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Abstract— We propose a new algorithm for designing low-
order controllers for large-scale linear time-invariant (LTI)
dynamical systems with input and output. While the high cost
of working with large-scale systems can mostly be avoided by
first applying model order reduction, this can often result in
controllers which fail to stabilize the closed-loop plant of the
original full-order system. By considering a modified version
of the optimal H∞ controller problem that incorporates both
full- and reduced-order model data, our new method ensures
stability while remaining efficient. Using a publicly available
test set, we find that the controllers obtained by our method
outperform those computed by HIFOO (H-Infinity Fixed-Order
Optimization) when applied to reduced-order models alone.

I. INTRODUCTION
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where the state x ∈ Rnx , the physical (control) input
u ∈ Rnu , the performance input w ∈ Rnw , the physical
(measured) output y ∈ Rny , the performance output
z ∈ Rnz , and the matrices are real valued with compatible
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where xK ∈ RnK is the controller state and nK is the
order of the controller, resulting in the closed-loop system: ẋ
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with, assuming D22 = 0 for convenience:
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(2)

The number of variables in the controller K is

nvar = (nK + nu)× (nK + ny).
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The formulas in (2) are affine unless D22 6= 0, in which
case they involve (I −DKD22)−1 [1, p. 446]; the condition
‖DKD22‖2 < 1 ensures that this last matrix is well defined.
However, as the test problems we use here all have D22 = 0,
we can forgo this additional requirement.

Now consider the closed-loop transfer matrix function

G(s) = C(sI −A)−1B +D, (3)

which maps the performance input w to the performance
output z. The optimal H∞ controller is

K? = arg min
AK ,BK ,CK ,DK

‖G‖H∞ , (4)

where the H∞ norm is defined as:

‖G‖H∞ = sup
λ∈C,<λ≥0

‖G(λ)‖2. (5)

Problem (4) is a particularly challenging nonsmooth, non-
convex optimization problem. Furthermore, since the H∞
norm is infinite whenever A is unstable, (4) is actually a
constrained optimization problem, with the implicit stability
constraint α(A) < 0, where mapping α : Rn×n → R denotes
the spectral abscissa:

α(M) = max{<λ : det(λI −M) = 0}

of a matrix M . While the characterization of all stabilizing
controllers is known [2], [3], this set, the feasible region
of (4), is typically nonconvex. Worse, although the H∞
norm objective function in (4) is at least locally Lipschitz, it
is nevertheless typically nonsmooth at minimizers, and the
spectral abscissa stability constraint is not only nonsmooth
but not even locally Lipschitz, specifically when a rightmost
eigenvalue λ of A, i.e. with α(A) = <λ, has multiplicity
two or more [4]. These difficult properties generally make it
untenable to just hand off the responsibility of solving (4) to
an off-the-shelf optimization code.

Although methods for solving (4) with a full-order con-
troller, i.e. when nK = nx, are well known, it is often
preferred to design low-order controllers where nK � nx
since these controllers must be realized physically. Choosing
nK < nx makes (4) even more difficult to solve but, despite
the aforementioned challenging properties of the objective
and stability constraint functions, the two current state-of-
the-art methods for low-order H∞ controller design are
nevertheless both optimization-based, taking advantage of
specialized techniques to handle nonsmooth functions. The
first of these methods, the open-source toolbox HIFOO [5],
[6], was released in 2006 and is based in part on [7]. The sec-
ond, the proprietary hinfstruct [8], was first introduced
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in MATLAB R2010b and is based in part on [9], [10]. While
neither HIFOO nor hinfstruct can guarantee returning
a global minimizer of (4), i.e. K?, they are efficient and
typically return feasible, locally-optimal controllers which
are sufficient in actual applications. Furthermore, as these
optimization-based methods typically have at most O(n2var)
work complexity per iteration, they are typically much faster
than linear matrix inequality (LMI) based approaches, which
generally require at least quartic work complexity per itera-
tion with respect to nvar [11, Section 2.4.4].

II. CONTROLLER DESIGN FOR LARGE-SCALE SYSTEMS

The main computational limiting factor in designing con-
trollers for large-scale systems is that just computing the
H∞ norm of (3) has O((nx + nK)3) work complexity per
iteration, since the known algorithms (e.g. the method of
[12], [13], which is implemented in the MATLAB function
getPeakGain) require computing all eigenvalues of a
sequence of Hamiltonian matrices of order 2(nx + nK). As
such, neither HIFOO nor hinfstruct is practical for large-
scale use, at least not directly. One possible alternative is to
first apply reduced-order modeling (e.g. [14], [15], [16], [17])
to make nx significantly smaller and then instead design a
controller with respect to that smaller system. While this can
alleviate much of the computational burden of working with
the original full-order model (FOM), designing a controller
for a reduced-order model (ROM) may ultimately result in
an unstable closed-loop plant for the FOM. Although there
exist methods for producing low-order controllers which
do guarantee closed-loop stability of the FOM, in particu-
lar frequency-weighted balancing techniques that perform a
combined plant-and-controller reduction [18], these generally
assume that it is computationally feasible to work with FOMs
and full- or high-order controllers. The general philosophy of
these methods is that dimension reductions should be done
as late as possible to preserve accuracy. Hence, such tech-
niques are more aimed at systems of at most moderate size,
where it is still reasonably tractable to compute a full-order
controller but it is nevertheless preferable for engineering
considerations to implement a low-order representation.

To our knowledge, the first and currently only method for
designing low-order controllers of truly large-scale systems
is that of [19], which is an experimental extension of
HIFOO called HIFOOS (where the S denotes sparse). In order
to circumvent the high cost of computing the H∞ norm,
HIFOOS instead leverages the recent introduction of scalable
methods for approximating the H∞ norm, specifically the
hybrid-expansion-contraction (HEC) algorithm of [20], to
directly design controllers of FOMs. HEC guarantees a
lower bound on ‖G‖H∞ and, under reasonable assumptions,
converges to stationary points of (5), which are typically
locally or globally optimal. As shown in [19, Table 2], this
new approach consistently led to stable closed-loop systems
for the FOMs, while using HIFOO to design controllers only
with respect to the ROMs resulted in 5 of 12 controllers
that failed to stabilize the original FOMs. Nevertheless, it
was noted that approximating ‖G‖H∞ of the FOM could

sometimes lead to inconsistencies from one controller K
to another, effectively implying that the function being
optimized was discontinuous in K. Since the line search
in the optimization method assumes the underlying function
is continuous, encountering such discontinuities sometimes
caused the design of the controller to halt prematurely.

In this paper, we propose a new method for designing
controllers of large-scale systems, a hybrid between HIFOO
and HIFOOS, where controllers are designed with respect to
the H∞ performance of the closed-loop plant of a ROM but
subject to a stability constraint on the closed-loop system for
the associated FOM. To that end, our approach entails solv-
ing a modified version of the optimal H∞ norm controller
problem (4), one that incorporates both ROM and FOM data.
In order to effectively compute solutions to this modified
problem, we also propose a new algorithm that, unlike
the earlier HIFOO and HIFOOS, explicitly uses the stability
constraints to influence the search direction computation. Our
approach is made practical by the recent introduction of a fast
method for nonsmooth, nonconvex, constrained optimization.

III. A MODIFIED FORMULATION

In order to ensure closed-loop stability of the FOM, we
propose solving:

arg min
AK ,BK ,CK ,DK

‖Gr‖L∞ subject to (6a)

α(Ar) < 0, (6b)
α(Af) < 0, (6c)

where Gr is the transfer function (3) for matrix quadruple
(Ar,Br, Cr,Dr) defined by the matrices of (2) built using the
ROM matrices of (1), Af is the matrix A also given in (2)
but built using the FOM matrices of (1) and where instead
of the H∞ norm in the objective, we use the L∞ norm:

‖G‖L∞ = sup
ω≥0
‖G(ω)‖2. (7)

Note that

‖Gr‖H∞ = {‖Gr‖L∞ if α(Ar) < 0; ∞ otherwise} .

There are potential benefits in solving (6) in lieu of the
version given by (4). First, by construction, a feasible
solution of (6) must be a controller which minimizes the
ROM H∞ performance while simultaneously stabilizing the
FOM closed-loop plant, which corrects the aforementioned
deficiency of designing controllers of FOMs using only
ROM data. Second, even though (6) without the new FOM
stability constraint (6c) would be mathematically equivalent
to solving (4) for the ROM model, explicitly providing both
ROM and FOM stability constraints to a solver may allow
it to compute search directions that better minimize the L∞
norm while simultaneously helping to retain stability.

In contrast, in order to solve (4) for a sufficiently small
model Gr, HIFOO attempts to compute a controller by
successively solving two nonsmooth but unconstrained op-
timization problems, using HANSO [21] as the underlying
solver (which does not support constraints). This two-phase
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algorithm first reduces α(Ar) by varying the controller K
until α(Ar) < 0 and then, having obtained a stabilizing
controller for which ‖Gr‖H∞ is at least finite, proceeds
to minimize ‖Gr‖H∞ , using that stabilizing controller as
a starting point. A potential downside of this implicitly-
constrained approach, and in contrast to our new explicitly-
constrained formulation, is that during the second phase, the
search direction is computed without regard for the need to
retain stability. Instead, when a trial value of the controller
K results in α(Ar) being nonnegative, so that the value of
‖Gr‖H∞ would be ∞, the line search in HANSO must reject
this point and instead will just decrease the step length. While
this strategy guarantees that the line search always returns a
new iterate with a finite H∞ norm value, it can lead to slow
progress as it may result in small step sizes.

Attempting to solve (6) with the explicit stability con-
straints presents a new and perhaps surprising challenge,
one which will motivate our new controller-design algo-
rithm. Assuming that the one or more eigenvalues attaining
α(Ar) are always controllable and observable, (6) has the
special property that its objective function is infinite on the
boundary of the feasible and infeasible sets and nowhere
else. Thus, it is possible for a solver to accept a step
which decreases ‖Gr‖L∞ but nonetheless corresponds to a
destabilizing controller. While giving a solver such increased
freedom, allowing it to also explore the infeasible region and
accept steps there, could improve the overall performance,
this can be problematic in the case of (6). Once a solver has
accepted an infeasible point, its next step will often be to
reduce the violation, in order to return to the feasible region.
However, as the solver searches for a point which reduces
the violation, i.e. a step that moves a rightmost eigenvalue
of Ar in the right half-plane closer to the imaginary axis,
‖Gr‖L∞ increases rapidly. This can make it exceptionally
difficult for a solver to return to the feasible region since
such steps will typically not satisfy the line search criteria,
leading to step lengths being shortened. Essentially, (6) itself
acts like a log-barrier method but with the antagonistic goal
of maintaining infeasibility once it has been encountered!

IV. A NEW ALGORITHM

Before we present our new algorithm, we first directly
extend the unconstrained approach of HIFOO, which should
also be considered for comparative purposes, as solving (6)
is mathematically equivalent to minimizing

F (K) =

{
‖Gr‖L∞ if max{α(Ar), α(Af)} < 0
∞ otherwise.

(8)

Algorithm 1. Use a solver in unconstrained mode to first:

Stabilize: by minimizing max{α(Ar), α(Af)} until a
feasible point for the constraints in (6b) and (6c) is
found, and then
Optimize: by switching to a second unconstrained
phase that directly minimizes the function F (K) given
in (8).

Termination takes place if a maximum iteration limit is
exceeded in either phase, or if the solver, using its own ter-
mination criteria, determines that an approximate stationarity
condition is satisfied in the optimization phase.

Like HIFOO, Alg. 1 may suffer from poor performance due
to the search directions in its “optimize” phase being com-
puted without explicit knowledge of the stability constraints.
While this search direction deficiency could be addressed
by explicitly providing (6) to an appropriate constrained
optimization code, this does not lead to a reliable method (as
verified in our own experiments not reported here), precisely
because of the aforementioned difficultly of (6) inherently
acting like a log-barrier against returning to feasibility. Thus,
we propose a new alternative.

Algorithm 2. Repeat the following in a loop:
(A) use a solver in unconstrained mode to minimize

max{α(Ar), α(Af)}, quitting when a feasible point
for the constraints (6b) and (6c) is found, and con-
tinuing to:

(B) use a solver in constrained mode to solve (6), quitting
when an iterate is generated for which either (6b) or
(6c) is violated, and returning to step (A).

Termination takes place if a cumulative iteration limit is
exceeded in either (A) or (B), or, if the solver, using its own
termination criteria, determines that an approximate station-
arity condition is satisfied in (B). Since the restabilizations
done in (A) may increase ‖Gr‖L∞ , Alg. 2 simply keeps track
of the best controller encountered for returning to the user
when the computation is finished.

Remark 1: Note that Alg. 2 is not just Alg. 1 done in
a loop since, unlike the “optimize” phase of Alg. 1, the
(B) phase of Alg. 2 uses the explicit stability constraint
information to influence the search directions.

V. A FAST AND RELIABLE SOLVER FOR ALG. 2

We now address the issue of the practicality of our new
Alg. 2 being predicated on the existence of an appropriate
solver for nonsmooth, nonconvex, constrained optimization.
Fortunately, and in contrast to when HIFOO was first released
in 2006, two such solvers are now publicly available. Both
take advantage of the fact that most nonsmooth functions of
interest are differentiable almost everywhere and can thus
make use of gradients on each iteration; all locally Lipschitz
functions (e.g. the L∞ norm) and semi-algebraic functions
(e.g. the spectral abscissa) satisfy this condition. Although
the objective and constraints are often not differentiable at
stationary points, these points are not normally encountered
by optimization methods except in the limit.

The first of these new solvers, SQP-GS, based on the work
of [22] and released in 2012, is to our knowledge the only
solver for such general nonsmooth, nonconvex, constrained
optimization with provable convergence guarantees. How-
ever, it relies upon gradient sampling, which must evaluate
O(nvar) nearby gradients on every iteration, and the proof
assumes that the nonsmooth functions are locally Lipschitz,
which is not the case for the spectral abscissa.
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Motivated by the high cost of SQP-GS, [23] proposed a
much faster alternative in 2017. This BFGS-SQP method,
implemented in the open-source GRANSO: GRadient-based
Algorithm for Non-Smooth Optimization [24], combines
quasi-Newton (specifically BFGS) updating with sequential
quadratic programming (SQP) with steering, which aims to
either retain feasibility at every step or, when necessary,
promote progress back towards the feasible region. For
nonsmooth, unconstrained optimization, BFGS has proven to
be very effective within HIFOO, and as discussed at length in
[25], BFGS seems to rarely if ever converge to non-stationary
points. The addition of SQP with steering allows GRANSO
to handle both smooth and nonsmooth constraints.

Extensive experimental results comparing these two
solvers on a suite of challenging static output feedback
control design problems involving multiple plants were re-
ported in [23], with GRANSO exhibiting very good results
compared to SQP-GS, while also being about 10-30 times
faster. Meanwhile, the two other solvers in the comparison,
included as “off-the-shelf” baselines since they were not
specifically designed for nonsmooth optimization, were not
competitive. In almost all cases, the objective and constraint
functions were nonsmooth, and in many cases even non-
locally-Lipschitz, at the computed solutions. In addition
to the much faster running times, the controllers found
by GRANSO were often among the best obtained from all
the solvers, both in terms of reduction in the optimization
objective and constraint satisfaction.

As indicated by its name, GRANSO needs access to the gra-
dients of the L∞ norm objective and the stability constraints.
The L∞ norm is differentiable with gradient coinciding with
the gradient of the largest singular value γ of the transfer
function at the frequency ω̃ maximizing ‖G(ω)‖2, provided
γ is simple and that the maximizer attaining γ is unique (up
to symmetry). The formulas for its gradient are well known
and involve the corresponding right and left singular vectors
for γ. Likewise the spectral abscissa α is differentiable at a
matrix M provided its eigenvalue λ with largest real part
is unique or part of a unique complex conjugate pair of
eigenvalues and that λ is simple. The formula for the gradient
of the spectral abscissa is also well known and involves the
corresponding right and left eigenvectors for the eigenvalue
λ. In HIFOO, gradients are computed via forming the matrix
derivatives of (2) but for large-scale systems, this is too
expensive in terms of storage and computation. To overcome
such inefficient scaling properties, HIFOOS instead obtained
the gradients of α(Af) with respect to the controller variable
K via differentiating inner products defined for the matrices
of (2) [19, Section 3]; we adopt the same approach.

VI. EVALUATION

To assess Alg. 1 and Alg. 2, both implemented using
GRANSO, we applied them to large-scale 2D heat flow
problems from COMPleib v1.1 [26]. We chose the same
HF2Dx FOM plus medium-scale ROM pairs used to evalu-
atet HIFOOS in [19]. See Table I for the list of problems and
their dimensions; for all, we computed order 10 controllers.

TABLE I: Test Set Summary

Problem nx (FOM) nx (ROM) nw nu nz ny

HF2D1 3796 316 3798 2 3796 3
HF2D2 3796 316 3798 2 3796 3
HF2D5 4489 289 4491 2 4489 4
HF2D6 2025 289 2027 2 2025 4
HF2D9 3481 484 3483 2 3481 2
HF2D CD1 3600 256 3602 2 3600 2
HF2D CD2 3600 256 3602 2 3600 2
HF2D CD3 4096 324 4098 2 4096 2
HF2D IS1 4489 361 4491 2 4489 4
HF2D IS2 4489 361 4491 2 4489 4
HF2D IS3 3600 256 3602 2 3600 2
HF2D IS4 3600 256 3602 2 3600 2

Experiments were done in MATLAB R2017a, using an Intel
Core i7-6700 and 16 GB of RAM.

We used getPeakGain to compute ‖Gr‖L∞ , setting its
tolerance to δhigh = 10−14 since using its default of 10−2

or even δlow = 10−7, the tolerance used in HIFOO, can
sometimes lead to numerical problems during optimization,
which assumes gradients are computed accurately. The issue
is that the error in the computed gradient of ‖Gr‖L∞ , even
when it is well defined, can be significantly higher than the
error in ‖Gr‖L∞ suggested by the tolerance value.

The spectral abscissas of Ar and Af were respectively
computed via eig and eigs. Assuming A1 from the FOM
is sparse, as is generally the case, Af can be cheaply applied
as a matrix-vector operator, which is all that is needed to use
eigs. Thus, it is relatively efficient to assess the stability
of fairly large systems for which computing the L∞ norm
is out of reach. While eigs is not absolutely guaranteed to
return a globally rightmost eigenvalue of Af , it is generally
quite reliable in practice. Indeed, it was fully sufficient, with
appropriate parameter choices, for use in HIFOOS; see [19]
for details. To compute the gradient of α(Af), it is necessary
to call eigs twice, once for Af and once for its transpose,
to obtain both the right and left eigenvectors corresponding
to the eigenvalue with largest real part.

In Tables II and III, the two columns with subheader
“R+F” under “Alg. 1” and “Alg. 2” respectively refer to
Algorithms 1 and 2 as specified above. For comparative pur-
poses, we also ran versions of these algorithms that omitted
the stability constraint (6c) on the FOM; the corresponding
columns with subheader “R only” refer to these variants.

Note that the “R only” version of Alg. 1 is effectively
the same as that used in existing versions of HIFOO but,
to account for implementation differences, we also included
HIFOO v3.5 (using HANSO v2.2) in our comparison. For con-
sistency with GRANSO, we disabled HANSO’s expensive gra-
dient sampling phase and set parameters opts.normtol
and opts.evaldist both to 10−6. We ran HIFOO twice,
once with its default δlow = 10−7 tolerance for computing
the H∞ norm and then again with the tighter δhigh = 10−14

used in our new code.
For consistency, we randomly generated a starting con-

troller for each problem so that all methods/variants would be
initialized identically and, for HIFOO, disabled the additional
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TABLE II: Final Values of F (K).

Final values of F (K) in eq. (8)

HIFOO v3.5 Alg. 1 Alg. 2

Problem δlow δhigh R only R+F R only R+F

HF2D1 6511.1 6512.8 6519.4 6519.4 22928.5 9718.7
HF2D2 5609.6 5598.8 5597.0 6292.7 5600.6 9635.9
HF2D5 17716.1 17403.3 17317.2 39890.5 17292.6 16847.2
HF2D6 7400.4 7406.0 7397.7 7383.0 7370.0 7392.6
HF2D9 60.3 60.3 60.3 60.3 60.3 60.3
HF2D CD1 ∞ ∞ ∞ 47.4 ∞ 4.6
HF2D CD2 ∞ ∞ ∞ 48.9 ∞ 48.9
HF2D CD3 ∞ ∞ ∞ 37.5 ∞ 4.9
HF2D IS1 46428.8 44777.5 44247.1 1734082.9 42779.3 42771.5
HF2D IS2 10342.4 10336.5 10309.6 10327.5 10206.7 10462.9
HF2D IS3 ∞ ∞ ∞ 259.3 ∞ 8.5
HF2D IS4 ∞ ∞ ∞ 23.9 ∞ 6.9

Relative differences from the best F (K) values (in bold above)

HF2D1 — 0.000 0.001 0.001 2.521 0.493
HF2D2 0.002 0.000 — 0.124 0.001 0.722
HF2D5 0.052 0.033 0.028 1.368 0.026 —
HF2D6 0.004 0.005 0.004 0.002 — 0.003
HF2D9 0.000 0.000 — 0.000 0.000 0.000
HF2D CD1 ∞ ∞ ∞ 9.297 ∞ —
HF2D CD2 ∞ ∞ ∞ 0.000 ∞ —
HF2D CD3 ∞ ∞ ∞ 6.694 ∞ —
HF2D IS1 0.086 0.047 0.034 39.543 0.000 —
HF2D IS2 0.013 0.013 0.010 0.012 — 0.025
HF2D IS3 ∞ ∞ ∞ 29.524 ∞ —
HF2D IS4 ∞ ∞ ∞ 2.453 ∞ —

three random initializations it attempts by default.
Table II reports the best (lowest) values of F (K) (see (8))

obtained by each method; for each problem, the best value
across methods is shown in bold. Recall that F (K) is ∞
if the controller K fails to stabilize both the ROM and the
FOM, regardless of whether or not K was obtained using any
FOM information. For every ROM-only method (HIFOO and
the “R only” variants of Alg. 1 and Alg. 2), we see that ∞
is reported for 5 out of the 12 problems in the corresponding
columns of Table II. In each case, the respective method’s
computed controller failed to stabilize the FOM closed-loop
systems, indeed confirming that designing controllers for
FOMs, using only ROM information, can often result in
complete failure. In contrast, both methods that explicitly
impose the FOM stability constraint (the “R+F” methods)
always succeeded in simultaneously stabilizing the ROMs
and the FOMs, and hence in Table II, these two ROM-FOM
hybrid methods have finite values of F (K) reported for all
12 test problems. Furthermore, Alg. 2 (“R+F”) succeeded in
finding the best value of F (K) on 7 of the 12 problems,
while on another three, the values it found were only
slightly higher than those obtained by the best methods. This
observation is made easier by viewing the bottom half of
the table, which shows the relative differences of the F (K)
values from the best value for each problem, with dashes
indicating that the relevant method was in fact the best. A
value of 0.000 means that the relative difference was below
our reporting limit of 0.001.

The top half of Table III reports the total wall-clock

TABLE III: Wall-Clock Running Times.

Wall-clock running times (seconds)

HIFOO v3.5 Alg. 1 Alg. 2

Problem δlow δhigh R only R+F R only R+F

HF2D1 5866 7065 7167 10556 10264 11409
HF2D2 2373 5931 5546 463 6205 16034
HF2D5 3675 6579 6468 737 3045 10896
HF2D6 4781 5755 5547 6175 6458 6075
HF2D9 451 431 738 523 989 763
HF2D CD1 2708 3368 3387 73 1130 7872
HF2D CD2 2741 3184 3519 92 4977 137
HF2D CD3 6040 6684 7337 295 7990 11752
HF2D IS1 7915 10838 11988 164 15056 14458
HF2D IS2 8068 10286 10203 14450 17930 22717
HF2D IS3 1071 2151 1295 114 108 2023
HF2D IS4 1178 1653 1485 185 1359 5101

Running times relative to HIFOO v3.5 (δlow)

HF2D1 1 1.20 1.22 1.80 1.75 1.94
HF2D2 1 2.50 2.34 0.19 2.61 6.76
HF2D5 1 1.79 1.76 0.20 0.83 2.96
HF2D6 1 1.20 1.16 1.29 1.35 1.27
HF2D9 1 0.96 1.64 1.16 2.19 1.69
HF2D CD1 1 1.24 1.25 0.03 0.42 2.91
HF2D CD2 1 1.16 1.28 0.03 1.82 0.05
HF2D CD3 1 1.11 1.21 0.05 1.32 1.95
HF2D IS1 1 1.37 1.51 0.02 1.90 1.83
HF2D IS2 1 1.27 1.26 1.79 2.22 2.82
HF2D IS3 1 2.01 1.21 0.11 0.10 1.89
HF2D IS4 1 1.40 1.26 0.16 1.15 4.33

running time (in seconds) for each problem-method pair. The
bottom half reports the ratio of the running times relative to
the running times of HIFOO v3.5 (δlow), with values higher
than one indicating how many times slower a method was
compared to HIFOO while values less than one indicate the
opposite. Even though the FOM orders were typically about
10 times the corresponding ROM orders, the running times
for Alg. 2 (“R+F”) ranged from as little as 0.05 to at most
6.76 times the running times of HIFOO, (using only ROM
data and the less demanding δlow). When HIFOO was also
run with δhigh, Alg. 2 (“R+F”) was at most 3.09 slower.

Figure 1 shows representative examples of the evolution
of the ‖Gr‖L∞ values computed by Alg. 2 (“R+F”) as a
function of the iteration count, for problems HF2D CD1 and
HF2D IS3. Only the (B) iterations in Alg. 2 are shown
as the stabilization iterations in (A) are typically few in
number and relatively less costly. The quantity ‖Gr‖L∞ is
steadily reduced in (B) until an infeasible point is reached, at
which point the stabilization phase in (A) typically increases
‖Gr‖L∞ , sometimes significantly. The usual trend, however,
is for ‖Gr‖L∞ to be consistently reduced over a sequence
of (A) and (B) iterations, until either:
• a cumulative total of 1000 iterations in the (B) phases is

reached, as with problem HF2D CD1, or, occasionally,
• GRANSO determines that an approximate stationarity

condition has been satisfied (see [23] for details), as
with problem HF2D IS3.

As expected, the results for Alg. 1 (“R only”) are quite
similar to those of HIFOO, as they differ only in implemen-
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Fig. 1: Problems HF2D CD1 (left) and HF2D IS3 (right).

tation details. However, while “R only” controllers obtained
by Alg. 1 and Alg. 2 were also fairly similar, the superiority
of Alg. 2 is clear in the “R+F” setting. Indeed, the controllers
found by Alg. 2 (“R+F”) yielded values of F (K) that were
on average 8.35 times smaller than those of Alg. 1 (“R+F”).

VII. CONCLUSION

We have presented an effective new algorithm, Alg. 2
(“R+F”), for designing low-order controllers of large-scale
systems, which leverages recent advances in nonsmooth,
constrained optimization to simultaneously use data from
full- and reduced-order models. Unlike earlier methods, our
scalable approach avoids issues stemming from approximat-
ing instead of computing the H∞ norm (as was done in
HIFOOS) while still ensuring stability of the full-order models
(unlike existing versions of HIFOO applied to reduced-order
models only).
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