Chapter 1, problems 3, 5(iv) (read the sample solution to 5(i)), 7.

4. In class we showed that $H(x, x)$ is undecidable, that is there is no program that for all x can output TRUE if program P_x halts on input x and outputs FALSE if program P_x does not halt on input x. Now show that $H(x, 2x)$ is undecidable, i.e. show there is no program that for all x can output TRUE if program P_x halts on input $2x$ and outputs FALSE if program P_x does not halt on input $2x$.

Hint: You will want to build a program E (analogous to D for the solution shown in class), but what matters particularly is the action of E on even valued inputs.