7) Prove \(P(n) \): \(1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \) for \(n \geq 1 \)

Base case: \(P(1) \):

\[P(1): 1^2 = \frac{1(1+1)(2\cdot1+1)}{6} \]
\[\Rightarrow 1 = \frac{6}{6} = 1 \checkmark \]

Assume: \(P(k) \): for \(k \geq 1 \):

\[1^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6} \]

Prove: \(P(k+1) \):

\[1^2 + \ldots + (k+1)^2 = \frac{(k+1)(k+2)(2(k+1)+1)}{6} \]

Use the assumption \(P(k) \) and add \((k+1)^2 \) to both sides:

\[1^2 + \ldots + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \]
\[\Rightarrow 1^2 + \ldots + (k+1)^2 = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6} \]
\[\Rightarrow 1^2 + \ldots + (k+1)^2 = \frac{(k+1)(k+2)(2k+3)}{6} \]
\[\Rightarrow 1^2 + \ldots + (k+1)^2 = \frac{(k+1)(k+2)(2(k+1)+1)}{6} \checkmark \]

\(\therefore P(n) \) is true for \(n \geq 1 \).
10. Prove by induction:

\[P(n) : \quad 1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! - 1 \quad \text{for } n \neq 1 \]

Base case: Prove \(P(1) \):

\[1 \cdot 1! = (1+1)! - 1 \]

\[\Rightarrow \quad 1 = 2 \cdot 1 - 1 = 1 \quad \checkmark \]

Assume: \(P(k) \): for \(n \neq 1 \):

\[1 \cdot 1! + \cdots + k \cdot k! = (k+1)! - 1 \quad \text{is true} \]

Prove: \(P(k+1) \):

\[1 \cdot 1! + \cdots + (k+1)(k+1)! = (k+2)! - 1 \]

Add \((k+1)(k+1)! \) to both sides of \(P(k) \):

\[\Rightarrow 1 \cdot 1! + \cdots + k \cdot k! + (k+1)(k+1)! = (k+1)! - 1 + (k+1)(k+1)! \]

\[= (k+1)! \left[1 + (k+1) \right] - 1 \]

\[= (k+1)! \cdot (k+2) - 1 \]

\[= (k+2)! - 1 \quad \checkmark \]

\[\therefore P(n) \text{ is true for } n \neq 1 \]
13. Prove \(p(n) : 2^n > n^2 \) for \(n \geq 4 \) by induction.

Base case: Prove \(p(5) \):

\[2^5 > 5^2 \]
\[32 > 25 \]
\[\checkmark \]

Assume: \(p(k) : 2^k > k^2 \) for \(k \geq 5 \)

Prove: \(p(k+1) : 2^{k+1} > (k+1)^2 \)

From the assumption \(p(k) \), multiply both sides by 2:

\[2 \Rightarrow 2\cdot 2^k > 2\cdot k^2 \]
\[\Rightarrow 2^{k+1} > 2\cdot k^2 \]

We can now show that \(2^{k^2} > (k+1)^2 \) for \(k \geq 5 \) by induction or some construction.

Clearly, \((k)(k-2) > 1 \) for \(k \geq 5 \) (can be shown inductively but skipped here)

\[\Rightarrow k^2 - 2k > 1 \]
\[\Rightarrow k^2 > 2k + 1 \]
\[\Rightarrow k^2 + k^2 > k^2 + 2k + 1 \]
\[\Rightarrow 2k^2 > (k+1)^2 \]

Thus,

\[2^{k+1} > 2k^2 > (k+1)^2 \]
\[\Rightarrow 2^{k+1} > (k+1)! \]
\[\checkmark \]

\[\therefore \ p(n) \text{ is true for } n \geq 4 \]
The number of breaks needed is \(n-1 \), which we can prove by strong induction.

Base case: for \(n = 2 \), we need to do 1 break, and \(n-1 = 1 \) \(\checkmark \)

Assume: for \(k \geq 2 \), \(n \), that \(P(n) \) is true. That is, a bar of \(n \) squares requires \(n-1 \) breaks.

Prove: \(P(k+1) \) is true.

A bar with \(k+1 \) squares can be broken into two bars with \(b \) squares and \(c \) squares such that \(b+c = k+1 \).

The bar of size \(b \) takes \(b-1 \) breaks, and the bar of size \(c \) takes \(c-1 \) breaks, and breaking the "\(k+1 \)" bar in two takes 1 break

\[
\Rightarrow (b-1) + (c-1) + 1 = \text{total \# breaks}
\]

\[
\Rightarrow (b+c)-1 = \text{\"\"\"\"
\]

\[
\Rightarrow (k+1)-1 = k = \text{total \# breaks}
\]

\[
\Rightarrow P(k+1) \text{ is true by S.M.I.}
\]

\[
\Rightarrow P(n) \text{ is true for } n \geq 1.
\]

51. \(P(1) \rightarrow P(2) \) is invalid.
Problem 1:

Prove: \(P(h) \): a complete/full binary tree of height \(h \) has \(2^h \) leaves for \(h \geq 0 \)

Base case: for \(h = 0 \), the tree has one node

\[\Rightarrow 1 \text{ leaf, and } 2^0 = 1 \]

\[\Rightarrow P(0) \text{ is true} \]

Assume: for \(k \geq 0 \) \(P(k) \) is true

Prove: \(P(k+1) \)

Since a tree of height \(k \) has \(2^k \) leaves from assumption of \(P(k) \), then each node at height \(k \) would have 2 children for a tree of height \(k+1 \)

\[\Rightarrow \text{The number of leaves } = 2 \cdot \text{Number of nodes at height } k \]

\[= 2 \cdot \# \text{ leaves in tree of height } k \]

\[= 2 \cdot 2^k \]

\[= 2^{k+1} \]

\[\Rightarrow P(k+1) \text{ is true} \]

\[\Rightarrow P(h) \text{ true for } h \geq 0. \]
Problem 2:
You can prove this almost identically to Problem 1.
or, we can quickly prove this summation formula via induction:

\[p(h) : 1 + 2 + 4 + \cdots + 2^h = 2^{h+1} - 1 \quad \text{for } h \geq 0 \]

Base case: \(h = 0 \):

\[2^0 = 2^{0+1} - 1 \]
\[\Rightarrow 1 = 2 - 1 \]
\[= 1 \checkmark \]
\[\Rightarrow p(0) \text{ is true} \]

Assume: for \(n = k \geq 0 \), \(p(k) \) is true

\[\Rightarrow 1 + 2 + \cdots + 2^k = 2^{k+1} - 1 \]

Prove: \(p(k+1) \) is true.
Add \(2^{k+1} \) to both sides of \(p(k) \)

\[\Rightarrow 1 + 2 + \cdots + 2^k + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1 \]
\[= 2 \cdot 2^{k+1} - 1 \]
\[= 2^{k+2} - 1 \]
\[\Rightarrow p(k+1) \text{ true} \]

\[\therefore p(h) \text{ true for } h \geq 0 \]