to have b > k (cf. Example 8.3 of the next section). Underwood [18]} made the
same observation, but he used a different way to update the block size.

Having chosen b, we compute the number s of blocks by

si=17],

where [a} denotes the integer part of a real number a. If s is less than 2, we
compute

b= ng and 5= ng.

The last computation is necessary so that s would equal 3 if the value of ¢
were 3.

Let us describe how we update the values of ¢, b, s, and k. Suppose that k&

singular values and associated singular vectors have converged in an iteration.
Then

ci=c—ko
because those computed singular vectors must reside in the computer memory
for the reorthogonalization process. Now, if b = &, then we decrease the value of
b by ko—that is,

b:=b— kg
otherwise we choose the new block size as the smaller value of the old block size
and the number of singular values left to be computed—that is,

b :=min(b, & — ko).
We update the value of k by
k= k - ko.

The new value for s is then computed in the same manner as described in the
previous paragraph, with the same modification to the value of b, if necessary.
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Our scheme for updating b differs from Underwood’s [18] only in the case where
b>k.

ALGORITHM 7.1 (Iterative Block Lanczos Method)

1. Let ¢, b, s, and 8 be given parameters and let @; be a given n X b orthonormal matrix,
The matrices Py and @ are null.
2. Repeat until all % singular values have converged: B
(a) Use Algorithm 6.1 with initial matrix @, to generate the matrices J,, P,, and Q..
(b) Compute the singular value p. and corresponding left and right singular vectors w;
and z;, respectively, of J, fori= 1,2, ..., bs.
(c) Estimate the accuracy of y, as an approximate singular value, for i = 1, 2, ..., bs.
Assume that k, singular values have converged.
(d) Update the values of ¢, b, and s.
(e) Fori=1,2,..., k + b, compute

p.:= P,w,
and
Qi == Q.z..
(f) Let
Py := (Po|ps, - - - » Pry)
and
Qo= (Qolqy, - - -, Qo).
(g) Let

Q1 = (Qrg+1, Ukgt2y -+ + 5 Qrysd)-

8. TEST EXAMPLES

Rectangular diagonal matrices are chosen for all our examples. Such matrices are
sufficiently general for the Lanczos method, which does not transform the given
matrix. We can thus specify the singular-value spectrum and study the be-
havior of the algorithm as a function of & and s. The initial matrix is randomly
generated.

A set of FORTRAN routines has been written to implement Algorithm 7.1 (see
[7]). We ran our tests on an IBM 370/168 computer at the Stanford Linear
Accelerator Center.

The computed singular value g, and associated singular vectors p, and q, are
accepted if they satisfy the inequality

(lAq. = pp.Jf* + | AP — pq.|P)'* = 107°

In Sections 5 and 6, we have described a way to test for convergence with very
little additional work. We have chosen the upper bound ¢ for the product bs to
be 12.

The following notation is used in the examples:

01, 0, 03, . . . = the computed singular values in the order of convergence.

Iter = total number of iterations.

machine execution time in seconds.

Time
m' —n=mXx10™"
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Example 8.1. A is a 905 X 904 matrix with diagonal elements —1.00, —0.99,

-0.98, and 0.000, 0.001, . . ., 0.900.

Ve note that the computed singular values, as Rayleigh quotients, are accurate

k=3 b=3

01 1.00 - 4"~ 7
02 099 -9 -9
03 098-3 -6
Iter 5
Time 1136

:0 twice the number of digits of the error tolerance.

Example 8.2. A is a 905 X 904 matrix with diagonal elements —1.000, —0.999,
-0.998, and 0.9000, 0.9001, ..., 0.9900. This example is essentially the same as
‘he previous one, except that the gaps between the singular values have been

‘educed by a factor of 10.

The first two examples illustrate the fact that the convergence rate of the
.anczos algorithm depends on the relative spread of the singular values (cf.

k=3 b=3

o1 1.000 -9 -7
a2 0999 -4 -8
o3 0998 - 2" -8
Tter 6

Time 13.83

Theorems 3.1 and 3.2).

Example 8.3. A is an 806 X 805 matrix with diagonal elements 1.0, —1.0, 0.9,

-0.9, and 0.000, 0.001, . .., 0.800.

k=1 b=1 b=2

o1 10-3-10 10-1-12

Iter 1 3

Tune 2.35 6.52

k=2 b=1 b=

41 1.0-3 -10 10-1 -~ 12

02 09-3-16 10-1-~11

Tter 2 3

Tune 4.27 6.52
k=23 b=1 b=2 b=3 b=4
[ 1.0-3-10 1.0-1-12 10-3 -8 10-1-79
02 09+ 3 -16 10-1-11 10—-4 -9 1.0-8 -7
a3 1.0+0 - 16 09—-1-9 09-3-9 09-6" -9
Iter 5 4 4 5
Time 9.60 8.28 823 10.53
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k=4 b=1 b=2 b=3 b=4

oy 10-3-10 10-1-12 10-3 -8 1.0-1 -7
[ 09+3 —-16 1.0-1-11 10-6"—~8 1.0-8-7
03 1.04+0-16 09-3 -8 09-2 -7 09-6" -9
LA 09+6 —14 09-7-8 09+8-10 09-2 -7
Iter 7 5 5 5
Time 12.70 10.00 9.59 10.38

These tests illustrate a couple of important points. First, the Lanczos method
does not always compute the greatest singular values (cf. the case where 2 = 2
and b = 1). Second, the supposition of Theorems 3.1 and 3.2 that o, > 0.1 is not
necessary for the convergence of the Lanczos method.

Example 8.4. A is a 902 X 901 matrix with diagonal elements 0.000, 0.001,
..t 0.900.

k=3 b=1 b=2 b=3

01 0900-5 -6 0900-1-5 0900-9 -6
o2 0899 +3 —6 0899-2"-6 089-9-6
a3 0898 —-2"-5 0898—-4-7 0898-7-5
Iter 13 27 23
Time 28.73 61.85 52.53

This example of a dense singular-value spectrum is one in which the point
algorithm (b = 1) works better than the block algorithm (b = 2).

Our iterative block Lanczos method is therefore a good procedure for computing
a few greatest singular values of a matrix. A block method with an appropriate
block size can (1) have a fast convergence rate, and (2) handle well the case of
multiple singular values (see Example 8.3). For problems where the given matrix
has to be read from secondary storage, economics may dictate that we multiply
the matrix into a block of vectors and thus choose a block method.
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