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VISUAL GEOMETRY, COMPUTER GRAPHICS 
AND THEOREMS OF PERCEIVED TYPE 

BY 

PHILIP J. DAVIS 

The inborn capacity to understand through the eyes has been 
put to sleep and must be reawakened. 

Rudolph Arnheim, Art and Visual Perception 

This is the Visual Generation, New York Magazine, May 28, 1973 

ABSTRACT. The author presents arguments in favor of the following two 

positions. 
(1) Visual geometry ought to be restored to an honored position in math

ematics. Computer graphics comprising animation and color offers the possibil

ity of going far beyond conventional drawings. 
(2) The classical notions of what constitutes a mathematical theorem or a 

mathematical truth need broadening. These notions should be recast so as to in
clude a variety of phenomena which are systematically generated, perceived by 

the senses and interpreted by the brain. 

1. Introduction. It is incumbent upon each mathematician and each gen
eration of mathematicians to formulate a definition of mathematics. Granted that 
this is a hopeless task and also granted that no consensus can ever be reached and 
that all formulations are evanescent, the exercise is useful in that it compels the 
mathematician to think through where he believes his discipline places him in the 
world of experience and thought. It is also useful in that it provides future his
torians of science with a picture of how the past regarded itself. 

A popular contemporary mathematical dictionary (James & James) defines 
mathematics as "the logical study of shape, arrangement, and quantity." This 
definition, unsophisticated though it may be, coincides with the popular view of 
what the subject is all about. A definition which goes back a hundred years to 
the writings of C. S. Peirce and which emphasizes the logical aspect of the subject 
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tells us that mathematics is the science of drawing necessary conclusions. An up
date of the C. S. Peirce definition might be that mathematics is the workings-out 
of a universal Turing machine. Other contemporaries might talk of mathematics 
in terms of logical transformations, grammars, invariants, or in terms of structur
alism. At the turn of the century, Bertrand Russell, focusing attention on the 
varieties of external interpretation that one and the same mathematical structure 
might carry, wisecracked that "mathematics may be defined as the subject in 
which we never know what we are talking about, nor whether what we are saying 

is true." 

2. Theorems. Let us open the average book on mathematics. What kind 
of thing do we find in it? Well, first of all, we find definitions, theorems and 
proofs. These constitute the Trinity of contemporary mathematizing and form 
the hard core of the book. But there may be other things in the book. There 
may be discussions of the definitions, theorems and proofs. The discussions may 
be historical or bibliographical or methodological or aesthetic. There may be 
judgments or indications of where the core material fits in with other mathema
tics or with other aspects of the universe. Of course, if the book is on applied 
mathematics then the percentage of this last type of material might very well 

(but not necessarily) go up. 
A book on mathematics might also contain graphical or visual material. 

This differs from what is found in normal mathematical sentences written in the 
normal mathematical font of symbols. These are put in by way of elucidation 
or clarification but are never (by purists anyway) thought to constitute an ade
quate mathematical proof of anything. There is a widespread feeling that proper 
proofs can only be carried out in the format canonized by Euclid. This is the 
mathematical parallel to the feeling of mediaeval theologians that the spirit is pure 
while the flesh is corrupt; mathematicians are notorious puritans in their own 

peapatch. 
Despite the theorem-olatry of the past several hundred years of mathemat

ics, there is surprisingly little theorem-ology. What is a theorem? How does it 
operate? What is it for? James & James says that a theorem is a general conclu
sion proved or proposed to be proved on the basis of certain given assumptions. 
A somewhat more sophisticated definition of a theorem, adapted from a current 
book on mathematical logic, goes along the following inductive lines. The axioms 
of a formal system F are theorems. If all the hypotheses of a rule of F are 
theorems then the conclusion of the rule is a theorem. The axioms, i. e., the 
primitive statements or assumptions, are representable as certain strings of atomic 
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symbols. The theorems are representable as certain other strings of atomic sym
bols. Proving is the process of passing from an axiom string to a theorem string 
by a finite sequence of allowable elementary transformations. To verify that 
the next man's putative theorem is, in fact, the theorem he claims it to be is 
merely to verify that the sequence of string transformations is in order. The 
whole thing is in principle perfectly mechanizable. 

Now that we know what a theorem is, what can we say about theorems in 
a general way apart from comments on specific theorems'1. Books on mathemat
ics or metamathematics say very little. One authority I consulted told me cate
gorically that the only assertion one would want to make is that a theorem is 
either true or false (if it is proposed to be proved) or true (if it has been proved), in 
which case there is no reason at all for mentioning the fact. This is an extreme 
point of view. 

In the mathematical sense one can, e.g., talk about the range of a theorem 
(whether or not it applies to anything at all) or the generality of a theorem. 
There is even a recent mathematical theory of the depth of a theorem. 

In the extramathematical sense, one can talk about the utility of a theorem, 
the beauty of a theorem, the popularity of a theorem, the revolutionary quality 
of a theorem, etc. (A recent mathematical article contains the following sen
tence: "Theorem 7.4. Hilbert's Tenth Problem is unsolvable!" The exclamation 
point here is not mathematical notation. Presumably the author is trying to con
vey to the reader his own sense of elation or surprise at the result.) One can 
even talk about the possible evolution of the notion of a theorem and not treat 
the thing as if it were a fixed concept frozen for all future time. There is obvi
ously much that can be said about the theorems in general, although I have the 
distinct impression that there is a dearth of such talk in the mathematical literature. 

3. The visual image. In the early 19th century the greatest accolade that 
could have been accorded one mathematician by another was to have called him 
a "geometer." The irony is that at the very time this honorific was in use, the 
reasons which called it into being were themselves almost dead. The title was 
a splendiferous archaism. 

What are some of the reasons for the decline of the visual image in math

ematics? 
(1) The tremendous impact of Descartes' Discours de la Methode (1637) 

by which geometry was reduced to algebra; also the subsequent turnabout where
in the medium (algebra) became the message (algebraic geometry). 

(2) The collapse, in the early 19th century, of the view, derived largely 
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from limited sense experience, that Euclidean geometry has a priori truth for the 
universe; that it is the model for physical space. 

(3) The incompleteness of the logical structure of Euclidean geometry as 
discovered in the 19th century and as corrected by Hilbert an others (Euclid 
debugged). 

(4) The limitations of two or three physical dimensions uch form the 
natural backdrop for visual geometry. 

(5) The limitations of the visual ground field over which visual geometry 
is built as opposed to the great generality that is possible abstractly (finite geom
etries, complex geometries, etc.) when geometry has been algebraicized. 

(6) The limitations of the eye in its perception of mathematical "truths" 
(e.g., the existence of continuous everywhere nondifferentiable functions, optical 
illusions, suggestive but misleading special cases, etc.). 

These perceptions and historical developments have been of overwhelming 
importance. The visual image went into a tailspin from which it has not yet re
covered. The little boy played with matches and got his fingers burned, so civil
ization abolished all the matches instead of training the boy. It is time to restore 
the image. The image has much that is new to offer. It can be done through the 
medium of computer graphics. 

4. What computer graphics offers. By an interactive computer graphics 
installation I shall mean-leaving the jargon of computer hardware aside-a tele
vision tube hooked up to a computer. This combination is to be addressable by 
typewriter, lightpen, joystick, control dials or other analogue devices and the 
whole is to be backed up by sufficient graphics hardware and software that the 
programming of visual images of the ordinary mathematical variety can be carried 
out as easily as, say, computation in some well-known interactive languages such 
as BASIC or APL. Admittedly, at the time of writing (August 1973), this com
bination is available at very few university computer centers. The availability of 
really advanced graphical facilities such as color tubes, sketchpads, opportunities 
for computer animation are correspondingly much more limited. 

What are some of the mathematical potentialities of computer graphics? 
(1) Insight into situations of a mathematically conventional but possibly 

difficult nature. 
(2) Computer-generated art. 
(3) Creation of mathematical theorems of "perceived type." 

I shall discuss these points separately. 

5. Generation of conventional theorems via graphics. A computer graphics 
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installation can, of course, be used to illustrate a wide variety of principles of 
elementary mathematics for purposes of instruction. This can be of enormous 
importance for didactics. Much effort has been spent in the past decade to illus
trate various principles of calculus, probability and statistics, mechanics, higher-
dimensional geometry, etc. by means of the scope. There have also been illustra
tions of more advanced things ,uch as mappings induced by analytic functions of 
a complex variable, certain geometrical principles occurring in the theory of func
tions of two complex variables such as Bergman's distinguished boundaries, solu
tions of partial differential equations animated according to the time parameter, 
the solution of the many-body problems assuming general force laws, studies of 
singularities of algebraic curves, iterations of nonlinear transformations, projec
tions of higher-dimensional objects and transformations of these objects, etc. 

Graphical displays can suggest theorems or truths which the mathematician 
might then attempt to prove in a conventional way. Conventional proofs of what 
has in fact been observed may be extremely difficult to obtain. For example, in 
celestial mechanics one renowned authority (Carl Ludwig Siegel) writes off the 
possibility of analytic progress in certain areas of the subject. Does this mean 
that there can be no knowledge in such an area? Nonsense, as any practical man 
would tell you. Students fooling around with, e.g., orbits in the many-body 
problem that have been graphically displayed have found periodic solutions 
whose existence defies our keenest analytical analysis. A systematic graphical ex
ploration of certain topics'might lead to a consistent, extensive, interconnected, 
interesting and important corpus of material which might not have been available 
through research that is pursued according to the conventional mathematical 
methodology. To an experimental scientist this point of view is, of course, old 
stuff. To a mathematical conservative, this might be magnificent mais ce n est 

pas la guerre. 
In the investigation by computer graphics of conventional mathematical 

problems one also moves to knowledge or experience which I shall call here, for 
lack of a better term, "theorems or structures of perceived type. 

This type of knowledge might be perceived by the individual as a gut feeling. 

To quote one team of investigators (Banchoff and Strauss): 
Using control dials, joysticks, and other analog input devices, a mathematician 
can get immediate portrayal of the geometric effect of continuously varying pa

rameters. He also has finger-tip control over the current values and rate of 
changes of these parameters, encouraging the development of a visceral feeling 

for the effect of these parameter variations. 

This visceral feeling might be of importance in experiences ranging from the 
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highly practical training of aircraft pilots Via simulated cockpits to space intuition 
that might be achieved by moving around objects computer-wise in a higher-dimen
sional space. The pilot-in-training is learning a body of theorems of "perceived 
type." There is obviously a close relation here to kinematics and kinaesthetics. 

6. Computer-generated art and animated films. The variety of output de
vices in a computer center offers the possibility of computer-generated art and 
films. The line printer, the plotter, and the scope have all been used; masters of 
the craft have produced pieces and effects which are nothing short of amazing. 
At the very lowest level, the computer-driven output device can be regarded as a 
new medium with characteristic effects, similar to technological processes such as 
acrylics of silk-screening. Each process has a certain scope and certain strengths 
and weaknesses. At the very lowest level, computer art might attempt to imitate 
certain effects obtained by conventional art media. At a higher level, the unique 
nature of the medium comes into play and one obtains effects which might be 
difficult or pointless, if not impossible, to create conventionally. At a still higher 
level, the relationship between the visual effects and the language used to create 
the effects comes into great prominence. One might even posit an advanced 
Descartean stage (I have not seen it yet) in which the language turns about and 
supersedes the visual effect. 

Computer art can be carried out for sensual or craft pleasure, for amusement, 
for aesthetic values, for shock, for practice in programming, or as an adjunct to 
mathematical investigations of conventional type. It can be carried out for I'art 
pour I'art, or simply because the output devices are there. 

I recall seeing Abraham Lincoln's face produced by computer-driven type
writers in the late 40's, done as a demonstration piece for a laboratory "open 
house." But serious computer art is only about ten years old. It is too early for 
an iconography to have developed which might lend value independently of the 
image qua image. 

On the purely utilitarian level, computer art moves imperceptibly towards 
commercial art (I have seen some very beautiful stamps with a computer art figure 
on them) and towards the design of commercial and industrial shapes and thence 
into the automatic fabrication of such shapes. As such, computer art becomes a 
genuine topic of applied mathematics. 

One paradigm for the production of computer art goes along the following 
lines. Starting from some mathematical scheme (spirographic geometry, number 
theory or, for that matter, any illustrable mathematical theory, or digitalized con
ventional pictures) and employing certain mathematical transformations with con

siderable parametric freedom and possible even built-in "randomness," one produces 
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output. This output is then monitored and accepted or rejected on the basis of 
some internalized criterion. This leads to parameter adjustments, program modi
fications, etc., and a new generation of outputs. 

The resulting piece of computer art may very well be accidental or seren
dipitous in the sense that the artist-programmer may not be able to foresee in 
advance precisely what will be created, but at the same time it represents a tight 
control by the artist-programmer over his work in that the output results from a 
fixed program and is reproducible, given the parameters and the initializing values 
in the case of a randomizer. 

The field of computer art appears to me to be wide open; at the same time, 
as with all seedlings, its future is moot. I personally feel that the potentialities 
are much greater with animated images than with static images. I should have 
liked to have included some instances of animation with my illustrative material, 
but obviously cannot. 

7. Creation of mathematical theorems of perceived type. I come to the 
nub of my argument. The Cartesian program—i.e., the algebraicization of geom
etry and of vast portions of mathematics with geometric content-represents a 
major revolution in the history of mathematics. Nonetheless, as with all revolu
tions, a certain loss was incurred when the culture of the ancien regime was 
undermined. The algebraicization of geometry must be regarded as a prosthetic 
device of great power which maps certain aspects of space into analytical symbols. 
The blind might be unabled to manipulate space through the instrumentality of 
these symbols, but since one channel of sense experience is denied to the blind, 
one feels that a corresponding fraction of the mathematical world must be lost to 
them. Political democracy does not require that all men savor the universe at 
identical levels of intensity.1 

The analytic program, then, is a prosthetic device, acting as a surrogate for 
the "real thing." The unit circle as perceived by the eye and acted on by the 
brain is a very different thing from the symbol string x2 + y2 = 1. The two 
sensations are interrelated and each can be considered as an "analytical continua
tion" of the other and each is on an even intellectual basis with the other. The 
eye "perceives" many things about the circle which may be difficult or impossible 
to mimic via the analytic symbols. The visual circle is the carrier of an unlimited 
number of theorems which are instantly perceived. The perceived gestalt of the 

1 Attempts to translate theorems in one sense perception to theorems in a second 
sense perception can lead to analytical mathematics of the highest interest and difficulty. 
See M. Kac [2]. 
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circle is at once the formulation of these theorems and their proof. (In connec
tion with some work on approximation theory, I once had to demonstrate the 
visually-obvious theorem that a circle cannot be filled up by a finite number of 
nonoverlapping circles of smaller radius. I was lucky in that I found a simple 
analytic proof. What if I had been confronted with something as difficult as the 
Jordan curve theorem and my analytic standards were high?) 

The regular isocahedron sitting on my desk and perceived as a three-dimen
sional object is a different thing from a list of the coordinates of its vertices. It 
is a different thing from the abstract group of rotations that move it into itself. 
It is a gestalt, complete in itself, self-vindicating, rejoicing in its uniqueness, the 
carrier for an unlimited number of "theorems of perceived type" that are grasped 
or intuited and do not even have to be stated. 

Chilton's Drawing of {5, 3, 3} 

FIGURE 1 

(From "Introduction to Geometry", H. S. M. Coxeter, Wiley, 1961) 

Take a look at Figure 1. This is a two-dimensional projection of the poly-
tope with Schlafli symbol (5, 3, 3}. The first thing about the figure that catches 
my eye is that it seems to split up into a number of consecutive rings (at least 
seven), each of which has a different mesh-pattern or density characteristic. You 
may seek a conventional proof of this fact if you like, having previously intro
duced a satisfactory definition of what a mesh-pattern means. I could probably 
go on for an hour telling what I saw in this fairly complicated image and exceed 
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by far the number of formal theorems in the literature about the polytope {5, 3, 3}. 
Take a look at Figure 2. This was obtained by computing the function 

{|x3 + y3\ -r 10} mod 3, and plotting the resultant values 0, 1, 2 as three grey 

FIGURE 2 

FIGURE 3 
Patterns defined by black, grey, and white areas determined by reducing 

a mathematical function modulo 3. With x, y origin at the center, the top 
picture is from {|x3 + y3 \ + 10} mod 3 the bottom one from 

[(x2 + xy + y2) + 30] mod 3. (Courtesy K. Knowlton, T. Rainer.) 
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FIGURE 4 
Stereo  Pai r  o f  ( z 2 ,  z 3  + ez)  

Graphed as a projection of a surface in E 4 , with small nega
tive e. (Banchoff & Strauss) 

levels; white, grey, black. The resulting herringbone figure of fairly intricate tex
ture, with its symmetries, periodicities, accidentals, is certainly part of the theory 
of cubic residues. One might formulate theorems in number theory to account 
for what one sees. Some might prove difficult, others trivial. On another level, 
though, there is no need for this reduction. One sees what one sees: a character
istic pattern which is the carrier of a melange of number theorems of the conven
tional type, but which has an integrity of its own and does not require conven
tional interpretation. We are seeing a theorem of "the perceived type." In view 
of the possibility of such figures, the paucity of geometrical illustrations in books 
on number theory is absolutely incredible. 

Again my point is not—what we all know—that a good.figure can suggest 
conventional theorems. It goes beyond. A figure, together with its rule of gener
ation, is automatically and without further ado a definition, theorem and proof 
of "the perceived type." 

8. What is mathematics? I return at last to the question in the introductory 
paragraph. I would suggest that mathematics is the program, the execution, the 
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output; the gestalt perceived and interpreted in the light of experience and tra
dition. Analytical mathematics can be accommodated into this scheme by identi
fying program with proof. Within the methodology of conventional mathematics, 
an output is very often guessed or intuited and the program (proof) is sought. In 
computer graphics the output is self-vindicating. 

Though I am arguing that the concept of mathematics should be broadened, 
one must of course draw boundaries somewhere. Does a toy kaleidoscope gener
ate theorems of perceived type? Is, for example, a loaf of bread put out by an 
automated bakery and generated from raw materials by means of a recipe a theo
rem of the perceived type? Additional considerations will obviously enter and 
provide limitations. 

Given the stochastic or fuzzy nature of the universe, with the possibilities 
of erroneous programs, erroneous execution, round-off error, etc., the theorems 
of the perceived type must be regarded as having validity only in a probabilistic 
sense. However, I believe that conventional "hand-crafted" theorems likewise 
have only probabilistic validity. This point of view was explained in some detail 
in Davis [1] -

Acknowledgements. To Dr. K. Knowlton, Bell Telephone Laboratories, 
Murray Hill, New Jersey, for alerting me to certain mathematical possibilities in 
computer art and animation. To Professors U. Grenander, C. Strauss and P. Weg-
ner for numerous discussions. To Professors S. Bergman, M. Kline, R. Vitale and 
R. B. Kelman for a number of trenchant comments. 

Supplementary remarks. 
§3. The role of the visual image in mathematical discovery. About the 

turn of the century, Poincare divided mathematicians into two types: the geom
eters and the analysts. Geometers think about mathematical objects in pictures 
while analysts operate with formulas. Occasionally the same results have been 
obtained independently. Thus both Riemann (the geometer) and Weierstrass (the 
analyst) developed a theory of integrals of algebraic functions. In more recent 
times, the Bergman-Weil generalization of Cauchy's formula to several complex 
variables was probably developed by Bergman from geometric and by Weil from 

analytic considerations. 
However, it appears to me that whatever the path taken in these investiga

tions, the goal and the final formulation was essentially analytic. I look forward 
to a situation where the geometric element becomes more independent and 
marches less to the tune of the analytic. 

Rene Thorn [H] argues for the restoration of geometry from a pedagogical 
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point of view. He puts forward the claim that "any question in algebra is either 
trivial or impossible to solve. By contrast the classic problems of geometry pre
sent a wide range of challenges." 

The historical problem of the decline of the visual image in mathematics is 
one that is worthy of serious study. A mathematical Gibbon should undertake 
it. I do not believe it is a phenomenon limited to mathematics, but extends 
(even!) to the graphic arts. It is related to a general tendency of breaking up and 
recombination (e.g., cubist art) which emerged in the industrial age and has con
tinued up through the current post-industrial age. 

Discussions of this historical tendency with R. B. Kelman put him in mind 
of a pathological condition of dyslexia attendant upon some sorts of brain dam
age. This appears to be due in part to improper communication between brain 
areas. The spatial (geometric) functions may be performed in one area while the 
symbolic (algebraic) functions may be performed in another area. Within the 
mathematical culture we seem to be dealing with a dysfunction which has largely 
shut off the operation of the "geometrizing" area. 

§6. Relationship between computer language and visual effect. This can be 
profound, as every language or collection of subroutines sets up limitations. 
Example. Two fonts of capital letters were created by two almost identical pro
cesses. In the first process, however, trigonometric interpolation was used while 
the second process used interpolation by cubic splines. The stylistic differences 
were sufficiently strong to be picked up by the eye. Example. A conventionally-
trained artist produced a recognizable portrait of a colleague with a CALCOMP 
plotter using a certain subroutine that was available. What, I asked him, distin
guished the result from a freehand drawing? He replied that the CALCOMP was 
producing strokes that were impossible by ordinary wrist and arm movements, so 
that the overall effect was different. 

§7. Admittedly, the idea of the "theorem of perceived type" is somewhat 
vague and mysterious. Perhaps an analogy will dispel some of the fog by showing 
that the mysterious is, in fact, a commonplace experience within the psychology 
of perception. 

The score of Mozart's Symphony No. 40 is a program. When the score is 
translated into sound by an orchestra playing in a standardized way it becomes 
the G Minor Symphony as commonly understood. The score and the music, 
though not physically identical, are aspects of the same thing. This symphony 
with its own musical themes, texture, tonalities, nuances, rhythms and patterns 
is unique. It is identifiable by many people. It is fairly stable (a few bad notes 
here and there will not make much difference), but nonetheless it is an aleatory 
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process operating at a reasonably high probability level. It is capable of having 
judgments of various sorts applied to it. It is capable of having mathematical 
statements made about it, e.g., the average pitch is such and such, or certain 
parts are invariant under time translations. But it is self-vindicating in the sense 
that it needs no further intellectual amplification or retranslation into other non-
aural modes in order to establish its integrity or to be appreciated. The G Minor 
Symphony represents a unique experience and, stretching a point, the passage 
from the score to the music might be said to constitute a "theorem of the per
ceived type." 

It is interesting to note that the word "theorem" is derived from the verb 
"0ecupetu" which means "to look at." 

The point of view advocated here is related to that developed by M. Polanyi 
in his book Personal knowledge. 

§8. Apropos of the question of whether an automated loaf of bread or 
Mozart's Symphony No. 40 is a "theorem," in an essay written a number of 
years ago, James Bryant Conant once posed the problem of whether cooking is a 
branch of chemistry and, if it is, why is it not taught at Harvard. Conant's con
clusion was that this is largely a matter of convention. 

If one considers attempts to create computer music (admittedly not very 
successful, though Mozart himself was one of the first to write on the topic), then 
one may be more prone to accept the G Minor Symphony as defining a mathe
matical theorem or structure. 

Probabilistic validity. The point made in Davis [1] is, briefly, that the 
verification of a mathematical proof requires examination of long symbol strings 
to see whether they follow the canons of mathematical deduction. As verification 
errors are inevitable, and are part of the real world, even within simple arithmetic, 
the theorems which emerge have only probabilistic validity. The longer the strings 
are the greater is the likelihood of error. 

One sympathetic but traditional correspondent, reasserting the position of 
Platonic mathematics, writes: 

Absolute, universally accepted proof is an ideal and one which we may 
never attain. But ideals keep us striving in a definite direction. Justice is an 
ideal which is certainly not realized in our society but it does have value. 

To this I add that prudent societies, while yearning for ideal justice, do well 
to provide themselves with courts of law which dispense pragmatic justice. It is 
therefore misleading to promulgate Platonism as the sole philosophy operative within 
mathematics. On this and on probabilistic validity see R. Thorn [11]. 
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FIGURE 5 
Stills from a computer-made movie: wrapping a rectangle to form a 

torus. (Courtesy T. Banchoff and C. M. Strauss.) 
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