(More) Graphs
show strongly connected comps

see next slide
from prev slide
On an *undirected* graph, any edge that is not a “tree” edge is a “back” edge (from descendant to ancestor).
DFS Examples

UNDIRECTED

START HERE

BACK EDGE

TREE EDGE
DFS Example: digraph

Here, we get a forest (two trees).

- **B** = back edge (descendant to ancestor, or self-loop)
- **F** = forward edge (ancestor to descendant)
- **C** = cross edge (between branches of a tree, or between trees)
DFS running time is $\Theta(V+E)$
we visit each vertex once; we traverse each edge once

DFS(G)
1. for each vertex $u \in V[G]$
2. do $color[u] \leftarrow$ WHITE
3. $\pi[u] \leftarrow$ NIL
4. $time \leftarrow 0$
5. for each vertex $u \in V[G]$
6. do if $color[u] = $ WHITE
7. then DFS-\textit{VISIT}(u)

DFS-\textit{VISIT}(u)
1. $color[u] \leftarrow$ GRAY \triangleright White vertex u has just been discovered.
2. $time \leftarrow time +1$
3. $d[u] \leftarrow time$
4. for each $v \in Adj[u]$ \triangleright Explore edge (u, v).
5. do if $color[v] = $ WHITE
6. then $\pi[v] \leftarrow u$
7. DFS-\textit{VISIT}(v)
8. $color[u] \leftarrow$ BLACK \triangleright Blacken u; it is finished.
9. $f[u] \leftarrow time \leftarrow time +1$

6a-Graphs-More
Connected components of an **undirected** graph. Each call to DFS_VISIT (from DFS) explores an entire connected component (see ex. 22.3-11).

So modify DFS to count the number of times it calls DFS_VISIT:

5 for each vertex \(u \in V[G] \)
6 do if \(\text{color}[u] = \text{WHITE} \)
6.5 then \(\text{cc}_\text{counter} \leftarrow \text{cc}_\text{counter} + 1 \)
7 \(\text{DFS}_\text{VISIT}(u) \)

Note: it would be easy to label each vertex with its cc number, if we wanted to (i.e. add a field to each vertex that would tell us which conn comp it belongs to).
Applications of DFS

Cycle detection: Does a given graph G contain a cycle?

Idea #1: If DFS ever returns to a vertex it has visited, there is a cycle; otherwise, there isn’t.

OK for **undirected** graphs, but what about:

No cycles, but a DFS from 1 will reach 4 twice. Hint: what kind of edge is (3, 4)?
Cycle detection theorem

Theorem: A graph G (directed or not) contains a cycle if and only if a DFS of G yields a back edge.

→: Assume G contains a cycle. Let \(v \) be the first vertex reached on the cycle by a DFS of G. All the vertices reachable from \(v \) will be explored from \(v \), including the vertex \(u \) that is just “before” \(v \) in the cycle. Since \(v \) is an ancestor of \(u \), the edge \((u,v)\) will be a back edge.

←: Say the DFS results in a back edge from \(u \) to \(v \). Clearly, \(u \rightarrow v \) (that should be a wiggly arrow, which means, “there is a path from \(u \) to \(v \)”, or “\(v \) is reachable from \(u \)”). And since \(v \) is an ancestor of \(u \) (by def of back edge), \(v \rightarrow u \) (again should be wiggly). So \(v \) and \(u \) must be part of a cycle. QED.
Back Edge Detection

How can we detect back edges with DFS? For **undirected** graphs, easy: see if we’ve visited the vertex before, i.e. \(\text{color} \neq \text{WHITE} \).

For **directed** graphs: Recall that we color a vertex GRAY while its adjacent vertices are being explored. If we re-visit the vertex while it is still GRAY, we have a back edge.

We blacken a vertex when its adjacency list has been examined completely. So any edges to a BLACK vertex cannot be back edges.
TOPOLOGICAL SORT

“Sort” the vertices so all edges go left to right.
For topological sort to work, the graph G must be a **DAG** (directed acyclic graph). G's undirected version (i.e. the version of G with the “directions” removed from the edges) need not be connected.

Theorem: Listing a dag’s vertices in reverse order of finishing time (i.e. from highest to lowest) yields a topological sort.

Implementation: modify DFS to stick each vertex onto the front of a linked list as the vertex is finished.

see examples next slide....
Topological Sort Examples

1. 1\rightarrow 4\rightarrow 2
2. 5\rightarrow 3\rightarrow 6\rightarrow 7

Vertex: 3, 4, 1, 2, 5

f: 10, 9, 6, 5, 3
More on Topological Sort

Theorem (again): Listing a dag’s vertices in order of highest to lowest finishing time results in a topological sort. Putting it another way: If there is an edge \((u,v)\), then \(f[u] > f[v]\).

Proof: Assume there is an edge \((u,v)\).

Case 1: DFS visits \(u\) first. Then \(v\) will be visited and finished before \(u\) is finished, so \(f[u] > f[v]\).

Case 2: DFS visits \(v\) first. There cannot be a path from \(v\) to \(u\) (why not?), so \(v\) will be finished before \(u\) is even discovered. So again, \(f[u] > f[v]\).

QED.