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1. INTRODUCTION 

In this paper,  we construct  a block Lanczos me thod  for the  following problem.  

Compute  the k grea tes t  singular values and  associated vectors  of  a large and  
sparse m × n mat r ix  A, where  k is much  smal ler  t han  m or n. 

This  p rob lem finds appl icat ions in factor  analysis, regression, and  image enhance-  
m e n t  (cf. [6]}. 

We assume wi thout  loss of general i ty  t ha t  m >_ n. For  i -- 1, 2 . . . . .  n, let  a, be  
a singular value of A, and let  u, and  v,  be  the corresponding left  and r ight  s ingular  
vectors,  respectively.  T h e  singular values are ordered  so t ha t  

a~ >_ o2 ~ . . .  ----- a.. (1.1) 
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Let us exploit an idea of Lanczos' [10, Chapter 3] and consider the (m + n) 
x (m + n) matrix 

whose eigenvalues are +-ol, +02 . . . . .  +_o,, plus (ra - n) zeros. The eigenvectors 
corresponding to +o, and -o,  are () (o,) 

v,u' and - v ,  ' 

respectively, for i = 1, 2, . . . ,  n. The remaining eigenvectors are all of the form 
(~), where u is a vector of order m, which is orthogonal to ul, u2 . . . . .  u,. We 
address the equivalent problem: 

Compute the k algebraically greatest eigenvalues and corresponding eigenvec- 
tors of the large and sparse matrix A of (1.2). 

An efficient scheme for this eigenproblem is the block Lanczos method developed 
by several researchers, in particular, Cullum and Donath ([1] and [2]), Golub and 
Underwood ([9] and [18]), Lewis [11], and Ruhe [15]. We choose to consider the 
variant described by Golub and Underwood. 

We are going to present a theoretical development of the block Lanczos method 
and give two theorems on its convergence rate. The practical implementation 
aspects are then discussed and particular attention is paid to the choice of the 
block size. Our paper includes a discussion of the various ways for computing the 
singular-value decomposition of an upper triangular band matrix; this problem 
arises as a subproblem to be solved in the block Lanczos procedure. We should 
mention that  Cullum and Willoughby have recently published a related point 
Lanczos algorithm for computing singular values and vectors (see [3]). 

An alternative procedure for solving our problem would be to apply a standard 
Lanczos method to find the greatest eigenvalues and the corresponding eigenvec- 
tors of the matrix A tA or AA t. This approach is probably adequate for determining 
the greatest singular value, but the loss of accuracy can become severe for the 
smaller singular values. This point is discussed and well illustrated in [3]. 

In this paper, we use the Euclidean vector norm 

I lx l l  = Ilxll  = ( x ' x )  

and refer to an n x b matrix X with n ___ b as an orthonormal matrix if 

X t X f f i  L 

2. BLOCK BIDIAGONALIZATION ALGORITHM 

We fncst study the generation of a block bidiagonal form with the use of a block 
Lanczos procedure. This bidiagonalization algorithm was suggested by Golub and 
Kahan [5] and described in detail by Paige [13] for the single-vector recurrence. 
Palmer [14] discussed the block recurrence in his doctoral thesis. 

Let us develop the block Lanczos method for 
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with the initial (m + n) × b or thonormal  matrix 

( 0 ) ,  
X , =  Q, 

where QR is an n x b matrix. It follows that 

M, = Xtfi..X ", = O, 

where P~ is an m x b matrix. Thus,  

M2 = X ~ . ~ i " 2  = 0. 

(2.1) 

Using the relations defining the block Lanczos method  (cf. [18]), we can prove by  
induction that,  for j = 1, 2 . . . . .  

(o) 
X2j-1 = Qj and M2j-1 = O, (2.2) 

where Qj is an n × b or thonormal  matrix, and 

X2j = (Po J ) and M2j = O, (2.3) 

where Pj is an m × b or thonormal  matrix. Since the Xj form a sequence of 
mutual ly  or thonormal  matrices, tha t  is, 

X~Xj = 0 for i • j ,  

we deduce that  the Pj and Qj form two sequences of mutual ly  or thonormal  
matrices. 

Let  us carry out  2s steps of the block Lanczos scheme. We obtain the matrix 
equation 

fi.22, = 22~T2~ + 22 ,  (2.4) 

where 

R~ 0 

2 0 R~ 

28 ---- "o. ".. "°. , 

R2s-1 0 :t9 

0 R2s 

X2~ = (x~,  x 2  . . . . .  X ~ A ,  22~ = (o . . . .  , o,  z ~ + ~ ) ,  

(2.5) 

( o  ) 
Z2~+1 = Atp~ _ Q~Rt . (2.6) 
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Let  

and 

Ps = (P,, Pz, . . . , I s )  

(~ = ( Q , ,  Q2 . . . .  , Qs ) .  

We can rewrite eq. {2.4) as 

(o 
where  

and 

J~ = 

Fur thermore ,  the matr ix  eq. 
equations, 

and 

(2.7) 

(2.8) 

I R2 R t 0 t t R4 R~ 

o "'" R;::2 
R2~ / 

(2.9) 

(2.10) 

Z2~+1 = (0 . . . . .  0, Z2~÷~). (2.11) 

(2.9) is reducible into two lower order  matr ix  

AQs = P ,  J8 {2.12) 

A t • 8 • .  
-- t QsJ,  + Z28+1. (2.13) 

T he  block Lanczos me thod  therefore  generates  a block bidiagonal matr ix  ors of 
order  bs. As the R, are upper  tr iangular matrices,  the matr ix  Js is also a band 
upper  tr iangular matr ix  with b superdiagonals. There fo re  we have constructed a 
scheme tha t  produces a block bidiagonal matr ix  J~ from a given rectangular  
matr ix A while preserving the singular values. In Sect ion 4 we discuss how to 
compute  the singular-value decomposi t ion of  J , .  

ALGORITHM 2.1 (Block Bidiagonalization Method) 
1. Let Q1 be a given n × b orthonormal matrix. 

Compute 

W1 := AQ1, 

and factorize W~ so that 

W1 = P1R2, 

where P1 is orthonormal and R2 is upper triangular. 
2. For i = 2, 3, . . . ,  s, do 

(a) Compute 

and factorize Z, so that 

Z, := Atp,_, - Q,_IRt~,_2, 

Z~ = QtR2t-1, 

where Q, is orthonormal and R2,-1 is upper triangular. 
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(b) Compute 

W, := AQ,  - P,-1Rt,-1, 

and factorize W~ so that 

W, = P, R2,, 

where P, is orthonormal and R2, is upper triangular. 

In  Algor i thm 2.1, if the  mat r ix  Z, were r ank  deficient, we would choose the  
columns of Q, so t ha t  they  are or thogonal  to those of all previous  Qj. T h e  r emedy  
is similar  for a rank-deficient  matr ix  W,. We m a y  use the  Househo lder  t ransfor-  
mat ions  for this construction.  

Suppose  tha t  g, is a singular value of J ,  with corresponding left  and  r ight  
singular vectors  w,  and z,, respectively.  Le t  

p, -- P ,w ,  and 

From (2.12) and {2.13) we get 

Aq,  = ~t,p, 

and 

or equivalently,  

q, = Qsz~. 

(2.14) 

Atp~ = #,q, + Z2,+lw,, 

A t p ,  = #,q, + Z2~+lh,, (2.15) 

where the vector  h, is a vector  of  order  b consisting of the  last  b componen t s  of  
w ,  Accordingly, if we had  t ha t  Z2,+lh, = 0, then  the value #, would be a singular 
value of mat r ix  A with corresponding left and r ight  singular vectors  p, and q,, 

• respectively• In  the  next  section we give error  bounds  t h a t  indicate t ha t  the 
grea tes t  singular values of Js  are usually accura te  approx imat ions  to those  of A. 

3• ERROR BOUNDS FOR THE SINGULAR-VALUE APPROXIMATIONS 

Let  us consider the matr ix  

I ts  (b + 1) algebraically grea tes t  eigenvalues are al -> o2 ~ . . .  ~ Oh÷l, and its 
algebraically smallest  eigenvalue is - o l .  For  i = 1, 2 . . . .  , b, the  normal ized 
eigenvector  of A corresponding to the eigenvalue o, is 

1(.) 
Now, the eigenvalues of  the  block tr idiagonal  mat r ix  T2s of (2.5) are #1 ~ #2 -~ 
• . • #bs ~ -gbs -- • • • >- -g2  -> -#1. Bu t  the  matr ix  T2~ is genera ted  by  2s s teps  of  
the block Lanczos me thod  applied to A with initial mat r ix  

(0) 
X I =  Q1 " 
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G1 -- (gl ,  g2, . . . ,  gb) a n d  V1 = (vl ,  v2, . . . ,  vb), 

1 Gt~X1 = --~ Vt~ Q,. 

T h e  fo l lowing  t h e o r e m  is a d i r e c t  c o n s e q u e n c e  o f  a t h e o r e m  d u e  to  U n d e r w o o d  
[18, pp .  37-38].  

THEOREM 3.1. Assume  tha t  ob > oh+,. Le t  #1 >- #5 >- • • • >- #b, be the s ingular  
values of  the bs × bs matr ix  J~ generated  by the block b id iagonal iza t ion  m e th o d  
with an  init ial  n × b or thonormal  matr ix  Q1. Suppose tha t  the b × b matr ix  

W = ~ VtQ, ,  
¢5 

where 

V1 -- (v,,  v ~ , . . . ,  vb), 

is nons ingular  so that  its smallest  s ingular  value • is positive. Note  tha t  T <_ 
1/x/2. Then, for i = 1, 2 . . . . .  b, we have that  

o~ >_ g, >-- oz - -  e 2, 

where 

(o, + al)tan20 

0 ~- C O S - I ~  ", 

Ot - -  Ob+l 
~t - -  - - ,  

0~ ÷ 01 

and  T2s-1 is the (2s - 1)st Chebyshev po lynomia l  of  the first kind.  

Ex amp le  3.1. S u p p o s e  t h a t  A is a n  m × n m a t r i x  w i t h  s i n g u l a r  v a l u e s  Ol -- 1.0, 
02 -- 0.9, oa -- 0 . 5 , . . . .  L e t  us  a p p l y  t h e  b l o c k  b i d i a g o n a l i z a t i o n  a l g o r i t h m  w i t h  b 
= 2 a n d  s = 5. T h e n  

~2 

(1 
T9 

~t 1 ~- 

a n d  

1 . 0  - 0.5 
-- 0.25, 

1.0 + 1.0 

0.9 - 0.5 
- 0.21, 

0.9 + 1.0 

- T9(1.67) -" 1.0 × 104, 

I + y 2 ~  _ T9(1.53) --" 3.7 × 103. 
T9 ~k 1 - ~ 2  ] 
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1 
= ---= x 0.04, 

, /2  

tan  2 8 - 1249. 

2.0 x 1249 
E~-" 1 . 0 x 1 0 8  -" 2 . 5 × 1 0  -5 , 

1.9 x 1249 
e~ -" -" 1.7 x 10 -4. 

1.37 × 107 

T h e  two greates t  singular values #1 and ~2 of J~ therefore  satisfy the  inequali t ies 

a l  ~ ~1  ~ O'1 - -  2.5 x 10 -s 
and 

02 -> tz2 ---- 02 - 1.7 × 10 -4. 

However ,  we suspect  tha t  the  bounds  of T h e o r e m  3.1 m a y  be gross overesti-  
mates .  Suppose  tha t  

Q I =  y l .  

T h e n  we have  

and 

1 

,5 

tan 0 = 1. 

T h e  last  value is quite unsat is fac tory  for an initial mat r ix  consisting of the  correct  
singular vectors.  

We seek to construct  t ighter  bounds.  F rom the mat r ix  equat ions  

AQs = / ~ J s  (2.12) 

and 

we get 

Thus,  

t -- ~ 2 2 8 + 1 ,  A P ~  ~ , j t +  

AtAQs = Atp~J~ 
- ' 

= Q, JsJ,  + 

(2.13) 

AtAQs = Q s j t j ,  + (0 . . . . .  0, Z2,+1R2~). (3.1) 

We observe tha t  the matr ix  ~ is o r thonormal  and tha t  the  matr ix  JtJs  is block 
tridiagonal.  I t  can be proved  (cf. [18, Chap te r  2]) t ha t  the mat r ix  equat ion  (3.1) 
character izes  an appl icat ion of the block Lanczos me thod  to the  mat r ix  A tA with 
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t h e  in i t i a l  m a t r i x  Q1. S i n c e  t h e  m a t r i x  A t A  h a s  e i g e n v a l u e s  o12 ___ o22 > . . .  -> 

a n d  c o r r e s p o n d i n g  n o r m a l i z e d  e i g e n v e c t o r s  v l ,  v2, . . . ,  Vn, we o b t a i n  t h e  n e x t  
r e s u l t  f r o m  U n d e r w o o d ' s  t h e o r e m  [18, pp .  37-38] .  

THEOREM 3.2. A s s u m e  tha t  Ob > ob+l. Le t  #~ >_ #2 >-- • • • >-- #bs be the s ingular  
values o f  the bs × bs ma t r i x  J8 genera t ed  by the block b id iagonal i za t ion  m e t h o d  
wi th  an ini t ial  n × b or thonormal  ma t r i x  Q~. Suppose  tha t  the b x b m a t r i x  

W =  VIQ~, 

where  

V~ = (v~,  v2  . . . . .  v b ) ,  

is nons ingu lar  so that  its smal les t  s ingular  value ~ is posit ive.  No te  tha t  • <_ 1. 
Then,  for i = 1, 2 . . . . .  b, we have  that  

o ,  >_ #~t ~ (o ~, - E2) ~1~, 

o r  

where  

_ E2 
o, ----- #t ----- o, 1 ~ for  --_2<1, 

a t  a t  

~2 = (02 - -  o~) tan  2 0 

2 (1 + y ,~'  
T , - ,  \ 1  - 7,]  

0 = COS - 1 %  

0 2 -- 02+1 

7, = 2 o~ ' 

a n d  Ts-1 is the (s - 1)st Chebyshev p o l y n o m i a l  o f  the f irst  k ind.  

E x a m p l e  3.2. W e  use  t h e  s a m e  g iven  d a t a  as  in  E x a m p l e  3.1, w i t h  t h e  a d d i t i o n a l  
a s s u m p t i o n  t h a t  on = 0.0. T h u s ,  

= 1.00, o22 = 0.81, o32 = 0.25 . . . .  , o2, = 0.00, 

so t h a t  

a n d  

1.00 - 0.25 
7t - -- 0.75, 

1 . 0 0  - 0 . 0 0  

72 

T4 

0.81 - 0.25 
= -" 0.69, 

0.81 - 0.00 

-- T4(7) --" 1.88 X 10 4, 

1 + 72~ _ 
T4 \ 1  - - - ~ 2 ]  T4(5.45) - 6.82 × 103. 
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A l s o ,  

Consequently, 

and 

As 

and 

tan 2 8 = 624. 

1.00 x 624 
E~ -" -" 1.7 X 10 -6 

3.55 x l0 s 

0.81 x 624 
~ -  - 1.1X 10 -s. 

4.65 X 107 

1 E~=" 1.7X10 -6 
Ol 

1 E ~ - 1 . 2 X 1 0  -5 , 
02 

the two greatest singular values gl and/~2 of J8 therefore satisfy the inequalities 

a l ~ / ~ l - o l - 1 . 7 x  10 -6 
and 

o2- ->g2- -a2 -  1.2X 10 -~. 

We observe that the bounds given by Theorem 3.2 are much smaller than those 
given by Theorem 3.1. 

4. COMPUTATION OF SINGULAR VALUES AND VECTORS OF J 

We wish to compute the singular values and vectors of the bs x bs block 
bidiagonal matrix Js. In the rest of this section we omit the subscript s from J ,  
and denote its order by t = bs. Since the b x b blocks that  form the block diagonal 
of J are upper triangular and the b x b blocks that  form the block superdiagonal 
are lower triangular, we see that  the blocks all fit together to form an upper 
triangular band matrix, dense within the band and with bandwidth (number of 
superdiagonals) equal to b. The rest of this section treats the problem of 
computing the singular values and vectors of an upper triangular band matrix J.  
The case where the vectors are not required is also considered, since this section 
may be useful outside the block Lanczos context. 

The method consists of two phases. The first phase reduces J to bidiagonal 
form by a finite sequence of orthogonal transformations. The problem of doing 
this efficiently is the main subject of this section. The singular values of J are 
preserved under the transformations. The second phase reduces the bidiagonal 
form to diagonal form by a modified version of the QR algorithm. This process is 
described in detail in Golub and Reinsch [8] and is not discussed any further 
here. The singular values of J are the final diagonal elements, and the matrices 
of left and right singular vectors are the products of all the left and right 
transformations (respectively) used in the two phases of the reduction. 

We are left with the first phase, reducing J to bidiagonal form. The methods of 
Givens and Householder for reducing a full symmetric matrix to tridiagonal form 
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preserving eigenvalues are well known and are described, for example, in Wilk- 
inson [20]. In order  to preserve eigenvalues, the same e lementary  t ransformat ions  
(either Givens or Householder)  are applied to bo th  the left  and right sides of the 
matrix.  

A similar me thod  for reducing a nonsymmetr ic  matr ix  to bidiagonal form 
preserving singular values (but not, of course, eigenvalues) is described in Golub 
and Reinsch [8]. Singular values are preserved when different e lementary  trans- 
formations are applied to the left  and right sides of the matrix. Golub and Reinsch 
use Householder  transformations,  but  Givens t ransformat ions could easily be 
used instead. For  the reduct ion of a full matr ix  to bidiagonal or tridiagonal form, 
the me thod  of Householder  is about  twice as fast  as the me thod  of Givens. 
However,  in 1973 Gent leman [4] showed how "fast  Givens" t ransformat ions can 
be implemented.  These  are also described in Van Loan [19], and it appears  tha t  
there  is now little difference in the speed or effectiveness of the two methods.  

Reducing a symmetr ic  band matr ix  to tridiagonal form in a s traightforward 
manner  immediate ly  fills in the zeros off the band. Rut ishauser  [16] shows how 
this ma y  be avoided and the reduct ion completed while preserving the band 
structure,  using ei ther  Givens or Householder  transformations.  Here  we describe 
how to generalize this to the reduct ion of an upper  tr iangular band matr ix  to 
bidiagonal form. In general, a similar process would apply to any nonsymmetr ic  
band matrix. 

Recall  tha t  a Givens t ransformat ion matr ix  P~"J) is given by 

1 
•o 

J 

p(,.]) = 

i j 

1 
c 

- d  

1 

1 

d 

C 

1 

1 

where c 2 + d 2 -- I and has the proper ty  tha t  if it is applied to J on the left, then  
the resulting matr ix  J '  = Pt"J~J has elements  different f rom J only in rows i and 
j,  with zeros in bo th  rows in those columns where there  were zeros in bo th  before, 
and, if c and d are chosen appropriately,  with its (j, i) e lement  equal to zero. Le t  
us write J -- (~,,j), d '  = (~',x). Then ,  in particular,  we have 

so y j, = 0, if 

y~ = cy,k + dyjk, yjk --- -dy ,k  + cyjk, 

c = ~,,,l(-y~,, + .l,~,) 'i~, 

d = "l'J,/(7~, + "1'~,) ~/2. 
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- x x c b a  
X X X  X X C  

c x x x x x b  
b x x x x x a  

a x x x x x  

x x x x x c  

c x x x x x  

b x x x x  
a x x x  

x x  

c X 

STEP 1: 

h) Zero 7~ and chase It a a a a off the matrLx: 

Rotate column 5 against column 4 to zero y~s and introduce 7~4. 
Rotate row 5 against row 4 to zero "th and introduce ~9 
Rotate column 9 against column 8 to zero 7~9 and introduce y~8. 
Rotate row 9 against row 8 to zero y5s 

--chased off 
(il) Zero ~4 and chase it b b b b off the matrix similarly. 
(iii) Zero y~3 and chase it c c c c c c also 
STEP 2: Repeat for the second row, etc 

Fig. 1. Bidlagonalmng a pentadiagonal upper triangular matrix of order 11 using 
Givens rotations by the method band Givens I. 

T h e  price paid  for the  annihi lat ion is t ha t  a new nonzero e lement  appea r s  in one 
row wherever  there  was one a l ready in the other.  We say  t ha t  row j is ro t a t ed  
against  row i by  the t ransformat ion.  Similarly, if P( 'J) is appl ied on the  right,  only 
columns i and j of  J are changed with -/~j = 0, if c and d are chosen correctly.  

To  describe the  reduct ion process,  let  us suppose t ha t  J is an uppe r  t r iangular  
band  mat r ix  with order  t = 11 and  b = 4 superdiagonals.  T h e n  the  first  thing the  
a lgor i thm does is to zero V~5 by  mult iplying J on the  f ight  by  p(4,5) wi th  c and  d 
chosen correctly, or, in o ther  words, by  ro ta t ing  co lumn 5 against  co lumn 4. Th i s  
introduces one new nonzero e lement  Th. This  new e lement  is annihi la ted by  
mult iplying J '  on the  left by  p(4.5), t ha t  is, by  ro ta t ing  row 5 against  row 4. This  
in turn  introduces a new nonzero e lement  ~9. Two  more  t ransformat ions ,  one 
f rom the left and one f rom the right, are now required to comple te ly  "chase  the  
e lement  off the matr ix ."  At  this point  the  result ing mat r ix  has  the  same  zero 
pa t t e rn  as the original mat r ix  J ,  except  tha t  yl~ has  been  annihilated.  Now the 
process  is r epea ted  for T~4 and then  for V~3, and  then  the  first  row has  the  desired 
bidiagonal form. Finally, the entire process is r epea ted  for every  row unti l  the  
mat r ix  becomes  bidiagonal. T h e  me thod  is i l lustrated in Figure 1. Le t  us call this  
me thod  band  Givens I. 

Reducing the  mat r ix  to bidiagonal fo rm in this way requires  approx ima te ly  4 b t  2 

multipl icat ions using ordinary Givens  t ransformat ions ,  or 2 b t  2 using "fas t  Giv- 
ens," assuming 1 << b << t. Th is  compares  with a count  of approx imate ly  4t3/3 
mult ipl icat ions required to do the reduct ion by  the  s tandard  Go lub -Re insch  
a lgor i thm using Householder  t rans format ions  and ignoring the  band  s t ructure ,  
filling in the zeros off the band.  This  is, of  course, a big savings if b << t; 
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furthermore, only ( b + 1)t storage locations are required to store the band matrix, 
while t 2 storage locations are required for the standard Golub-Reinsch reduction. 
If left and right singular vectors are required, however, the rotations used in band 
Givens I must be accumulated as the computation proceeds. This requires 4t 3 
multiplications using ordinary Givens transformations or 2t 3 using "fast Givens," 
as opposed to 8t3/3 multiplications for the Golub-Reinsch reduction. Therefore, 
if the vectors are required, band Givens I still requires fewer multiplications than 
Golub-Reinsch if the "fast Givens" transformations are used. Both methods 
require approximately 2t 2 storage locations. 

There are several other possible methods to reduce J to bidiagonal form. The 
method we shall call band Givens II applies a sequence of rotations to J as before, 
but instead of reducing each row in turn to two elements, it systematically reduces 
the bandwidth by zeroing each superdiagonal in turn. In other words, in the 
example presented in Figure 1, after zeroing 715 and chasing it off the matrix, it 
next turns to 726 instead of 714. This method requires more rotations, since the 
decreasing bandwidth causes more nonzero elements to be introduced before a 
certain element is chased off the matrix; but for the same reason each rotation is 
less work if the vectors are not required. The two considerations cancel each 
other out, so band Givens I and II require about the same number of multiplica- 
tions if vectors are not required; but the latter is slower by a factor of about In b 
if vectors are required. 

A third method called band Householder zeros all b - I elements in a row with 
a single Householder transformation, introducing a triangle of fill-in on the other 
side of the band at every step. Another method called triangle Givens does not 
at tempt to preserve the band structure, but only the triangle structure. These 
methods are less efficient than band Givens I. Finally, a complicated version of 
band Givens I called band Givens III, which requires fewer multiplications when 
vectors are required, has been devised. The details of these methods appear in 
[7]. They are omitted here since in the block Lanczos context t may not be large; 
so there may be little payoff in using a special method. Furthermore, reducing 
the bidiagonal form to diagonal form to obtain the singular values in the second 
phase typically takes 8t 3 multiplications using ordinary Givens or 4t 3 using fast 
Givens, so this may dominate any slight savings in the reduction phase. None- 
theless the operation counts for the various methods are summarized in Table I, 
since they may be useful in other contexts. 

5. ITERATING TO IMPROVE ACCURACY 

Let us restate our computational procedure. We use the block bidiagonalization 
method to generate a block bidiagonal matrix Js of small order and then apply 
some technique to compute the singular-value decomposition of Js. Our conver- 
gence test depends on the next two lemmas. 

LEMMA 5.1 (Weinstein's Inequality) [12, p. 56]. Given a symmetric matr ix  B 
and  a normal i zed  vector x ,  i f  there is a scalar iz such tha t  

II B x  - II --- 

then there is an eigenvalue ~ o r B  within ~ of  lz. 
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LEMMA 5.2 [12, pp. 59-60]. Le t  B be an  I x I symmetric matr ix  wi th  eigenval- 
ues kx, ~2, . . . ,  At a n d  let II B x  - #x  II <- ~ for some normal i zed  vector x. Suppose 
that, for some j ,  

[ # -  X , [ _ > d > O  for i # j .  

Then  B has  a normal i zed  eigenvector yj  corresponding to hj such tha t  

l lx  - y ,  II--- ~/(1 + .~2)1/2, 

where 7 = ~/d. 

From eqs. (2.14) and (2.15), we obtain 

Thus,  if 

(o :)(.) ( . ) . (o)  
A t q~ ~- ph q t  Z2s+lht " (5.1) 

IIZ2~+&,ll ~ 6 (5.2) 

for some given tolerance 8, then  there  is a singular value oj of  A such tha t  

I~,- o,l_<& 
If  it is also t rue tha t  

I#,- okl---d>0 for k ~ j ,  

where Ol, 0 2 , . . . ,  On are the  singular values of A, then  A has normalized left  and 
right singular vectors  uj and v,, respectively, corresponding to oj such tha t  

liP, - u, II z + l l q , -  viii 2 <- 72( 1 + ~/z), 

where  y --- 6/d. For  the more  complicated case of multiple singular values, we 
refer  the reader  to an excellent paper  of S tewar t  [17]. 

Suppose tha t  our  procedure  has not  computed  all the  k greatest  singular val- 
ues to the desired accuracy. In T h e o r e m  3.2, the er ror  bounds contain the  t e rm 
tan O, where 8 is the  angle be tween the two subspaces spanned by  the columns of 
171 and Q1. Le t  

QI = (ql, q2 . . . . .  qD. 

The  results of the last section indicate tha t  the matr ix  Q1 is a be t t e r  approximat ion 
to the matr ix  V1 than  the initial matr ix  Q1. Thus ,  we expect  to compute  more  
accurate  approximations to the greatest  singular values of  A if we reapply the 
block bidiagonalization me thod  with the initial matr ix  Q~. This  idea leads to the 
following i terat ive scheme, where we assume tha t  b equals k. 

ALGORITHM 5.1 
1. Let b, s, and ~ be given parameters and let Q1 be a given n x b orthonormal matrix. 
2. Repeat until all b greatest singular values have converged: 

(a) Use the block bidiagonalization method with initial matrix Q1 to generate the 
matrices J~, 158, and Q~. 

(b) Compute the singular value g~ and corresponding left and right singular vectors w, 
and z,, respectively, of Js, for i = 1, 2 . . . . .  bs. 

(c) Estimate the accuracy of #, as an approximation to o, for i = 1, 2 . . . . .  b (cf. 
inequality (5.2)). 
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(d) Let 

Q1 := (ql, q2 . . . . .  qD, 

where 

q, = Q,z, for i = 1 , 2  . . . . .  b. 

This iterative algorithm provides a convenient means for estimating the accu- 
racy of the computed singular values. We can show that  the ith column of the 
matrix Z2 in the block bidiagonalization method computed in each iteration of 
Algorithm 5.1 after the first is the residual vector for the singular value #, 
computed in the previous iteration. It  is thus possible to determine at the start of 
an iteration the accuracy of the singular values computed at the end of the 
previous iteration. We also observe that  the matrices P1 and R2 of the block 
bidiagonalization method are readily available from the prior iteration. 

However, once a few singular values and singular vectors have converged, we 
need not iterate with them any longer. Since the desired singular values may 
have different rates of convergence, as indicated by the error bounds of Theorems 
3.1 and 3.2, we should modify Algorithm 5.1 so that  (1) it does not iterate with 
those singular values and singular vectors that  have converged, and (2) it allows 
the values of b and s to change from one iteration to the next. We are going to 
examine these issues in the next two sections. 

6. BLOCK BIDIAGONALIZATION METHOD WITH REORTHOGONALIZATION 

Suppose that we are given accurate approximations to the ko greatest singular 
values al, o2 . . . . .  ako and corresponding singular vectors of the matrix A. Let  Po 
and Qo be the m × ko and n × ko orthonormal matrices consisting of those given 
left and right singular vectors, respectively. We want now to compute the next 
(k - ko) greatest singular values of A. 

Let us consider the matrix 

° At . (1.2) 

If we apply the block Lanczos method to compute the eigenvalues + Oko÷1, +- 
ok0+2 . . . . .  + ok of the matrix .~, then we must maintain the orthogonality of the 
matrices X1, X2 . . . .  X8 with respect to the eigenvectors corresponding to the 
eigenvalues +_ 01, + 02 . . . . .  - ako (cf. [18]). But these eigenvectors are accurately 
approximated by the columns of the matrix (see [10, Chapter 3]) 

We have that 

Qo - Q o "  

I - - - ~  Qo -Qo --~ Qo -Qo] = o I -QoQ~ " 

Therefore, if we want to apply the block bidiagonalization method to compute 
the (k - ko) next greatest singular values of A, we need to maintain the 
orthogonality of the matrices P1, P2 . . . . .  P,  with respect to Po, and the orthogo- 
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nality of the matrices Q1, Q2, . . . ,  Q, with respect to Qo. We are thus computing 
the (k - k0) greatest singular values of the "deflated" matrix 

,4 = ( I -  P o P ~ ) A ( I -  QoQ~). (6.1) 

Suppose tha t  

[[AQo - Po~,o[l~" + [[Atpo - QoF-~U~ <-- 62 (6.2) 

where [[ • IlF is the Frobenius matrix norm and F~o ffi diag(ol, o2 . . . .  , Oko). Note tha t  
if both matrices Po and Qo had been computed by the block Lanczos procedure, 
then  (cf. eq. (2.12)) 

[[AQ0 - PoF=oll = 0(mk0~), (6.3) 

where ¢ is the machine precision. Using arguments  similar to those in Under- 
wood's thesis [18, pp. 62-66], we get from (6.2) tha t  the (k - ko) greatest  singular 
values of A differ from the (k - k0) next greatest singular values of A by quantit ies 
tha t  are less than  I 6l in modulus. 

Now, the block bidiagonalization method  may  be numerically unstable. Al- 
though the matrices P, and  Q, form two sequences of or thonormal  matrices in 
exact arithmetic, they  lose orthogonality rapidly in practice owing to the loss of 
figures in the computat ion of the matrices Z, and W,. To mainta in  stability in the 
scheme, we choose to reorthogonalize the matrices P, and Q, with respect to all 
the previous Pj and Qj, respectively (cf. [18]). We have also implemented the idea 
of local reorthogonalization due to Lewis [11] (see [7]). But  we now feel tha t  
complete reorthogonalization is more appropriate for our application of comput- 
ing a few greatest singular values. 

ALGORITHM 6.1 (Block Bidiagonalization Method with Reorthogonalization) 
1. Let Q1 be a given n × b orthonormal matrix. 

Compute 

W1 := AQ1. 

Orthogonalize WI with respect to Po. Factorize W~ so that 

W1 = P1R2, 

where P~ is orthonormal and R~ is upper triangular. 
2. For t f f i2 ,3  . . . .  ,s, do 

(a) Compute 

Z, := A tP,_I t 
- Q,-1R2,-2. 

Orthogonalize Z, with respect to Qo, Q1 . . . . .  Q,_I. Factorize Z, so that 

Z, = Q~R2,-1, 

where Q, is orthonormal and R2,-1 is upper triangular. 
(b) Compute 

IV, := AQ, - P,-1Rt~,-1. 

Orthogonalize W, with respect to Po, P~ . . . . .  P,_~. Factorize W, so that 

IV, = P~ R2,, 

where P, is orthonormal andIR2, is upper triangular. 
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In case of rank deficiency of the matrix Z, or W,, we apply a remedial procedure 
similar to that  for Algorithm 2.1. 

7. ITERATIVE BLOCK LANCZOS METHOD 

We should point out that the reorthogonalization process of the last section not 
only requires a large number of arithmetic operations but also requires that  each 
of the Pj and Qj be in memory during each step of Algorithm 6.1. Since m and n 
are large numbers in this application, the available computer memory places an 
upper bound c on the product bs. It is then necessary to determine optimal values 
for b and s subject to this upper bound constraint. But the error bounds of 
Theorem 3.2 indicate that  we need accurate knowledge of the singular-value 
spectrum of the given matrix, which is precisely the same information we are 
trying to obtain. 

A good initial choice of the block size b is the number k of singular values to be 
computed (see [2] and [18]). This may not be the best choice, as we can see from 
Example 8.4 of the next section. Our experiments have shown that  it seldom pays 
to have b > k (cf. Example 8.3 of the next section). Underwood [18] made the 
same observation, but he used a different way to update the block size. 

Having chosen b, we compute the number s of blocks by 

c 
s :=  l ~ l ,  

where [aJ denotes the integer part of a real number a. If s is less than 2, we 
compute 

b :=[2J  and s : = [ b  j. 

The last computation is necessary so that  s would equal 3 if the value of c 
were 3. 

Let us describe how we update the values of c, b, s, and k. Suppose that  k0 
singular values and associated singular vectors have converged in an iteration. 
Then 

C :  -~ c - k o  

because those computed singular vectors must reside in the computer memory 
for the reorthogonalization process. Now, if b _ k, then we decrease the value of 
b by ko--that is, 

b := b - k0; 

otherwise we choose the new block size as the smaller value of the old block size 
and the number of singular values left to be computed--that  is, 

b := min(b, k - k0). 

We update the value of k by 

k : = k - k o .  

The new value for s is then computed in the same manner as described in the 
previous paragraph, with the same modification to the value of b, if necessary. 
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Our scheme for updat ing  b differs f rom Underwood ' s  [18] only in the  case where  
b > k .  

ALGORITHM 7.1 (Iterative Block Lanczos Method) 
1. Let c, b, s, and 8 be given parameters and let Q~ be a given n × b orthonormal matrix. 

The matrices P0 and Q0 are null. 
2. Repeat until all k singular values have converged: 

(a) Use Algorithm 6.1 with initial matrix QI to generate the matrices J,,/~s, and ~ .  
(b) Compute the singular value #, and corresponding left and right singular vectors wt 

and zl, respectively, of Js, for i ffi 1, 2 . . . . .  bs. 
(c) Estimate the accuracy of #, as an approximate singular value, for i = 1, 2 . . . . .  bs. 

Assume that k0 singular values have converged. 
(d) Update the values of c, b, and s. 
(e) For i = 1, 2 . . . . .  k0 + b, compute 

and 

(f) Let 

and 

(g) Let 

p, := P ,w ,  

ql := Q,z,. 

Po :-- (Po[ p . . . . . .  P~o) 

Qo := (Qo[ ql, . . . ,  q,o). 

Ql := (qko+l, qko+2, . . . ,  qko+b).  

8. TEST EXAMPLES 

Rectangula r  diagonal mat r ices  are chosen for all our  examples .  Such mat r ices  are 
sufficiently general  for the Lanczos method ,  which does not  t r ans fo rm the  given 
matr ix .  We  can thus  specify the  s ingular-value spec t rum and s tudy  the  be- 
havior  of the  a lgor i thm as a funct ion of b and s. T h e  initial mat r ix  is r andomly  
generated.  

A set  of  F O R T R A N  rout ines  has  been  wri t ten  to imp lemen t  Algor i thm 7.1 (see 
[7]). We ran  our  tes ts  on an  I B M  370/168 compu te r  a t  the  S tanford  Linear  
Accelera tor  Center.  

T h e  compu ted  singular value #, and associated singular vectors  p,  and  q, are 
accepted  if they  satisfy the  inequal i ty  

([iAq, _ #,p,[[~ + HArp, _ #,q, [[2)1/2 _< 10-3. 

In  Sections 5 and 6, we have  described a way to tes t  for convergence with  very  
little addit ional  work. We have  chosen the  uppe r  bound c for the  p roduc t  bs to 
be 12. 

T h e  following nota t ion  is used in the  examples:  

ol, 02, 03 . . . .  = the  compu ted  singular values  in the  order  of  convergence.  

I t e r  = total  n u m b e r  of  i terations.  

T i m e  = machine  execut ion t ime  in seconds. 

m ' - - n  = m × 1 0  -n. 
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Example 8.1. A is a 905 × 904 matrix with diagonal elements -1.00, -0.99, 
-0.98, and 0.000, 0.001 . . . .  ,0.900. 

k f f i 3  b = 3 

al 1.00 - 4 '  - 7 

a2 0.99 - 9 '  - 9 

a3 0.98 - 3'  - 6 

I t e r  5 

T i m e  11 36 

We note that the computed singular values, as Rayleigh quotients, are accurate 
to twice the number of digits of the error tolerance. 

Example 8.2. A is a 905 × 904 matrix with diagonal elements -1.000, -0.999, 
-0.998, and 0.9000, 0.9001, . . . ,  0.9900. This example is essentially the same as 
the previous one, except that the gaps between the singular values have been 
reduced by a factor of 10. 

k = 3  b = 3  

a, 1.000 - 9 '  - 7 

o2 0.999 - 4'  - 8 

a3 0 9 9 8 -  2'  - 8  

I t e r  6 

T i m e  13.83 

The first two examples illustrate the fact that  the convergence rate of the 
Lanczos algorithm depends on the relative spread of the singular values (cf. 
Theorems 3.1 and 3.2}. 

Example 8.3. A is an 806 > 805 matrix with diagonal elements 1.0, -1.0, 0.9, 
-0.9, and 0.000, 0.001 . . . .  ,0.800. 

k = l  b = l  b = 2  

o l  1 . 0  - 3 '  - 10 1.0 - 1 '  - 12 

I t e r  1 3 

T u n e  2.35 6.52 

k = 2  b = l  b = 2  

~, 1.0 - 3 '  - 10 1.0 - 1 '  - 12 

o2 0.9 - 3' - 16 1.0 - I '  - I I  

I t e r  2 3 

T u n e  4.27 6.52 

k = 3  b = l  b = 2  b = 3  b f f i 4  

ol 1.0 - 3 '  - 10 1.0 - 1 '  - 12 1.0 - 3 '  - 8 1 . 0  - 1 '  - 7 

02 0 . 9 + 3 ' - 1 6  1 0 - 1 ' - 1 1  1 . 0 - 4 ' - 9  1 . 0 - 8 ' - 7  

a3 1 . 0 + 0 ' -  16 0 . 9 -  1 ' - 9  0 . 9 - 3 ' - 9  0 . 9 - 6 ' - 9  
I t e r  5 4 4 5 

T u n e  9.60 8.28 8 23 10.53 

ACM Transactions on Mathematmal  Software, Vol. 7, No. 2, June  1981 



168 • G.H. Golub, F. T. Luk, and M. L. Overton 

k = 4  b = l  b = 2  b f f i 3  b = 4  

al  1.0 - 3 '  - 10 1.0 - 1' - 12 1.0 - 3 '  - 8 1.0 - 1 '  - 7 

as 0.9 + 3 '  - 16 1.0 - 1' - 11 1.0 - 6 '  - 8 1.0 - 8 '  - 7 

o9 1.0 + 0 '  - 16 0 .9  - 3 '  - 8 0 . 9  - 2 '  - 7 0 . 9  - 6 '  - 9 

o( 0.9 + 6 '  - 14 0.9 - 7 '  - 8 0 .9  + 8 '  - 10 0 .9  - 2 '  - 7 

I t e r  7 5 5 5 

T i m e  12,70 10.00 9 .59 10.38 

These tests illustrate a couple of important points. First, the Lanczos method 
does not always compute the greatest singular values (cf. the case where k = 2 
and b = 1). Second, the supposition of Theorems 3.1 and 3.2 that  ab > ab+z is not 
necessary for the convergence of the Lanczos method. 

Example 8.4. A is a 902 × 901 matrix with diagonal elements 0.000, 0.001, 
, . , ,  0 , 9 0 0 ,  

k = 3  b =  l b f f i 2  b = 3  

oz 0 .900  --  5 '  --  6 0 .900  - 1' - 5 0 .900  - 9 '  - 6 

o2 0 .899  + 3 '  --  6 0 .899  - 2 '  - 6 0 .899  - 9 '  - 6 

o 3  0 . 8 9 8  - 2 '  --  5 0 .898  - 4 '  - 7 0 .898  - 7 '  - 5 

I t e r  13 27 23 

T i m e  28.73 61 .85  52 .53  

This example of a dense singular-value spectrum is one in which the point 
algorithm (b = 1) works better than the block algorithm (b ___ 2). 

Our iterative block Lanczos method is therefore a good procedure for computing 
a few greatest singular values of a matrix. A block method with an appropriate 
block size can (1) have a fast convergence rate, and (2) handle well the case of 
multiple singular values (see Example 8.3). For problems where the given matrix 
has to be read from secondary storage, economics may dictate that  we multiply 
the matrix into a block of vectors and thus choose a block method. 
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