Chapter 3

Pushdown Automata and Context Free Languages

As we have seen, Finite Automata are somewhat limited in the languages they can recognize. Pushdown Automata are another type of machine that can recognize a wider class of languages. Context Free Grammars, which we can think of as loosely analogous to regular expressions, provide a method for describing a class of languages called Context Free Languages. As we will see, the Context Free Languages are exactly the languages recognized by Pushdown Automata.

Pushdown Automata can be used to recognize certain types of structured input. In particular, they are an important part of the front end of compilers. They are used to determine the organization of the programs being processed by a compiler; tasks they handle include forming expression trees from input arithmetic expressions and determining the scope of variables.

Context Free Languages, and an elaboration called Probabilistic Context Free Languages, are widely used to help determine sentence organization in computer-based text understanding (e.g., what is the subject, the object, the verb, etc.).

3.1 Pushdown Automata

A Pushdown Automata, or PDA for short, is simply an NFA equipped with a single stack. As with an NFA, it moves from vertex to vertex as it reads its input, with the additional possibility of also pushing to and popping from its stack as part of a move from one vertex to another. As with an NFA, there may be several viable computation paths. In addition, as with an NFA, to recognize an input string \(w \), a PDA \(M \) needs to have a recognizing path, from its start vertex to a recognizing vertex, which it can traverse on input \(w \).

Recall that a stack is an unbounded store which one can think of as holding the items it stores in a tower (or stack) with new items being placed (written) at the top of the tower and items being read and removed (in one operation) from the top of the tower. The first operation is called a \(\text{Push} \) and the second a \(\text{Pop} \). For example, if we perform the sequence
of operations Push(A), Push(B), Pop, Push(C), Pop, Pop, the 3 successive pops will read the items B, C, A, respectively. The successive states of the stack are shown in Figure 3.1.

Figure 3.1: Stack Behavior.

Let’s see how a stack allows us to recognize the following language $L_1 = \{a^ib^i \mid i \geq 0\}$. We start by explaining how to process a string $w = a^ib^i \in L$. As the PDA reads the initial string of a’s in its input, it pushes a corresponding equal length string of A’s onto its stack (one A for each a read). Then, as M reads the b’s, it seeks to match them one by one against the A’s on the stack (by popping one A for each b it reads). M recognizes its input exactly if the stack becomes empty on reading the last b.

In fact, PDAs are not allowed to use a Stack Empty test. We use a standard technique, which we call -shielding, to simulate this test. Given a PDA M on which we want to perform Stack Empty tests, we create a new PDA \overline{M} which is identical to M apart from the following small changes. \overline{M} uses a new, additional symbol on its stack, which we name $\$$. Then at the very start of the computation, \overline{M} pushes a $\$ onto its stack. This will be the only occurrence of $\$ on its stack. Subsequently, \overline{M} performs the same steps as M except that when M seeks to perform a Stack Empty test, \overline{M} pops the stack and then immediately pushes the popped symbol back on its stack. The simulated stack is empty exactly if the popped symbol was a $\$$.

Next, we explain what happens with strings outside the language L_1. We do this by looking at several categories of strings in turn.

1. a^ib^h, $h < i$.
 After the last b is read, there will still be one or more A’s on the stack, indicating the input is not in L_1.

2. a^ib^j, $j > i$.
 On reading the $(i + 1)$st b, there is an attempt to pop the now empty stack to find a matching A; this attempt fails, and again this indicates the input is not in L_1.

3. The only other possibility for the input is that it contains the substring ba; as already described, the processing consists of an a-reading phase, followed by a b-reading phase. The a in the substring ba is being encountered during the b-reading phase and once more this input is easily recognized as being outside L_1.

As with an NFA, we can specify the computation using a directed graph, with the edge labels indicating the actions to be performed when traversing the given edge. To recognize
an input \(w \), the PDA needs to be able to follow a path from its start vertex to a recognizing vertex starting with an empty stack, where the path’s read labels spell out the input, and the stack operations on the path are consistent with the stack’s ongoing contents as the path is traversed. To emphasize the fact that a path traversal involves both input reading and stack operations, we will often call the traversed path a *computation path*. Also, as before, we say that a vertex \(v \) is a *destination* vertex for string \(s \) if the PDA can end up at vertex \(v \) after reading all of string \(s \).

A PDA \(M_1 \) recognizing \(L_1 \) is shown in Figure 3.2. So as to be able to refer to the vertices,

![Figure 3.2: PDA \(M_1 \) recognizing \(L_1 = \{a^i b^j \mid i \leq 0 \} \).](image)

we have given them the names \(p_1 - p_4 \). Their descriptors specify exactly those strings and the corresponding stack contents for which the vertex in question is a destination vertex. We call these (string, stack content) pairs *data configurations*.

Definition 3.1.1. \((s, \sigma)\) is called a data configuration of PDA \(M \) at vertex \(p \) if \(M \) can end up at vertex \(p \) having \(\sigma \) on its stack and having read input string \(s \) (when starting the computation at its start vertex with an empty stack).

An initial understanding of what \(M_1 \) recognizes can be obtained by ignoring what the stack does and viewing the machine as just an NFA (i.e. using the same graph but with just the reads labeling the edges). See Figure 3.3 for the graph of the NFA \(N_1 \) derived from \(M_1 \). The significant point is that if \(M_1 \) can reach vertex \(p \) on input \(w \) using computation path \(P \) then so can \(N_1 \) (for the same reads label \(P \) in both machines). It follows that any string recognized by \(M_1 \) is also recognized by \(N_1 \): \(L(M_1) \subseteq L(N_1) \).

It is not hard to see that \(N_1 \) recognizes \(a^*b^* \). If follows that \(M_1 \) recognizes a subset of \(a^*b^* \). So to explain the behavior of \(M_1 \) in full it suffices to look at what happens on inputs the form \(a^i b^j, i, j \geq 0 \), which we do by examining five subcases that account for all such strings.
1. λ.

M_1 starts at p_1. On pushing $\$, p_2 and p_3 can be reached. Then on popping the $\$, p_4 can be reached. Note that the specification of p_2 holds with $i = 0$, that of p_3 with $i = h = 0$, and that of p_4 with $i = 0$. Thus the specification at each vertex includes the case that the input is λ.

2. a^i, $i \geq 1$.

To read a^i, M_1 needs to push $\$, then follow edge (p_1, p_2), and then follow edge (p_2, p_2) i times. This puts A^i on the stack. Thus on input a^i, p_2 can be reached and its specification is correct. In addition, the edge to p_3 can be traversed without any additional reads or stack operations, and so the specification for p_3 with $h = 0$ is correct for this input.

3. $a^i b^h$, $1 \leq h < i$.

The only place to read b is on edge (p_3, p_3). Thus, for this input, M_1 reads a^i to bring it to p_3 and then follows (p_3, p_3) h times. This leaves A^{i-h} on the stack, and consequently the specification of p_3 is correct for this input. Note that as $h < i$, edge (p_3, p_4) cannot be followed as $\$ is not on the stack top.

4. $a^i b^j$, $i \geq 1$.

After reading the i b's, M_1 can be at vertex p_3 as explained in (3). Now, in addition, edge (p_3, p_4) can be traversed and this pops the $\$ from the stack, leaving it empty. So the specification of p_4 is correct for this input.

5. $a^i b^j$, $j > i$.

On reading $a^i b^j$, M_1 can reach p_3 with the stack holding $\$ or reach p_4 with an empty stack, as described in (4). From p_3 the only available move is to p_4, without reading anything further. At p_4 there is no move, so the rest of the input cannot be read, and thus no vertex can be reached on this input.

This is a very elaborate description which we certainly don’t wish to repeat for each similar PDA. We can describe M_1’s functioning more briefly as follows.

M_1 checks that its input has the form $a^* b^*$ (i.e. all the a’s precede all the b’s) using its underlying NFA (i.e. without using the stack). The underlying NFA is
often called its \textit{finite control}. In tandem with this, M_1 uses its $\$-$shielded stack to match the a’s against the b’s, first pushing the a’s on the stack (it is understood that in fact A’s are being pushed) and then popping them off, one for one, as the b’s are read, confirming that the numbers of a’s and b’s are equal.

The detailed argument we gave above is understood, but not spelled out.

Now we are ready to define a PDA more precisely. As with an NFA, a PDA consists of a directed graph with one vertex, \textit{start}, designated as the start vertex, and a (possibly empty) subset of vertices designated as the recognizing set, F, of vertices. As before, in drawing the graph, we indicate recognizing vertices using double circles and indicate the start vertex with a double arrow. Each edge is labeled with the actions the PDA performs on following that edge.

For example, the label on edge e might be: Pop A, read b, Push C, meaning that the PDA pops the stack, reads the next input character, and if the pop returns an A and the character read is a b, then the PDA can traverse e, which entails it pushing C onto the stack. Some or all of these values may be λ: Pop λ means that no Pop is performed, read λ that no read occurs, and Push λ that no Push happens. To avoid clutter, we usually omit the λ-labeled terms; for example, instead of Pop λ, read λ, Push C, we write Push C. Also, to avoid confusion in the figures, if there are multiple triples of actions that take the PDA from a vertex u to a vertex v, we use multiple edges from u to v, one for each triple.

In sum, a label, which specifies the actions accompanying a move from vertex u to vertex v, has up to three parts.

1. Pop the stack and check that the returned character has a specified value (in our example this is the value A).

2. Read the next character of input and check that it has a specified value (in our example, the value b).

3. Push a specified character onto the stack (in our example, the character C).

From an implementation perspective it may be helpful to think in terms of being able to peek ahead, so that one can see the top item on the stack without actually popping it, and one can see the next input character (or that one is at the end of the input) without actually reading forward.

One further rule is that an empty stack may not be popped.

A PDA also comes with an input alphabet Σ and a stack alphabet Γ (these are the symbols that can be written on the stack). It is customary for Σ and Γ to be disjoint, in part to avoid confusion. To emphasize this disjointness, we write the characters of Σ using lowercase letters and those of Γ using uppercase letters.

Became the stack contents make it difficult to describe the condition of the PDA after multiple moves, we use the transition function here to describe possible out edges from single vertices only. Accordingly, $\delta(p, A, b) = \{(q_1, C_1), (q_2, C_2), \cdots, (q_t, C_t)\}$ indicates that the edges exiting vertex p and having both Pop A and read b in their label are the edges
CHAPTER 3. PUSHDOWN AUTOMATA AND CONTEXT FREE LANGUAGES

going to vertices \(q_1, q_2, \ldots, q_l\) where the rest of the label for edge \((p, q_i)\) includes Push \(C_i\), for \(1 \leq i \leq l\). That is \(\delta(p, A, b)\) specifies the possible moves out of vertex \(p\) on popping character \(A\) and reading \(b\). (Recall that one or both of \(A\) and \(b\) might be \(\lambda\), as might some or all of the \(C_i\’s).)

We summarize this formally in the following definition.

Definition 3.1.2. A PDA \(M\) consists of a 6-tuple: \(M = (\Sigma, \Gamma, V, start, F, \delta)\), where

1. \(\Sigma\) is the input alphabet,
2. \(\Gamma\) is the stack alphabet,
3. \(V\) is the vertex or state set,
4. \(F \subseteq V\) is the recognizing vertex set,
5. \(start\) is the start vertex, and
6. \(\delta\) is the transition function, which specifies the edges and their labels.

Recognition is defined as for an NFA, that is, PDA \(M\) recognizes input \(w\) if there is a path that \(M\) can follow on input \(w\) that takes \(M\) from its start vertex to a recognizing vertex. We call this path a \(w\)-recognizing computation path to emphasize that stack operations may occur in tandem with the reading of input \(w\). More formally, \(M\) recognizes \(w\) if there is a path \(start = p_0, p_1, \ldots, p_m\), where \(p_m\) is a recognizing vertex, the label on edge \((p_{i-1}, p_i)\) is (Read \(a_i\), Pop \(B_i\), Push \(C_i\)), for \(1 \leq i \leq m\), and the stack contents at vertex \(p_i\) is \(\sigma_i\), for \(0 \leq i \leq m\), where

1. \(a_1a_2\cdots a_m = w\),
2. \(\sigma_0 = \lambda\),
3. and Pop \(B_i\), Push \(C_i\) applied to \(\sigma_{i-1}\) produces \(\sigma_i\) for \(1 \leq i \leq m\).

We write \(L(M)\) for the language, or set of strings, recognized by \(M\).

Next, we show some more examples of languages that can be recognized by PDAs.

Example 3.1.3. \(L_2 = \{a^i b^i \mid i \geq 0\}\).

PDA \(M_2\) recognizing \(L_2\) is shown in Figure 3.4. The processing by \(M_2\) is similar to that of \(M_1\). \(M_2\) checks that its input has the form \(a^* b^*\) using its finite control. In tandem, \(M_2\) uses its \$-shielded stack to match the \(a\’s\) against the \(b\’s\), first pushing the \(a\’s\) on the stack (actually \(A\’s\) are being pushed), then reads the \(c\) without touching the stack, and finally pops the \(a\’s\) off, one for one, as the \(b\’s\) are read, confirming that the numbers of \(a\’s\) and \(b\’s\) are equal.
3.1. PUSHDOWN AUTOMATA

Example 3.1.4. \(L_3 = \{wcw^R \mid w \in \{a,b\}^* \} \).

PDA \(M_3 \) recognizing \(L_3 \) is shown in Figure 3.5. \(M_3 \) uses its \$-shielded stack to match the \(w \) against the \(w^R \), as follows. It pushes \(w \) on the stack (the end of the substring \(w \) being indicated by reaching the \(c \)). At this point, the stack content read from the top is \(w^R\$ \), so popping down to the \$ outputs the string \(w^R \). This stack contents is readily compared to the string following the \(c \). The input is recognized exactly if they match.

Z denotes string \(z \) in capital letters.
Example 3.1.5. \(L_4 = \{ww^R \mid w \in \{a,b\}^*\} \).

PDA \(M_4 \) recognizing \(L_4 \) is shown in Figure 3.6. This is similar to Example 3.1.4. The one difference is that the PDA \(M_4 \) can decide at any point to stop reading \(w \) and begin reading \(w^R \). Of course there is only one correct switching location, at most, but as \(M_4 \) does not know where it is, \(M_4 \) considers all possibilities by means of its nondeterminism.

![Figure 3.6: PDA \(M_4 \) recognizing \(L_4 \).](image)

Z denotes string \(z \) in capital letters.

Example 3.1.6. \(L_5 = \{a^ib^jc^k \mid i = j \text{ or } i = k\} \).

PDA \(M_5 \) recognizing \(L_5 \) is shown in Figure 3.7. This is the union of languages \(L_6 = \{a^ib^jc^k \mid i, k \geq 0\} \) and \(L_7 = \{a^ib^jc^i \mid i, j \geq 0\} \), each of which is similar to \(L_2 \). \(M_5 \), the PDA recognizing \(L_5 \) uses submachines to recognize each of \(L_6 \) and \(L_7 \). \(M_5 \)'s first move from its start vertex is to traverse (Push $\$)-edges to the start vertices of the submachines. The net effect is that \(M_5 \) recognizes the union of the languages recognized by the submachines. As the submachines are similar to \(M_2 \) they are not explained further.

3.1.1 Deterministic PDAs

Suppose that a DPA is constrained so that at each vertex, given the current character at the top of the stack and the next character of input, there is at most one possible move. It may be that this move does not read the next input character (i.e. it includes a Read \(\lambda \)) or it does not pop the stack (i.e. it includes a Pop \(\lambda \)). We call such a machine a Deterministic PDA, a DPDA for short.

This still leaves one possible ambiguity: whether to make additional moves once the input is fully read. To resolve this we treat the input as if there was an additional end-of-input character following the actual input. Thus instead of having an input \(w \), the input will be of
the form wc where c is a character that appears only once at the very end of the input. The DPDA will be allowed to have edges whose labels include the action Read c. In addition, all recognizing vertices will be reached by following an edge labelled Read c, and further these vertices will have no out-edges. In fact, it is easy to see that one such vertex suffices.

Figure 3.7: PDA M_5 recognizing $L_5 = \{a^i b^j c^k \mid i = j \text{ or } i = k\}$.

Notice that if there is an edge labeled (Read λ, Pop B, Push C) exiting a vertex v, for some $B, C \in \Gamma \cup \{\lambda\}$, then there is no edge leaving v with label (Read a, Pop B, Push D) for any $a \in \Sigma$ and $D \in \Gamma \cup \{\lambda\}$. The following rules cover every possibility, and are exactly what is needed to ensure that there is always at most one move. Specifically, for each vertex v its outedges satisfy the following constraints:

- If there is an outedge labeled (Read λ, Pop λ, Push C) for some $C \in \Gamma \cup \{\lambda\}$, then this is v’s only outedge.
- For all $a \in \Sigma \cup \{\lambda\}$, $B \in \Gamma \cup \{\lambda\}$, if there is an outedge labeled (Read a, Pop B, Push C) for some $C \in \Gamma \cup \{\lambda\}$, then there is no outedge labeled (Read a, Pop B, Push D), for any $D \neq C$, $D \in \Gamma \cup \{\lambda\}$.
• If there is an outedge labeled \((\text{Read } \lambda, \text{Pop } B, \text{Push } C)\) for some \(B \in \Gamma\) and \(C \in \Gamma \cup \{\lambda\}\), then there is no outedge labeled \((\text{Read } a, \text{Pop } B, \text{Push } D)\), for any \(a \in \Sigma\) and \(D \in \Gamma \cup \{\lambda\}\).

• If there is an outedge labeled \((\text{Read } a, \text{Pop } \lambda, \text{Push } C)\) for some \(a \in \Sigma\) and \(C \in \Gamma \cup \{\lambda\}\), then there is no outedge labeled \((\text{Read } a, \text{Pop } B, \text{Push } D)\), for any \(B \in \Gamma\) and \(D \in \Gamma \cup \{\lambda\}\).

DPDAs are readily implemented, for as the input is read it suffices to keep track of the current destination vertex and the current stack contents. As the next move is always uniquely specified, the change to these values is always unambiguous.

Example 3.1.7. \(L_1 = \{a^i b^i \mid i \geq 0\}\). The PDA in Figure 3.2, recognizing \(L_1\), is not a DPDA, but a small modification turns it into a DPDA \(\tilde{M}_1\) recognizing \(L_1\). The need for a modification is due to the \(\lambda\)-edge from \(p_2\) to \(p_3\), namely from the vertex where the \(a\)'s are read to the vertex where the \(b\)'s are read. We change the \(\lambda\)-edge to instead read the first \(b\) in the input, as shown in Figure 3.8. This induces two further changes: \(p_1\) has to be made a recognizing vertex, as there is no longer a path from \(p_1\) to \(p_4\) on input \(\lambda\), which also requires introducing a new vertex \(p_5\) between \(p_1\) and \(p_2\) to ensure a character is read on exiting \(p_1\).

![Figure 3.8: DPDA recognizing \(L_1 = \{a^i b^i \mid i \leq 0\}\).](image-url)

Next we show that as with DFAs, we can have a sink vertex so as to ensure that there is always exactly one move to make.

Lemma 3.1.8. Let \(M\) be a DPDA. There is another DPDA \(\tilde{M}\) with \(L(M) = L(\tilde{M})\) such that on every input, at every step of its computation, \(\tilde{M}\) has a unique move.
3.1. PUSHDOWN AUTOMATA

Proof. For each missing possible action, we add an edge to the sink vertex labeled by that move, as specified by the following rule.

For each \(a \in \Sigma \) and \(B \in \Gamma \), add an edge from non-recognizing vertex \(v \) to the sink vertex labeled \(\text{Read }a, \text{Pop }B, \text{Push }B \) exactly if none of the following edges exiting \(v \) are present:

- an outedge labeled \(\text{Read }a, \text{Pop }B, \text{Push }C \) for any \(C \in \Gamma \cup \{ \lambda \} \),
- an outedge labeled \(\text{Read }\lambda, \text{Pop }B, \text{Push }C \) for any \(C \in \Gamma \cup \{ \lambda \} \),
- an outedge labeled \(\text{Read }a, \text{Pop }\lambda, \text{Push }C \) for any \(C \in \Gamma \cup \{ \lambda \} \),
- an outedge labeled \(\text{Read }\lambda, \text{Pop }\lambda, \text{Push }C \) for any \(C \in \Gamma \cup \{ \lambda \} \)

In addition, for each \(a \in \Sigma \), a self-loop is added to the sink vertex with label Read \(a \).

Example 3.1.9. DPDA for \(L_1 = \{ a^i b^j | i \leq 0 \} \) with a unique move at every step.

In Figure 3.9 we show the result from applying Lemma 3.1.8 to the automata from Example 3.1.7.

Figure 3.9: Unique move DPDA recognizing \(L_1 = \{ a^i b^j | i \leq 0 \} \).

3.2 Closure Properties

Lemma 3.2.1. Let A and B be languages recognized by PDAs M_A and M_B, respectively. Then $A \cup B$ is also recognized by a PDA called $M_{A\cup B}$.

Proof. The graph of $M_{A\cup B}$ consists of the graphs of M_A and M_B plus a new start vertex $\text{start}_{A\cup B}$, which is joined by λ-edges to the start vertices start_A and start_B of M_A and M_B, respectively. Its recognizing vertices are the recognizing vertices of M_A and M_B. The graph is shown in figure 3.10.

While it is clear that $L(M_{A\cup B}) = L(M_A) \cup L(M_B)$, we present the argument for completeness.

First, we show that $L(M_{A\cup B}) \subseteq L(M_A) \cup L(M_B)$, i.e. if $w \in L(M_{A\cup B})$ then $w \in L(M_A) \cup L(M_B)$. So suppose that $w \in L(M_{A\cup B})$. Then there is a w-recognizing computation path from $\text{start}_{A\cup B}$ to a recognizing vertex f. If f lies in M_A, then removing the first edge of P leaves a path P' from start_A to f. Further, at the start of P', the stack is empty and nothing has been read, so P' is a w-recognizing path in M_A. That is, $w \in L(M_A)$. Similarly, if f lies in M_B, then $w \in L(M_B)$. In either case, $w \in L(M_A) \cup L(M_B)$.

Second, we show that $L(M_A) \cup L(M_B) \subseteq L(M_{A\cup B})$, i.e. if $w \in L(M_A) \cup L(M_B)$ then $w \in L(M_{A\cup B})$. Suppose that $w \in L(M_A)$. Then there is a w-recognizing computation path P' from start_A to a recognizing vertex f in M_A. Adding the λ-edge $(\text{start}_{A\cup B}, \text{start}_A)$ to the beginning of P' creates a w-recognizing computation path in $M_{A\cup B}$, showing that $L(M_A) \subseteq L(M_{A\cup B})$. Similarly, if $w \in L(M_B)$, then $w \in L(M_{A\cup B})$. Thus if $w \in L(M_A) \cup L(M_B)$ then $w \in L(M_{A\cup B})$.

Our next construction is simplified by the following technical lemma.

Figure 3.10: PDA $M_{A\cup B}$.

While it is clear that $L(M_{A\cup B}) = L(M_A) \cup L(M_B)$, we present the argument for completeness.

First, we show that $L(M_{A\cup B}) \subseteq L(M_A) \cup L(M_B)$, i.e. if $w \in L(M_{A\cup B})$ then $w \in L(M_A) \cup L(M_B)$. So suppose that $w \in L(M_{A\cup B})$. Then there is a w-recognizing computation path from $\text{start}_{A\cup B}$ to a recognizing vertex f. If f lies in M_A, then removing the first edge of P leaves a path P' from start_A to f. Further, at the start of P', the stack is empty and nothing has been read, so P' is a w-recognizing path in M_A. That is, $w \in L(M_A)$. Similarly, if f lies in M_B, then $w \in L(M_B)$. In either case, $w \in L(M_A) \cup L(M_B)$.

Second, we show that $L(M_A) \cup L(M_B) \subseteq L(M_{A\cup B})$, i.e. if $w \in L(M_A) \cup L(M_B)$ then $w \in L(M_{A\cup B})$. Suppose that $w \in L(M_A)$. Then there is a w-recognizing computation path P' from start_A to a recognizing vertex f in M_A. Adding the λ-edge $(\text{start}_{A\cup B}, \text{start}_A)$ to the beginning of P' creates a w-recognizing computation path in $M_{A\cup B}$, showing that $L(M_A) \subseteq L(M_{A\cup B})$. Similarly, if $w \in L(M_B)$, then $w \in L(M_{A\cup B})$. Thus if $w \in L(M_A) \cup L(M_B)$ then $w \in L(M_{A\cup B})$.

Our next construction is simplified by the following technical lemma.
Lemma 3.2.2. Let PDA \(M \) recognize \(L \). There is an \(L \)-recognizing PDA \(M' \) with the following properties: \(M' \) has only one recognizing vertex, \(\text{recognize}_{M'} \), and \(M' \) will always have an empty stack when it reaches \(\text{recognize}_{M'} \). \(M' \) is called a single-destination, empty-stack PDA.

Proof. The idea is quite simple. \(M' \) simulates \(M \) using a \(\$ \)-shielded stack. When \(M' \)'s computation is complete, \(M' \) moves to a new stack-emptying vertex, \(\text{stack-emptier} \), at which \(M' \) empties its stack of everything apart from the \(\$ \)-shield. To then move to \(\text{recognize}_{M'} \), \(M' \) pops the \(\$ \), thus ensuring it has an empty stack when it reaches \(\text{recognize}_{M'} \). \(M' \) is illustrated in Figure 3.11. More precisely, \(M' \) consists of the graph of \(M \) plus three new vertices; \(\text{start}_{M'} \), \(\text{start}_{M'} \), \(\text{start}_{M'} \), \(\text{push}\$ \), \(\text{read}\lambda \), \(\text{read}\lambda \), \(\text{pop}\$ \), \(\text{pop}\$ \), \(\text{stack-emptier} \), \(\text{recognize}_{M'} \), and \(\text{recognize}_{M'} \). The following edges are also added: \((\text{start}_{M'}, \text{start}_{M'}) \) labeled \(\text{push}\$ \), \(\lambda \)-edges from each of \(M' \)'s recognizing vertices to \(\text{stack-emptier} \), self-loops \((\text{stack-emptier}, \text{stack-emptier}) \) labeled \(\text{pop}\ X \) for each \(X \in \Gamma \), where \(\Gamma \) is \(M \)'s stack alphabet (so \(X \neq \$ \)), and edge \((\text{stack-emptier}, \text{recognize}_{M'}) \) labeled \(\text{pop}\$ \).

It is clear that \(L(M) = L(M') \). Nonetheless, we present the argument for completeness. First, we show that \(L(M') \subseteq L(M) \), i.e. if \(w \in L(M') \) then \(w \in L(M) \) also. So let \(w \in L(M') \). Let \(P' \) be a \(w \)-recognizing path in \(M' \) and let \(f \) be the recognizing vertex of \(M \) preceding \(\text{stack-emptier} \) on the path \(P' \). Removing the first edge in \(P' \) and every edge including and after \((f, \text{stack-emptier}) \), leaves a path \(P \) which is a \(w \)-recognizing path in \(M \). Thus \(w \in L(M) \) and consequently \(L(M') \subseteq L(M) \).

Now we show \(L(M) \subseteq L(M') \), i.e. if \(w \in L(M) \) then \(w \in L(M') \) also. Let \(w \in L(M) \) and let \(P \) be a \(w \)-recognizing path in \(M \). Suppose that \(P \) ends with string \(s \) on the stack at recognizing vertex \(f \). We add to \(P \) the edges \((\text{start}_{M'}, \text{start}_{M}), (f, \text{stack-emptier}), |s| \)-self-loops at \(\text{stack-emptier} \), and \((\text{stack-emptier}, \text{recognize}_{M'}) \), yielding path \(P' \) in \(M' \). By choosing the self-loops to be labeled with the characters of \(s^R \) in this order, which corresponds to popping \(s^R \) from the stack, we cause \(P' \) to be a \(w \)-recognizing path in \(M' \). Thus \(w \in L(M') \) and consequently \(L(M) \subseteq L(M') \).
Lemma 3.2.3. Let A and B be languages recognized by PDAs. Then there is a PDA recognizing $A \circ B$.

Proof. Let M_A and M_B be single-destination, empty-stack PDAs recognizing A and B, respectively.

We will construct PDA $M_{A \circ B}$ that recognizes $A \circ B$. It consists of M_A, M_B plus one λ-edge (recognize_A, start_B). Its start vertex is start_A and its recognizing vertex is recognize_B.

To see that $L(M_{A \circ B}) = A \circ B$ is straightforward.

First, we show that $L(M_{A \circ B}) \subseteq A \circ B$, i.e. if $w \in L(M_{A \circ B})$ then $w \in A \circ B$ also. So suppose that $w \in L(M_{A \circ B})$. Then there is a w-recognizing path P in $M_{A \circ B}$; P is formed from a path P_A in M_A going from start_A to recognize_A (and which therefore ends with an empty stack), λ-edge (recognize_A, start_B), and a path P_B in M_B starting from start_B with an empty stack and going to recognize_B. Let u be the sequence of reads labeling P_A and v those labeling P_B. It follows that P_A is u-recognizing, and P_B is v-recognizing (see Figure 3.12) and thus $u \in A$ and $v \in B$. In addition, $w = u\lambda v = uv$, which implies that $w = uv \in A \circ B$.

![Figure 3.12: PDA $L(M_{A \circ B})$.](image)

Next, we show that $A \circ B \subseteq L(M_{A \circ B})$. So suppose that $w = uv \in A \circ B$, where $u \in A$ and $v \in B$. Then there is a u-recognizing path P_A in M_A and a v-recognizing path P_B in M_B. We argue that the following path P is w-recognizing: P_A followed by the λ-edge (recognize_A, start_B), followed by P_B. Note that by construction the stack is empty when at node recognize_A, and hence it is also empty at node start_B. Consequently, computation path P in $M_{A \circ B}$ recognizes $u\lambda v = uv = w$, as claimed. It follows that $w = uv \in L(M_{A \circ B})$.

\[\square\]

Lemma 3.2.4. Suppose that L is recognized by a PDA and suppose that R is a regular language. Then there is a PDA recognizing $L \cap R$.

Proof. We illustrate the construction below in Example 3.2.5.

Let $M_L = (\Sigma, \Gamma_L, V_L, \text{start}_L, F_L, \delta_L)$ be a single-destination, empty-stack PDA recognizing M_L, and let R be recognized by DFA $M_R = (\Sigma, V_R, \text{start}_R, F_R, \delta_R)$. We will construct PDA $M_{L \cap R}$ that recognizes $L \cap R$. The vertices of $M_{L \cap R}$ will be 2-tuples, the first component corresponding to a vertex of M_L and the second component to a vertex of M_R. The computation of $M_{L \cap R}$, when looking at the first components along with the stack will be exactly the computation of M_L, and when looking at the second components, but without the stack, it will be exactly the computation of M_R. This leads to the following edges in $M_{L \cap R}$.
1. If M_L has an edge (u_L, v_L) with label (Pop A, Read b, Push C) and M_R has an edge (u_R, v_R) with label b, then $M_{L \cap R}$ has an edge $((u_L, u_R), (v_L, v_R))$ with label (Pop A, Read b, Push C).

2. If M_L has an edge (u_L, v_L) with label (Pop A, Read λ, Push C) then $M_{L \cap R}$ has an edge $((u_L, u_R), (v_L, u_R))$ with label (Pop A, Read λ, Push C) for every $u_R \in V_R$.

Example 3.2.5. PDA recognizing $L_1 \cap (aa)^*b^*$, where $L_1 = \{a^ib^i \mid i \geq 0\}$.

We take the PDA M_1 recognizing L_1 from Figure 3.2 and the DFA recognizing $(aa)^*b^*$ shown in Figure 3.13, and apply Lemma 3.2.4 to them. As it happens, only 5 vertices are reachable in the new automata; the other vertices are not shown.

The start vertex for $M_{L \cap R}$ is $(\text{start}_L, \text{start}_R)$ and its set of recognizing vertices is $F_L \times F_R$.
the pairs of recognizing vertices, one from \(M_L \) and one from \(M_R \), respectively.

Assertion. On input \(w \), \((v_L,v_R)\) is a destination vertex of \(M_{L\cap R} \) if and only if \(v_L \) is a destination vertex of \(M_L \) and \(v_R \) a destination vertex of \(M_R \).

Next, we argue that the assertion is true. For suppose that on input \(w \), \(M_{L\cap R} \) ends up at vertex \((v_L,v_R)\) using computation path \(P_{L\cap R} \). If we consider the first components of the vertices in \(P_{L\cap R} \), we see that it is a computation path of \(M_L \) on input \(w \) with destination vertex \(v_L \). Likewise, if we consider the second components of the vertices of \(M_{L\cap R} \), we obtain a path \(P'_R \). The only difficulty is that this path may contain repetitions of a vertex \(u_R \) corresponding to reads of \(\lambda \) by \(M_{L\cap R} \). Eliminating such repetitions creates a path \(P_R \) in \(M_R \) with destination \(v_R \) and having the same label \(w \) as path \(P'_R \).

Conversely, suppose that \(M_L \) can end up at vertex \(v_L \) using computation path \(P_L \) and \(M_R \) can end up at vertex \(v_R \) using computation path \(P_R \). Combining these paths, with care, gives a computation path \(P \) in \(M_{L\cap R} \) on input \(w \) which ends at vertex \((v_L,v_R)\). We proceed as follows. The first vertex is \((\text{start}_L,\text{start}_R)\). Then we traverse \(P_L \) and \(P_R \) in tandem. Either the next edges in \(P_L \) and \(P_R \) are both labeled by a Read \(b \) (simply a \(b \) on \(P_R \) in which case we use Rule (1) above to give the edge to add to \(P \), or the next edge on \(P_L \) is labeled by Read \(\lambda \) (together with a Pop and a Push possibly) and then we use Rule (2) to give the edge to add to \(P \). In the first case we advance one edge on both \(P_L \) and \(P_R \), in the second case we only advance on \(P_L \). Clearly, the path ends at vertex \((v_L,v_R)\) and reads input \(w \).

It is now easy to see that \(L(M_{L\cap R}) = L \cap R \). For on input \(w \), \(M_{L\cap R} \) ends up at a recognizing vertex \(v \in F = F_L \times F_R \) if and only if on input \(w \), \(M_L \) ends up at a vertex \(v_L \in F_L \) and \(M_R \) ends up at a vertex \(v_R \in F_R \). That is, \(w \in L(M_{L\cap R}) \) if and only if \(w \in L(M_L) = L \) and \(w \in L(M_R) = R \), or in other words \(w \in L(M_{L\cap R}) \) if and only if \(w \in L \cap R \).

Exercise. Show that if \(A \) is recognized by PDA \(M_A \) then there is a PDA \(M_{A^*} \) recognizing \(A^* \).

3.2.1 Closure Properties for DPDAs

Lemma 3.2.6. Let \(L \) be recognized by a DPDA \(M \). Then \(L \) is also recognized by a PDA.

Proof. This lemma is not quite immediate because of the addition of the \(\hat{c} \) to the DPDA input, but it is easy to simulate the missing \(\hat{c} \) in a PDA computation. We build PDA \(M' \) to recognize \(L \) as follows. Simply replace each Read \(\hat{c} \) in \(M \) with a Read \(\lambda \). Clearly if \(w \in L \) then there is a recognizing path \(P \) in \(M \) which goes from \(M' \)'s start vertex to a recognizing vertex. The Reads on this path, when concatenated, read the string \(w\hat{c} \). The same path in \(M' \) will read the string \(w \). Consequently \(M' \) recognizes \(w \).

Conversely if \(M \) recognizes string \(w \), the final edge on its recognizing path \(P \) has read label \(\text{Read} \lambda \). In \(M \) this same final edge will have read label \(\hat{c} \), and as this is the only change, the path reads the string \(w\hat{c} \), and thus \(M \) recognizes the string \(w \).

DPDAs have quite different closure properties from PDAs. As it happens, the complement of a language recognized by a DPDA is also recognized by a DPDA, but to prove this
is quite difficult; the difficulties arise due to the possibility of a cycle on which nothing is read and which can be traversed infinitely often (see Problem 10). As we shall see later, this property does not hold for PDAs. Since every language recognized by a DPDA is recognized by a PDA, this implies PDAs recognize more languages that DPDAs, in contrast to the situation with DFAs and NFAs.

Another contrast is that the intersection of two languages recognized by a DPDA need not be recognized by a DPDA.

Lemma 3.2.7. There are languages K_1 and K_2 recognized by DPDA, for which $K_3 = K_1 \cap K_2$ is not recognized by any DPDA.

Proof. Let $K_1 = \{a^ib^ic^k | i = j$ and $i, j, k \geq 0\}$ and $K_2 = \{a^ib^jc^k | i = k$ and $i, j, k \geq 0\}$. Then $K_3 = K_1 \cap K_2 = \{a^ib^jc^i | i \geq 0\}$. K_1 and K_2 are recognized by DPDA similar to the DPDA in Figure 3.8, but as we shall see in Section 3.5, K_3 is not a Context Free Language (CFL), and hence as we shall see in Section 3.6, is not recognized by any PDA, and hence not by any DPDA either.

Likewise, it need not be the case that DPDA are closed under union (this is left as an exercise for the reader). However, all regular languages are recognized by DPDA.

Lemma 3.2.8. Every regular language is recognized by a DPDA.

Proof. Let L be a regular language and let M be a DFA recognizing L. Add a new recognizing vertex to M with edges labeled $\¨$ from each of the old recognizing vertices, which cease to be recognizing. Then the modified M is a DPDA recognizing L.

\[\]

3.3 Context Free Languages

Context Free Languages (CFLs) provide a way of specifying certain recursively defined languages. Let’s begin by giving a recursive method for generating integers in decimal form. We will call this representation of integers decimal strings. A decimal string is defined to be either a single digit (one of 0–9) or a single digit followed by another decimal string. This can be expressed more succinctly as follows.

\[
\langle \text{decimal string} \rangle \rightarrow \langle \text{digit} \rangle \mid \langle \text{digit} \rangle \langle \text{decimal string} \rangle \\
\langle \text{digit} \rangle \rightarrow 0 \mid 1 \mid 2 \mid \cdots \mid 9
\]

(3.1)

We can also view this as providing a way of generating decimal strings. To generate a particular decimal string we perform a series of replacements or substitutions starting from
the “variable” ⟨decimal string⟩. The sequence of replacements generating 147 is shown below.

\[
\begin{align*}
\langle \text{decimal string} \rangle & \Rightarrow \langle \text{digit} \rangle \langle \text{decimal string} \rangle \\
& \Rightarrow 1 \langle \text{decimal string} \rangle \\
& \Rightarrow 1 \langle \text{digit} \rangle \langle \text{decimal string} \rangle \\
& \Rightarrow 14 \langle \text{decimal string} \rangle \\
& \Rightarrow 14 \langle \text{digit} \rangle \\
& \Rightarrow 147
\end{align*}
\]

We write \(\sigma \Rightarrow \tau \) if the string \(\tau \) is the result of a single replacement in \(\sigma \). The possible replacements are those given in Equation (3.1). Each replacement takes one occurrence of an item on the left-hand side of an arrow and replaces it with one of the items on the right-hand side; these are the items separated by vertical bars. Specifically, the possible replacements are to take one occurrence of one of:

- \(\langle \text{decimal string} \rangle \) and replace it with one of \(\langle \text{digit} \rangle \) or the sequence \(\langle \text{digit} \rangle \langle \text{decimal string} \rangle \).
- \(\langle \text{digit} \rangle \) and replace it with one of 0–9.

An easier way to understand this is by viewing the generation using a tree, called a derivation or parse tree, as shown in Figure 3.14. Clearly, were we patient enough, in principle we could generate any number.

The above generation rules are relatively simple. Let’s look at the slightly more-elaborate example of arithmetic expressions such as \(x + x \times x \) or \((x + x) \times x \). For simplicity, we limit the expressions to those built from a single variable \(x \), the “+” and “×” operators, and
parentheses. We also would like the generation rules to follow the precedence order of the operators “+” and “×”, in a sense that will become clear.

The generation rules, being recursive, generate arithmetic expressions top-down. Let’s use the example $x + x \times x$ as motivation. To guide us, it is helpful to look at the expression tree representation, shown in Figure 3.15a. We build this up recursively using the following variables and rules.

- The variable $\langle\text{expr}\rangle$, which can generate any arithmetic expression. We describe the rules with $\langle\text{expr}\rangle$ on the left hand side later.

- The variable $\langle\text{var}\rangle$, which generates the possible variables in the expression, which is just x in our example. This is achieved with the rule

 $$\langle\text{var}\rangle \rightarrow x.$$

- The variable $\langle\text{factor}\rangle$, which generates the possible right operands for a multiplication. As “×” has the highest precedence, these must be either the variable x or an arbitrary arithmetic expression enclosed in paratheses. This is achieved with the rule

 $$\langle\text{factor}\rangle \rightarrow \langle\text{var}\rangle \mid \langle\text{expr}\rangle.$$

- The variable $\langle\text{term}\rangle$, which generates the possible right operands for an addition. The possible operands are either those generated by the variable $\langle\text{factor}\rangle$, or by a series of
multiplications, namely an expression generated by \((\text{factor}) \times (\text{factor}) \times \cdots \times (\text{factor})\). This yields the rules
\[
(\text{term}) \rightarrow (\text{term}) \times (\text{factor}) | (\text{factor}).
\]
Note that the first rule above implies that the multiplications are generated in right to left order and hence performed in left to right order (for the expression generated by the left \((\text{term})\) is evaluated before being multiplied by the expression generated by the \((\text{factor})\) to its right).

- Now, we specify the rules with \((\text{expr})\) on the left hand side. An arithmetic expression is either an expression generated by the variable \((\text{term})\), or it is obtained by a series of additions, namely an expression generated by \((\text{term}) + (\text{term}) + \cdots + (\text{term})\). This yields the rules
\[
(\text{expr}) \rightarrow (\text{expr}) + (\text{term}) | (\text{term}).
\]
Again, the first rule above implies that the additions are generated in right to left order and hence performed in left to right order.

The derivation tree for the example of Figure 3.15a is shown in Figure 3.15b. Note that the left-to-right order of evaluation is an arbitrary choice for the “+” and the “\(\times\)” operators, but were we to introduce the “−” and “\(\div\)" operators it ceases to be arbitrary; left-to-right is then the correct rule.

Let’s look at one more example.

Example 3.3.1. \(L = \{a^i b^i \mid i \geq 0\}\).

Here are a set of rules to generate the strings in \(L\), to generate \(L\) for short, starting from the term \((\text{Balanced})\).
\[
(\text{Balanced}) \Rightarrow \lambda | a (\text{Balanced}) b.
\]
Notice how a string \(s \in L\) is generated: from the outside in. First the outermost \(a\) and \(b\) are created, together with a \((\text{Balanced})\) term between them; this \((\text{Balanced})\) term will be used to generate \(a^{i-1} b^{i-1}\). Then the second outermost \(a\) and \(b\) are generated, etc. The bottom of the recursion, the base case, is the generation of string \(\lambda\).

Now we are ready to define *Context Free Grammars* (CFGs), \(G\), (which have nothing to do with graphs). A Context Free Grammar has four parts:

1. A set \(V\) of variables (such as \((\text{factor})\) or \((\text{Balanced})\)); note that \(V\) is not a vertex set here.

 The individual variables are usually written using single capital letters, often from the end of the alphabet, e.g. \(X, Y, Z\); no angle brackets are used here. This has little mnemonic value, but it is easier to write. If you do want to use longer variable names, I advise using angle brackets to delimit them.

2. An alphabet \(T\) of terminals: these are the characters used to write the strings being generated. Usually, they are written with small letters.
3. $S \in V$ is the start variable, the variable from which the string generation begins.

4. A set of rules R. Each rule has the form $X \to \sigma$, where $X \in V$ is a variable and $\sigma \in (T \cup V)^*$ is a string of variables and terminals, which could be λ, the empty string.

If we have several rules with the same left-hand side, for example $X \to \sigma_1, X \to \sigma_2, \ldots, X \to \sigma_k$, they can be written as $X \to \sigma_1 | \sigma_2 | \cdots | \sigma_k$ for short. The meaning is that an occurrence of X in a generated string can be replaced by any one of $\sigma_1, \sigma_2, \ldots, \sigma_k$. Different occurrences of X can be replaced by distinct σ_i, of course.

The generation of a string proceeds by a series of replacements starting from the string $s_0 = S$, and which, for $1 \leq i \leq k$, obtains s_i from s_{i-1} by replacing some variable X in s_{i-1} by one of the replacements $\sigma_1, \sigma_2, \ldots, \sigma_k$ for X, as provided by the rule collection R. We will write this as

$$S = s_0 \Rightarrow s_1 \Rightarrow s_2 \Rightarrow \cdots \Rightarrow s_k \mbox{ or } S \Rightarrow^* s_k \mbox{ for short.}$$

The language generated by grammar G, $L(G)$, is the set of strings of terminals that can be generated from G’s start variable S:

$$L(G) = \{ w \mid S \Rightarrow^* w \mbox{ and } w \in T^* \}.$$

Example 3.3.2. Grammar G_2:

The grammar generating the language of properly nested parentheses. It has:

- Variable set: $\{S\}$.
- Terminal set: $\{(,\,)\}$.
- Rules: $S \Rightarrow (S) | SS | \lambda$.
- Start variable: S.

Here are some example derivations.

$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()(S) \Rightarrow ()((S)) \Rightarrow ()().$$

$$S \Rightarrow (S) \Rightarrow (SS) \Rightarrow ((S)S) \Rightarrow ((S) \Rightarrow (((S)) \Rightarrow ()()).$$

3.3.1 Closure Properties

Lemma 3.3.3. Let G_A and G_B be CFGs generating languages A and B, respectively. Then there are CFGs generating $A \cup B$, $A \circ B$, A^*.

Proof. Let $G_A = (V_A, \Sigma_A, R_A, S_A)$ and $G_B = (V_B, \Sigma_B, R_B, S_B)$. By renaming variables if needed, we can ensure that V_A and V_B are disjoint.

First, we show that $A \cup B$ is generated by the following grammar $G_{A \cup B}$.

$G_{A \cup B}$ has variable set $\{S_{A \cup B}\} \cup V_A \cup V_B$, terminal set $T_A \cup T_B$, start variable $S_{A \cup B}$, rules $R_A \cup R_B$ plus the rules $S_{A \cup B} \Rightarrow S_A \mid S_B$.

To generate a string $w \in A$, $G_{A \cup B}$ performs a derivation with first step $S_{A \cup B} \Rightarrow S_A$, and then follows this with a derivation of w in G_A: $S_A \Rightarrow^* w$. So if $w \in A$, $w \in L(G_{A \cup B})$. Likewise, if $w \in B$, then $w \in L(G_{A \cup B})$ also. Thus $A \cup B \subseteq L(G_{A \cup B})$.

By renaming variables if needed, we can ensure that V_A and V_B are disjoint.

First, we show that $A \circ B$ is generated by the following grammar $G_{A \circ B}$.

$G_{A \circ B}$ has variable set $\{S_{A \circ B}\} \cup V_A \cup V_B$, terminal set $T_A \cup T_B$, start variable $S_{A \circ B}$, rules $R_A \cup R_B$ plus the rules $S_{A \circ B} \Rightarrow S_A \mid S_B$.

To generate a string $w \in A$, $G_{A \circ B}$ performs a derivation with first step $S_{A \circ B} \Rightarrow S_A$, and then follows this with a derivation of w in G_A: $S_A \Rightarrow^* w$. So if $w \in A$, $w \in L(G_{A \circ B})$. Likewise, if $w \in B$, then $w \in L(G_{A \circ B})$ also. Thus $A \circ B \subseteq L(G_{A \circ B})$.

By renaming variables if needed, we can ensure that V_A and V_B are disjoint.

First, we show that A^* is generated by the following grammar G_{A^*}.

G_{A^*} has variable set $\{S_{A^*}\} \cup V_A$, terminal set T_A, start variable S_{A^*}, rules $S_{A^*} \Rightarrow S_A \mid \lambda$.

To generate a string $w \in A^*$, G_{A^*} performs a derivation with first step $S_{A^*} \Rightarrow S_A$, and then follows this with a derivation of w in G_A: $S_A \Rightarrow^* w$. So if $w \in A^*$, $w \in L(G_{A^*})$. Thus $A^* \subseteq L(G_{A^*})$.
To show $L(G_{A \cup B}) \subseteq A \cup B$ is also straightforward. For if $w \in L(G_{A \cup B})$, then there is a derivation $S_{A \cup B} \Rightarrow^* w$. Its first step is either $S_{A \cup B} \Rightarrow S_A$ or $S_{A \cup B} \Rightarrow S_B$. Suppose it is $S_{A \cup B} \Rightarrow S_A$. Then the remainder of the derivation is $S_A \Rightarrow^* w$; this says that $w \in A$. Similarly, if the first step is $S_{A \cup B} \Rightarrow S_B$, then $w \in B$. Thus $L(G_{A \cup B}) \subseteq A \cup B$.

Next, we show that $A \circ B$ is generated by the following grammar $G_{A \circ B}$.

$G_{A \circ B}$ has variable set $S_{A \circ B} \cup V_A \cup V_B$, terminal set $T_A \cup T_B$, start variable $S_{A \circ B}$, and rules $R_A \cup R_B$ plus the rule $S_{A \circ B} \rightarrow S_A S_B$.

If $w \in A \circ B$, then $w = uv$ for some $u \in A$ and $v \in B$. So to generate w, $G_{A \circ B}$ performs the following derivation. The first step is $S_{A \circ B} \Rightarrow S_A S_B$; this is followed by a derivation $S_A \Rightarrow^* u$, which yields the string uS_B; this is then followed by a derivation $S_B \Rightarrow^* v$, which yields the string $uv = w$. Thus $A \circ B \subseteq L(G_{A \circ B})$.

To show $L(G_{A \circ B}) \subseteq A \circ B$ is also straightforward. For if $w \in L(G_{A \circ B})$, then there is a derivation $S_{A \circ B} \Rightarrow^* w$. The first step can only be $S_{A \circ B} \Rightarrow S_A S_B$. Let u be the string of terminals derived from S_A, and v the string of terminals derived from S_B, in the full derivation. So $uv = w$, $u \in A$ and $v \in B$. Thus $L(G_{A \circ B}) \subseteq A \circ B$.

The fact that there is a grammar G_A^* generating A^* we leave as an exercise for the reader.

Lemma 3.3.4. $\{\lambda\}$, ϕ, $\{a\}$ are all context free languages.

Proof. The grammar with the single rule $S \rightarrow \lambda$ generates $\{\lambda\}$, the grammar with no rules generates ϕ, and the grammar with the single rule $S \rightarrow a$ generates $\{a\}$, where, in each case, S is the start variable.

Corollary 3.3.5. All regular languages have CFGs.

Proof. It suffices to show that for any language represented by a regular expression r there is a CFG G_r generating the same language. This is done by means of a proof by induction on the number of operators in r. As this is identical in structure to the proof of Lemma 2.4.1, the details are left to the reader.

3.4 Converting CFGs to Chomsky Normal Form (CNF)

In this section, we show that every CFL can be generated by a Chomsky Normal Form grammar, CNF for short, a Context Free Grammar with a helpfully simple form. More precisely, a CNF grammar is a CFG with rules restricted as follows.

The right-hand side of a rule consists of:

i. Either a single terminal, e.g. $A \rightarrow a$.

ii. Or two variables, e.g. $A \rightarrow BC$.

iii. Or the rule $S \rightarrow \lambda$, if λ is in the language.
iv. The start symbol S may appear only on the left-hand side of rules.

Given a CFG G, we show how to convert it to a CNF grammar G' generating the same language.

Example 3.4.1. We use a grammar G with the following rules as a running example.

$$S \rightarrow AAS \mid aA; \ A \rightarrow BB \mid aA \mid S; \ B \rightarrow b \mid \lambda$$

We proceed in a series of steps which gradually enforce the above CNF criteria; each step leaves the generated language unchanged.

Step 1 For each terminal a, we introduce a new variable, U_a say, add a rule $U_a \rightarrow a$, and for each occurrence of a in a string of length 2 or more on the right-hand side of a rule, replace a by U_a. Clearly, the generated language is unchanged.

Example: If we have the rule $A \rightarrow Ba$, this is replaced by $U_a \rightarrow a$, $A \rightarrow BU_a$.

This ensures that terminals on the right-hand sides of rules obey criteria (i) above.

Example 3.4.1 continued.

This step changes our example grammar G to have the rules:

$$S \rightarrow AAS \mid U_aA; \ A \rightarrow BB \mid U_aA \mid S; \ B \rightarrow b \mid \lambda; \ U_a \rightarrow a$$

Step 2 For each rule with 3 or more variables on the right-hand side, we replace it with a new collection of rules obeying criteria (ii) above. Suppose there is a rule $U \rightarrow W_1W_2\cdots W_k$, for some $k \geq 3$. Then we create new variables $X_2, X_3, \ldots, X_{k-1}$, and replace the prior rule with the rules:

$$U \rightarrow W_1X_2; \ X_2 \rightarrow W_2X_3; \ \cdots; \ X_{k-2} \rightarrow W_{k-2}X_{k-1}; \ X_{k-1} \rightarrow W_{k-1}W_k$$

Clearly, the use of the new rules one after another, which is the only way they can be used, has the same effect as using the old rule $U \rightarrow W_1W_2\cdots W_k$. Thus the generated language is unchanged.

This ensures, for criteria (ii) above, that no right-hand side has more than 2 variables. We have yet to eliminate right-hand sides of one variable or of the form λ.

Example 3.4.1 continued.

This step changes our example grammar G to have the rules:

$$S \rightarrow AX \mid U_aA; \ X \rightarrow AS; \ A \rightarrow BB \mid U_aA \mid S; \ B \rightarrow b \mid \lambda; \ U_a \rightarrow a$$
Step 3 We replace each occurrence of the start symbol S with the variable S' and add the rule $S \rightarrow S'$. This ensures criteria (iv) above.

Example 3.4.1 continued.

This step changes our example grammar G to have the rules:

$$S \rightarrow S'; \ S' \rightarrow AX | U_a A; \ X \rightarrow AS'; \ A \rightarrow BB | U_a A | S'; \ B \rightarrow b | \lambda; \ U_a \rightarrow a$$

Step 4 This step removes rules of the form $A \rightarrow \lambda$.

To understand what needs to be done it is helpful to consider a derivation tree for a string w. If the tree use a rule of the form $A \rightarrow \lambda$, we label the resulting leaf with λ. We will be focusing on subtrees in which all the leaves have λ-labels; we call such subtrees λ-subtrees. Now imagine pruning all the λ-subtrees, creating a reduced derivation tree for w. Our goal is to create a modified grammar which can form the reduced derivation tree. A derivation tree, and its reduced form is shown in Figure 3.16.

![Figure 3.16: (a) A Derivation Tree for string ab. (b) The Reduced Derivation Tree.](image)

We begin by identifying the variables that can generate the string λ. To this end, we change the grammar as follows. Whenever there is a rule $A \rightarrow BC$ and B can generate λ, we add the rule $A \rightarrow C$ to the grammar (note that this does not allow any new strings to be generated); similarly, if C can generate λ, we add the rule $A \rightarrow B$; while if both B and C can generate λ, we add the rule $A \rightarrow \lambda$. Likewise, if there is a rule $A \rightarrow B$ and B can generate λ, we add the rule $A \rightarrow \lambda$.
3.4. CONVERTING CFGS TO CHOMSKY NORMAL FORM (CNF)

We proceed systematically as follows. We start with the variables \(B \) for which there is a rule \(B \rightarrow \lambda \). Then, iteratively, for each variable \(B \) which has been identified as generating \(\lambda \), we create new reduced rules as described in the previous paragraph, by removing instances of variable \(B \) from the right-hand sides of the current rules (this includes adding the rule \(A \rightarrow \lambda \) if either a rule \(A \rightarrow B \) or \(A \rightarrow BB \) is present). We augment the current rules with these reduced rules. We keep iterating this procedure so long as it creates additional new reduced rules with \(\lambda \) on the right-hand side.

An efficient implementation keeps, for each variable, a list of its locations in the right hand sides of the various rules. It is not hard to have this procedure run in time linear in the sum of the lengths of the rules.

Example 3.4.1 continued.

For our example grammar we start with the rules

\[
S \rightarrow S'; \quad S' \rightarrow AX \mid U_a A; \quad X \rightarrow AS'; \quad A \rightarrow BB \mid U_a A \mid S'; \quad B \rightarrow b \mid \lambda; \quad U_a \rightarrow a
\]

As \(B \rightarrow \lambda \) is a rule, we obtain the reduced rules

\[
S \rightarrow S'; \quad S' \rightarrow AX \mid U_a A; \quad X \rightarrow AS'; \quad A \rightarrow BB \mid U_a A \mid S' \mid B \mid \lambda; \quad B \rightarrow b \mid \lambda; \quad U_a \rightarrow a
\]

As \(A \rightarrow \lambda \) is now a rule, we next obtain

\[
S \rightarrow S'; \quad S' \rightarrow AX \mid U_a A \mid U_a; \quad X \rightarrow AS' \mid S'; \\
A \rightarrow BB \mid U_a A \mid S' \mid B \mid U_a \mid \lambda; \quad B \rightarrow b \mid \lambda; \quad U_a \rightarrow a
\]

There are no new rules with \(\lambda \) on the right-hand side. So the procedure is now complete.

Next, we remove all rules of the form \(A \rightarrow \lambda \), except for \(S \rightarrow \lambda \) if it is present. We argue that any previously generatable string \(w \neq \lambda \) remains generatable. For given a derivation tree for \(w \) using the old rules, using the new rules we can create the reduced derivation tree, which is a derivation tree for \(w \) in the new grammar. To see this, consider a maximal sized \(\lambda \)-subtree (that is a \(\lambda \)-subtree whose parent is not part of a \(\lambda \)-subtree). Then its root \(v \) must have a sibling \(w \) and parent \(u \) (these are the names of nodes, not strings). Suppose that \(u \) has variable label \(A \), \(v \) has label \(B \) and \(w \) has label \(C \). Then node \(v \) was generated by applying either the rule \(A \rightarrow BC \) or the rule \(A \rightarrow CB \) at node \(u \) (depending on whether \(v \) is the left or right child of \(u \)). In the reduced tree, applying the rule \(A \rightarrow C \) generates \(w \) and omits \(v \) and its subtree.

Finally, note that if \(S \) can generate \(\lambda \), then the above process will have added the rule \(S \rightarrow \lambda \), which allows \(\lambda \) to be generated by the new rules also.
Example 3.4.1 continued.
Removing the rules with λ on the right hand side yields the new collection of rules:

$$
S \to S'; \ S' \to AX \mid X \mid U_aA \mid U_a; \ X \to AS' \mid S'; \\
A \to BB \mid UaA \mid S' \mid B \mid U_a; \ B \to b; \ U_a \to a
$$

Step 5 This step removes rules of the form $A \to B$, which we call unit rules.

What is needed is to replace derivations of the form $A_1 \Rightarrow A_2 \Rightarrow \cdots \Rightarrow A_k \Rightarrow BC$ with a new derivation of the form $A_1 \Rightarrow BC$; this is achieved with a new rule $A_1 \Rightarrow BC$. Similarly, derivations of the form $A_1 \Rightarrow A_2 \Rightarrow \cdots \Rightarrow A_k \Rightarrow a$ need to be replaced with a new derivation of the form $A_1 \Rightarrow a$; this is achieved with a new rule $A_1 \Rightarrow a$. We proceed in two substeps.

Substep 5.1. This substep identifies variables that are equivalent, i.e. collections B_1, B_2, \cdots, B_l such that for each pair B_i and B_j, $1 \leq i < j \leq l$, B_i can generate B_j, and B_j can generate B_i. We then replace all of B_1, B_2, \cdots, B_l with a single variable, B_1 say. Clearly, this does not change the language that is generated.

To do this we form a directed graph based on the unit rules. For each variable, we create a vertex in the graph, and for each unit rule $A \to B$ we create an edge (A, B). Figure 3.17(a) shows the graph for our example grammar. The vertices in each strong component of the graph correspond to a collection of equivalent variables.

![Figure 3.17: (a) Graph showing the unit rules. (b) The reduced graph.](image)

Example 3.4.1 continued.
Here, the one non-trivial strong component contains the variables $\{S', X\}$. We replace S' with X yielding the rules:

$$
S \to X; \ X \to AX \mid X \mid U_aA \mid U_a; \ A \to BB \mid UaA \mid X \mid B \mid U_a; \ B \to b; \ U_a \to a
$$

We can remove the useless rule $X \to X$ also.

Substep 5.2. In this substep, we add rules $A_1 \Rightarrow BC$ and $A_1 \Rightarrow a$, as described above, so as to shortcut derivations that were using unit rules.
To this end, we use the graph formed from the unit rules remaining after Substep 5.1, which we call the reduced graph. It is readily seen that this is an acyclic graph.

In processing a rule $C \rightarrow D$, we will add appropriate non-unit rules that allow the shortcutting of all uses of $C \rightarrow D$, and hence allow the rule $C \rightarrow D$ to be discarded. If there are no unit rules with D on the left-hand side it suffices to add a rule $C \rightarrow EF$ for each rule $D \rightarrow EF$, and a rule $C \rightarrow d$ for each rule $D \rightarrow d$.

To be able to do this, we just have to process the unit rules in a suitable order. Recall that each unit rule is associated with a distinct edge in the reduced graph. As this graph will be used to determine the order in which to process the unit rules, it will be convenient to write “processing an edge” when we mean “processing the associated rule”. It suffices to ensure that each edge is processed only after any descendant edges have been processed. So it suffices to start at vertices with no outedges and to work backward through the graph. This is called a reverse topological traversal. (This traversal can be implemented via a depth first search on the acyclic reduced graph.)

For each traversed edge (C, D), which corresponds to a rule $C \rightarrow D$, for each rule $D \rightarrow EF$, we add the rule $C \rightarrow EF$, and for each rule $D \rightarrow d$, we add the rule $C \rightarrow d$; then we remove the rule $C \rightarrow D$. Any derivation which had used the rules $C \rightarrow D$ followed by $D \rightarrow EF$ or $D \rightarrow d$ can now use the rule $C \rightarrow EF$ or $C \rightarrow d$ instead. So the same strings are derived with the new set of rules.

Example 3.4.1 continued.

This step changes our example grammar G as follows (see Figure 3.17(b)):

First, we traverse edge (A, B). This changes the rules as follows:
- Add $A \rightarrow b$
- Remove $A \rightarrow B$.

Next, we traverse edge (X, U_a). This changes the rules as follows:
- Add $X \rightarrow a$
- Remove $X \rightarrow U_a$.

Next, we traverse edge (A, U_a). This changes the rules as follows:
- Add $A \rightarrow a$
- Remove $A \rightarrow U_a$.

Now, we traverse edge (A, X). This changes the rules as follows:
- Add $A \rightarrow AX$
- Remove $A \rightarrow X$.

There is no point to adding $A \rightarrow a$ and $A \rightarrow U_aA$ as they are already present.

Finally, we traverse edge (S, X). This changes the rules as follows:
- Add $S \rightarrow AX | U_aA | a$
- Remove $S \rightarrow X$.

The net effect is that our grammar now has the rules

\[
S \rightarrow AX | U_aA | a; \ X \rightarrow AX | U_aA | a; \ A \rightarrow BB | AX | U_aA | b | a; \ B \rightarrow b; \ U_a \rightarrow a
\]
Steps 4 and 5 complete the attainment of criteria (ii), and thereby create a CNF grammar generating the same language as the original grammar.

3.5 Showing Languages are not Context Free

We will do this with the help of a Pumping Lemma for Context Free Languages. To prove this lemma we need two results relating the height of derivation trees and the length of the derived strings, when using CNF grammars.

Lemma 3.5.1. Let T be a derivation tree of height h for string $w \neq \lambda$ using CNF grammar G. Then $w \leq 2^{h-1}$.

Proof. The result is easily confirmed by strong induction on h. Recall that the height of the tree is the length, in edges, of the longest root to leaf path.

The base case, $h = 1$, occurs with a tree of two nodes, the root and a leaf child. Here, w is the one terminal character labeling the leaf, so $|w| = 1 = 2^{h-1}$; thus the claim is true in this case.

Suppose that the result is true for trees of height k or less. We show that it is also true for trees of height $k + 1$. To see this, note that the root of T has two children, each one being the root of a subtree of height k or less. Thus, by the inductive hypothesis, each subtree derives a string of length at most 2^{k-1}, yielding that T derives a string of length at most $2 \cdot 2^{k-1} = 2^k$. This shows the inductive claim for $h = k + 1$.

It follows that the result holds for all $h \geq 1$. □

Corollary 3.5.2. Let w be the string derived by derivation tree T using CNF grammar G. If $|w| > 2^{h-1}$, then T has height at least $h + 1$ and hence has a root to leaf path with at least $h + 1$ edges and at least $h + 1$ internal nodes.

Now let’s consider the language $L = \{a^ib^ic^i \mid i \geq 0\}$ which is not a CFL as we shall proceed to show. Let’s suppose for a contradiction that L were a CFL. Then it would have a CNF grammar G, with m variables say. Let $p = 2^m$.

Let’s consider string $s = a^pb^pc^p \in L$, and look at the derivation tree T for s. As $|s| > 2^{m-1}$, by Corollary 3.5.2, T has a root to leaf path with at least $m + 1$ internal nodes. Let P be a longest such path. Each internal node on P is labeled by a variable, and as P has at least $m + 1$ internal nodes, some variable must be used at least twice.

Working up from the bottom of P, let c be the first node to repeat a variable label. So on the portion of P below c each variable is used at most once. The derivation tree is shown in Figure 3.18.

Let d be the descendant of c on P having the same variable label as c, A say. Let w be the substring derived by the subtree rooted at d. Let vwx be the substring derived by the subtree rooted at c (so v, for example, is derived by the subtrees hanging from P to its left...
3.5. SHOWING LANGUAGES ARE NOT CONTEXT FREE

side on the portion of P starting at c and ending at d's parent). Let $uvwxy$ be the string derived by the whole tree.

Observation 1. The height of c is at most $m + 1$. This follows because P is a longest root to leaf path and because no variable label is repeated on the path below node c. Hence, by Lemma 3.5.1, $|vwx| \leq 2^m = p$.

Observation 2. Either $|v| \geq 1$ or $|x| \geq 1$ (or both). We abbreviate this as $|vx| \geq 1$.

For node c has two children, one on path P, and a second child, which we name e, that is not on path P. This is illustrated in Figure 3.19. Suppose that e is c’s right child. Let x_2 be the string derived by the subtree rooted at e. As e is not a leaf, $|x_2| \geq 1$. Clearly x_2 is the right end portion of x (it could be that $x = x_2$); thus $|x| \geq 1$. Similarly if e is c’s left child,
Let’s consider replicating the middle portion of the derivation tree, namely the wedge W formed by taking the subtree C rooted at c and removing the subtree D rooted at d, to create a derivation tree for a longer string, as shown in Figure 3.20. Note that W’s root has label A, and the vertex reached by the one edge descending down from W, W’s child for short, is also labeled by A. Thus W’s child could be the root of subtree D, but it could also be the root of another copy of W. Consequently, W plus a nested subtree D is a legitimate replacement for subtree D. The resulting tree, with two copies of W, one nested inside the other, is a derivation tree for $uvvwxxy$. Thus $uvvwxxy \in L$.

Clearly, we could duplicate W more than once, or remove it entirely, showing that all the strings $uv^iwx^iy \in L$, for any integer $i \geq 0$.

Now let’s see why $uvvwxxy \notin L$. Note that we know that $|vx| \geq 1$ and $|vwx| \leq p$, by Observations 1 and 2. Further recall that $a^pb^pc^p = uvwxy$. As $|vwx| \leq p$, it is contained entirely in either one or two adjacent blocks of letters, as illustrated in Figure 3.21.

Therefore, when v and x are duplicated, as $|vx| \geq 1$, the number of occurrences of one or two of the characters increases, but not of all three. Consequently, in $uvvwxxy$ there are not equal numbers of a’s, b’s, and c’s, and so $uvvwx \notin L$.

Figure 3.20: Duplicating wedge W.

![Duplicating wedge W](image1)

Figure 3.21: Possible Locations of vwx in $a^pb^pc^p$.

![Possible Locations of vwx](image2)
3.5. SHOWING LANGUAGES ARE NOT CONTEXT FREE

We have shown both that $uvvwxxy \in L$ and $uvvwxxy \notin L$. This contradiction means that the original assumption (that L is a CFL) is mistaken. We conclude that L is not a CFL.

We are now ready to prove the Pumping Lemma for Context Free Languages, which will provide a tool to show many languages are not Context Free, in the style of the above argument.

Lemma 3.5.3. (Pumping Lemma for Context Free Languages.) Let L be a Context Free Language. Then there is a constant $p = p_L$ such that if $s \in L$ and $|s| \geq p$ then s is pumpable, that is s can be written in the form $s = uvwxy$ with

1. $|vx| \geq 1$.
2. $|vwx| \leq p$.
3. For every integer i, $i \geq 0$, $uv^iwx^iy \in L$.

Proof. Let G be a CNF grammar for L, with m variables say. Let $p = 2^m$. Let $s \in L$, where $|s| \geq p$, and let T be a derivation tree for s. As $|s| > 2^{m-1}$, by Corollary 3.5.2, T has a root to leaf path with at least $m+1$ internal nodes. Let P be a longest such path. Each internal node on P is labeled by a variable, and as P has at least $m+1$ internal nodes, some variable must be used at least twice.

Working up from the bottom of P, let c be the first node to repeat a variable label. So on the portion of P below c each variable is used at most one. Thus c has height at most $m+1$. The derivation tree is shown in Figure 3.18. Let d be the descendant of c on P having the same variable label as c, A say. Let w be the substring derived by the subtree rooted at d. Let vwx be the substring derived by the subtree rooted at c. Let $uvwxy$ be the string derived by the whole tree.

By Observation 1, c has height at most $m+1$; hence, by Lemma 3.5.1, vwx, the string c derives, has length at most $2^m = p$. This shows Property (2). Property (1) is shown in Observation 2, above.

Finally, we show property (3). Let’s replicate the middle portion of the derivation tree, namely the wedge W formed by taking the subtree C rooted at c and removing the subtree D rooted at d, to create a derivation tree for a longer string, as shown in Figure 3.20.

We can do this because the root of the wedge is labeled by A and hence W plus a nested subtree D is a legitimate replacement for subtree D. The resulting tree, with two copies of W, one nested inside the other, is a derivation tree for $uvvwxxy$. Thus $uvvwxxy \in L$.

Clearly, we could duplicate W more than once, or remove it entirely, showing that all the strings $uv^iwx^iy \in L$, for any integer $i \geq 0$.

Next, we demonstrate by example how to use the Pumping Lemma to show languages are not context free. The argument structure is identical to that used in applying the Pumping Lemma for regular languages.
Example 3.5.4. \(J = \{ ww \mid w \in \{a, b\}^* \}. \) We will show that \(J \) is not context free.

Step 1. Suppose, for a contradiction, that \(J \) were context free. Then, by the Pumping Lemma, there is a constant \(p = p_J \) such that for any \(s \in J \) with \(|s| \geq p \), \(s \) is pumpable.

Step 2. Choose \(s = a^{p+1}b^{p+1}a^{p+1}b^{p+1} \). Clearly \(s \in J \) and \(|s| \geq p \), so \(s \) is pumpable.

Step 3. As \(s \) is pumpable we can write \(s = uvwx\) with \(|vwx| \leq p \), \(|vx| \geq 1 \) and \(uv^iwx^iy \in J \) for all integers \(i \geq 0 \). Also, by condition (3) with \(i = 0 \), \(s' = uy \in J \). We argue next that in fact \(s' \notin J \). As \(|vwx| \leq p \), \(vwx \) can overlap one or two adjacent blocks of characters in \(s \) but no more. Now, to obtain \(s' \) from \(s \), \(v \) and \(x \) are removed. This takes away characters from one or two adjacent blocks in \(s \), but at most \(p \) characters in all (as \(|vx| \leq p \)). Thus \(s' \) has four blocks of characters, with either one of the blocks of \(a \)'s shorter than the other, or one of the blocks of \(b \)'s shorter than the other, or possibly both of these. In every case \(s' \notin J \). We have shown that both \(s' \in J \) and \(s' \notin J \). This is a contradiction.

Step 4. The contradiction shows that the initial assumption was mistaken. Consequently, \(J \) is not context free.

Comment. Suppose, by way of example, that \(vwx \) overlaps the first two blocks of characters. It would be incorrect to assume that \(v \) is completely contained in the block of \(a \)'s and \(x \) in the block of \(b \)'s. Further, it may be that \(v = \lambda \) or \(x = \lambda \) (but not both).

All you know is that \(|vwx| \leq p \) and that one of \(|v| \geq 1 \) or \(|x| \geq 1 \). Don’t assume more than this.

When applying the Pumping Lemma, it seems a nuisance to have to handle the cases where one of \(v \) or \(x \) may be the empty string, and fortunately, we can prove a variant of the Pumping Lemma in which both \(|v| \geq 1 \) and \(|x| \geq 1 \).

Lemma 3.5.5. (Variant of the Pumping Lemma for Context Free Languages.) Let \(L \) be a Context Free Language. Then there is a constant \(p = p_L \) such that if \(s \in L \) and \(|s| \geq p \) then \(s \) is pumpable, that is \(s \) can be written in the form \(s = uvwx \) with

1. \(|v|, |x| \geq 1 \).
2. \(|vwx| \leq p \).
3. For every integer \(i, i \geq 0 \), \(uv^iwx^iy \in L \).

Proof. Let \(\tilde{p}_L \) be the pumping constant for the standard pumping lemma applied to \(L \). We will chose \(p_L = 2\tilde{p}_L \).

Now let \(s \in L \) be any string of length at least \(p = p_L \).

We apply the standard pumping lemma to \(s \) and conclude that we can write \(s = \hat{u} \hat{v} \hat{w} \hat{x} \hat{y} \) with

1. \(|\hat{v} \hat{x}| \geq 1 \).
3.5. SHOWING LANGUAGES ARE NOT CONTEXT FREE

2. \(|\hat{v} \hat{w} \hat{x}| \leq \hat{p}_L.\)

3. For every integer \(i, i \geq 0, \hat{u} \hat{v}^i \hat{w} \hat{x}^i \hat{y} \in L.\)

If both \(|\hat{v}| \geq 1\) and \(\hat{x} \geq 1\) then the new result follows on setting \(u = \hat{u}, v = \hat{v}, w = \hat{w}, x = \hat{x}, y = \hat{y}.\)

Otherwise, if \(|\hat{v}| \geq 1\) and \(|\hat{x}| = 0\), then we set \(u = \hat{u}, v = \hat{v}, w = \lambda, x = \hat{v}, y = \hat{w} \hat{y}.\)

We observe that for all \(i, uv^iwx^i y = \hat{u} \hat{v}^i \lambda \hat{v}^i \hat{w} \hat{x} \hat{y} = \hat{u} \hat{v}^2 \hat{w} \hat{x} \hat{y} \in L;\) we also observe that \(\mid vwxy \mid = 2\hat{v} \leq 2|\hat{v} \hat{w} \hat{x}| \leq 2\hat{p}_L = p_L.\) Likewise, if \(|\hat{v}| = 0\) and \(|\hat{x}| \geq 1\), then we set \(u = \hat{u} \hat{w}, v = \hat{x}, w = \lambda, x = \hat{x}, y = \hat{y}.\) Again, \(uv^iwx^i y \in L\) for all integers \(i \geq 0\) and \(\mid vwxy \mid \leq p_L.\)

Example 3.5.6. \(K = \{a^i b^j c^k | i < j < k\}.\)

We show that \(K\) is not context free.

Step 1. Suppose, for a contradiction, that \(K\) were context free. Then, by the Pumping Lemma, there is a constant \(p = p_K\) such that for any \(s \in K\) with \(|s| \geq p, s\) is pumpable.

Step 2. Choose \(s = a^p b^{p+1} c^{p+2}\). Clearly, \(s \in K\) and \(|s| \geq p, s\) is pumpable.

Step 3. As \(s\) is pumpable we can write \(s = uvwxy\) with \(|vwxy| \leq p, |vx| \geq 1\) and \(uv^iwx^i y \in K\) for all integers \(i \geq 0.\)

As \(|vwxy| \leq p, vwxy\) can overlap one or two blocks of the characters in \(s\), but not all three. Our argument for obtaining a contradiction depends on the position of \(vwxy.\)

Case 1. \(vwxy\) does not overlap the block of \(c's.\)

Then consider \(s' = uvwvxy.\) As \(s\) is pumpable, by Condition (3) with \(i = 2, s' \in K.\)

We argue next that in fact \(s' \notin K.\) As \(v\) and \(x\) have been duplicated in \(s'\), the number of \(a's\) or the number of \(b's\) is larger than in \(s\) (or possibly both numbers are larger); but the number of \(c's\) does not change. If the number of \(b's\) has increased, then \(s'\) has at least as many \(b's\) as \(c's,\) and then \(s' \notin K.\) Otherwise, the number of \(a's\) increases, and the number of \(b's\) is unchanged, so \(s'\) has at least as many \(a's\) as \(b's,\) and again \(s' \notin K.\)

Case 2. \(vwxy\) does not overlap the block of \(a's.\)

Then consider \(s' = uvwy.\) Again, as \(s\) is pumpable, by Condition (3) with \(i = 0, s' \in K.\)

Again, we show that in fact \(s' \notin K.\) To obtain \(s'\) from \(s,\) the \(v\) and the \(x\) are removed. So in \(s'\) either the number of \(c's\) is smaller than in \(s,\) or the number of \(b's\) is smaller (or both). But the number of \(a's\) is unchanged. If the number of \(b's\) is reduced, then \(s'\) has at least as many \(a's\) as \(b's,\) and so \(s' \notin K.\) Otherwise, the number of \(c's\) decreases and the number of \(b's\) is unchanged; but then \(s'\) has at least as many \(b's\) as \(c's,\) and again \(s' \notin K.\)

In either case, a pumped string \(s'\) has been shown to be both in \(K\) and not in \(K.\) This is a contradiction.

Step 4. The contradiction shows that the initial assumption was mistaken. Consequently, \(K\) is not context free.

The following example uses the yet to be proven result that if \(L\) is context free and \(R\) is regular then \(L \cap R\) is also context free.
Example 3.5.7. \(H = \{ z \mid z \in \{a, b, c\}^* \text{ and } z \text{ has equal numbers of } a\text{'s, } b\text{'s and } c\text{'s} \} \). Consider \(H \cap a^*b^*c^* = L = \{ a^ib^ic^i \} \). If \(H \) were context free, then \(L \) would be context free too. But we have already seen that \(L \) is not context free. Consequently, \(H \) is not context free either.

This could also be shown directly by pumping on string \(s = a^{p}b^{p}c^{p} \).

3.6 PDAs Recognize exactly the Context Free Languages

The notion of a leftmost derivation is useful for the next construction.

Definition 3.6.1. A leftmost derivation of a string \(s \) by a CFG \(G \) is a derivation in which the leftmost variable in the currently derived string is always the one to be replaced.

The derivations in Example 3.3.2 are both leftmost derivations. Also, a leftmost derivation corresponds to a Depth First traversal of the derivation tree.

Lemma 3.6.2. Let \(L \) be a CFL. Then there is a PDA \(M_L \) that recognizes \(L \).

Proof. Let \(L \) be generated by CNF grammar \(G_L = (V_L, T, R_L, S_L) \). The corresponding \(M_L \) is illustrated in Figure 3.22. The computation centers on vertex \(\text{Main} \). Each return visit to

![Figure 3.22: PDA \(M_L \) simulating CFL \(G_L \).](image)

\(\text{Main} \) corresponds to the simulation of one step of a *leftmost derivation* in \(G_L \). Specifically:

Claim. Let \(s \in T^* \) and \(\sigma \in V^* \). Then
3.6. PDAS RECOGNIZE EXACTLY THE CONTEXT FREE LANGUAGES

G_L generates string $s\sigma$
exactly if

M_L can reach vertex Main with data configuration $(s, \$\sigma^R)$.

Note that the derivation is always replacing the leftmost symbol in σ. In order to simulate the derivation’s use of rule $A \to a$, M_L has a self-loop labeled (Pop A, Read a). To simulate the use of rule $A \to BC$, M_L will execute the sequence Pop A, Push C, Push B (remember, $\$\sigma^R$ is on the stack, so the B needs to be at the top of the stack). To achieve this, M_L has an additional vertex called “Sim $A \to BC$” and edges (Main, “Sim $A \to BC$”) and (“Sim $A \to BC$”, Main), labeled (Pop A, Push C) and Push B, respectively. It will be helpful to refer to these actions, that take M_L from vertex Main back to itself, as supermoves. So each supermove of M_L corresponds to one derivation step in G_L.

A derivation of a terminal string s occurs if $\sigma = \lambda$. To allow this to be recognized, M_L uses a $\$-$shielded stack. Then if M_L is at vertex Main with data-configuration $(s, \$)$, it can pop its stack and move to its recognizing vertex. Thus if we can show the claim it is immediate that $G_L \Rightarrow^* w$ exactly if M_L can reach vertex Main with data configuration $(w, \$)$, which is the case exactly if M_L can reach its recognizing vertex on input w, i.e. exactly if $w \in L(M_L)$.

Proof of Claim. We show the claim in two steps. First, suppose that $G_L \Rightarrow^* s\sigma$. Then there is a leftmost derivation $S = s_1\sigma_1 \Rightarrow s_2\sigma_2 \Rightarrow \cdots \Rightarrow s_{k+1}\sigma_{k+1} = s\sigma$. (In a leftmost derivation, at step i, the leftmost variable in σ_i, for $1 \leq i < k$, is always the one to be replaced using a rule of the grammar. It corresponds to a Depth First Traversal of the derivation tree.) The corresponding k supermove computation by M_L starts by moving to vertex Main with λ read and $\$S$ on its stack, i.e. it has data configuration $C_1 = (\lambda, \$S) = (s_1, \$\sigma^R_1)$. It then proceeds through the following k data configurations at vertex Main: $C_2 = (s_2, \$\sigma^R_2), \cdots C_{k+1} = (s_{k+1}, \$\sigma^R_{k+1})$, and it goes from C_i to C_{i+1}, for $1 \leq i \leq k$; by means of the supermove corresponding to the application of the rule taking $s_i\sigma_i$ to $s_{i+1}\sigma_{i+1}$.

Next suppose that M_L reaches vertex Main with configuration $(s, \Sigma\sigma^R)$. It does so by means of a computation using k supermoves, for some $k \geq 0$. The computation begins by moving to vertex Main, while reading λ and pushing $\$S$ on the stack, i.e. it is at configuration $C_1 = (\lambda, \$S) = (s_1, \$\sigma^R_1)$. It then moves through the following series of data configurations at vertex Main: $C_2 = (s_2, \$\sigma^R_2), \cdots C_{k+1} = (s_{k+1}, \$\sigma^R_{k+1})$, where, for $1 \leq i \leq k$, C_{i+1} is reached from C_i by means of a supermove. By construction, the ith supermove corresponds to the application of the rule that takes string $s_i\sigma_i$ to $s_{i+1}\sigma_{i+1}$. Thus, the following is a derivation in grammar G_L: $S = s_1\sigma_1 \Rightarrow s_2\sigma_2 \Rightarrow \cdots \Rightarrow s_{k+1}\sigma_{k+1}$.

End proof of Claim

Now we conclude the proof of the lemma by showing that $L = L(M_L)$.

First, suppose that $w \in L$ i.e. that G_L can generate the string $w = w\sigma$ with $\sigma = \lambda$. Then, by the just proved claim, M_L can reach vertex Main with configuration $(w, \$)$. And from this configuration, M_L can follow the edge to its recognizing vertex, by popping the $\$ now at the top of its stack. Thus $w \in L(M_L)$.

Next, suppose that $w \in L(M_L)$. This means that M_L reaches its recognizing vertex
having read \(w \). But then its last move must be a \(\text{Pop} \ $ \) from vertex Main. This means that it had reached configuration \((w, $)\) at vertex main. Then, by the claim, \(G_L \) can generate string \(w \); i.e. \(w \in L \).

Lemma 3.6.3. Let \(L \subseteq \Sigma^* \) be context-free and let \(R \subseteq \Sigma^* \) be regular. Then \(L \cap R \) is context free.

Proof. We illustrate the construction we give in this proof in Example 3.6.4 below.

Let \(G_L = (V_L, \Sigma, R_L, S_L) \) be a CNF grammar generating \(L \) and let \(M_R = (V_R, \text{start}, F_R, \delta_R) \) be a DFA recognizing \(R \). We will build a grammar \(G_{L \cap R} = (V_{L \cap R}, \Sigma, R_{L \cap R}, S_{L \cap R}) \) to generate \(L \cap R \). Let \(V_R = \{q_1, q_2, \ldots, q_m\} \). For each variable \(U \in V_L \), we create \(m^2 \) variables \(U_{ij} \) in \(V_{L \cap R} \). The rules we create will ensure that:

\[
U_{ij} \Rightarrow^* w \in \Sigma^*
\]

exactly if

\[
U \Rightarrow^* w \text{ and there is a path labeled } w \text{ in } M_R \text{ going from } v_i \text{ to } v_j.
\]

Thus a variable in \(G_{L \cap R} \) records the name of the corresponding variable in \(G_L \) and also records a “start” and a “finish” vertex in \(M_R \). The constraint we are imposing is that \(U_{ij} \) can generate \(w \) exactly if both \(U \) can generate \(w \) and \(M_R \) when started at \(q_i \) will end up at \(q_j \) on input \(w \). It follows that if \(q_f \) is a recognizing vertex of \(M_R \) and if \(q_1 = \text{start} \), then

\[
(S_L)_{1f} \Rightarrow^* w \text{ for some } q_f \in F_R
\]

exactly if

\[
w \in L \cap R.
\]

If there is more than one \(q_f \in F_R \) we cannot use \((S_L)_{1f}\) as the start variable in \(G_{L \cap R} \), as this is not a single variable. Instead, we introduce an additional start variable \(S_{R \cap L} \) and add the rules

- \(S_{R \cap L} \rightarrow (S_L)_{1f} \) for all \(q_f \in F_R \).

To simulate the use of a single rule in \(G_L \), together with the corresponding move in \(M_R \) in the case that the rule generates a terminal, we create the following rules.

- \(U_{ij} \rightarrow a \) if \(A \rightarrow a \) is a rule in \(G_L \) and \(\delta_R(q_i, a) = q_j \).
- \(A_{ik} \rightarrow B_{ij}C_{jk} \) if \(A \rightarrow BC \) is a rule in \(G_L \), for all \(i, j, k \), \(1 \leq i, j, k \leq m \).

Finally, to handle the case that \(\lambda \in L \cap R \), i.e. that \(S_L \rightarrow \lambda \) is a rule in \(G_L \) and \(\lambda \in R \), we add the following rule.

- \(S_{L \cap R} \rightarrow \lambda \) if \(\lambda \in L \cap R \).

To see why this works, we consider any non-empty string \(w \in L \cap R \) and look at a derivation tree \(T \) for \(w \) with respect to \(G_L \). At the same time we look at a \(w \)-recognizing path \(P \) in \(M_R \).
Example 3.6.4. CFG for $L \cap R$
where $R = a^*bb^*$ and L has grammar G given below.

G is given by the rules:

$$
\begin{align*}
S & \rightarrow WX \\
W & \rightarrow \lambda | aWb \\
X & \rightarrow \lambda | Xa
\end{align*}
$$

First, we convert G to a CNF grammar, given the rules:

$$
\begin{align*}
S & \rightarrow WX | U^aY | U^aU^b | UX^a | a | \lambda \\
W & \rightarrow U^aY | U^aU^b \\
X & \rightarrow UX^a \\
Y & \rightarrow WU^b \\
U^a & \rightarrow a \\
U^b & \rightarrow b
\end{align*}
$$

We use a 2-vertex automata M_R to recognize $R = a^*bb^*$, as shown in Figure 3.23.

This means that we need up to three versions of each variable, e.g. for W we will need W_{11}, W_{12}, W_{22}. W_{21} is not needed as one cannot go from vertex p_2 to vertex p_1 in M_R.

The new grammar has start vertex S_{12} and rules:

$$
\begin{align*}
S_{12} & \rightarrow W_{12}X_{22} | U^a_{11}Y_{12} | U^a_{11}U^b_{12} \\
W_{12} & \rightarrow U^a_{11}Y_{12} | U^a_{11}U^b_{12} \\
Y_{12} & \rightarrow W_{12}U^b_{22} \\
U^a_{11} & \rightarrow a \\
U^b_{12} & \rightarrow b \\
U^b_{22} & \rightarrow b
\end{align*}
$$

None of the other variables can generate a string of terminals. For an a can be read by M_R only along the self-loop from p_1 to itself, so the only useful copy of variable U^a is U^a_{11}. Similarly only U^b_{12} and U^b_{22} are useful. This means that only Y_{12} and Y_{22} can remain for the rules involving Y end with a U^b_{12} or a U^b_{22}. Likewise the fact that the rules involving W begin with a U^a_{11} limit W to W_{11} and W_{12}. Looking at the ends of the rules for W, which end with a Y (either Y_{12} and Y_{22}) or a U^b (either U^b_{12} or a U^b_{22}) further limit us to W_{12}. This in turn rules out Y_{22}.

Finally, note that M_R does not recognize λ, which eliminates the rule deriving λ.

We label each leaf of T with the names of two vertices in M_R: the vertices that M_R is at right before and right after reading the input character corresponding to the character
labeling the leaf. If we read across the leaves from left to right, recording vertex and character labels, we obtain a sequence \(p_1w_1p_2, p_2w_2p_3, \ldots, p_nw_np_{n+1} \), where \(p_1 = \text{start} \), \(p_{n+1} \in F_R \), and \(\delta_R(p_i, w_i) = p_{i+1} \) for \(1 \leq i \leq n \).

Next, we provide vertex labels to the internal nodes in \(T \). A node receives as its first label the first label of its leftmost leaf and as its second label the second label of its rightmost leaf. Suppose that \(A \) is the variable label at an internal node with children having variable labels \(B \) and \(C \) (see Figure 3.24).

![Figure 3.23: DFA recognizing \(a^*bb^* \).](image1)

![Figure 3.24: Vertex Labels in Derivation Tree \(T \): first label on left, second label on right.](image2)

Suppose further that \(B \) receives vertex labels \(p \) and \(q \) (in that order), and \(C \) receives vertex labels \(r \) and \(s \). Then \(q = r \) and \(A \) receives vertex labels \(p \) and \(s \). To obtain the derivation in \(G_{L \cap R} \), we simply replace \(A \Rightarrow BC \) by \(A \Rightarrow BpqCqs \). In addition, at the leaf level, we replace \(A \Rightarrow a \) by \(A \Rightarrow a \) where \(p \) and \(q \) are the vertex labels on the leaf (and on its parent). Clearly, this is a derivation in \(G_{L \cap R} \) and further it derives \(w \). Thus if \(w \in L \cap R \), then \(S_{L \cap R} \Rightarrow^* w \). On the other hand, suppose that \(S_{L \cap R} \Rightarrow^* w \). Then consider the derivation tree for \(w \) in \(G_{L \cap R} \). On removing the root and replacing each variable \(U_{ij} \) by \(U \) we obtain a derivation tree for \(w \) in \(G_L \) (for recall that the root has one child labeled by \((S_L)_{1f} \) for some \(q_f \in F_R \); the variable replacement process turns this child’s label to \(S_L \)). Thus \(S_L \Rightarrow^* w \) also. On looking at the leaf level, and labeling each leaf with the vertex indices on the variable at its parent, we obtain a sequence \(p_1w_1p_2, p_2w_2p_3, \ldots, p_nw_np_{n+1} \), where \(w = w_1w_2 \cdots w_n \), \(p_1 = \text{start} \) and \(p_{n+1} \in F_R \). As \(\delta_R(p_i, w_i) = p_{i+1} \), for \(1 \leq i \leq n \), by the first rule definition for \(G_{L \cap R} \), we see that \(p_1p_2 \cdots p_{n+1} \) is a \(w \)-recognizing path in \(M_R \), and so \(w \in R \). This shows that if \(S_{L \cap R} \Rightarrow^* w \) then \(w \in L \cap R \).
3.6.1 Constructions a CFG Generating a PDA-Recognized Language

Our final construction will show that if L is recognized by a PDA, then there is a CFG generating L. The first step in the construction is to represent the computation of the PDA in terms of matching pushes and pops to the stack.

A little more terminology will be helpful.

Definition 3.6.5. A computation of M that goes from vertex p to vertex q and begins and ends with σ on the stack is called σ-preserving if throughout the computation σ remains on the stack (possibly with other characters pushed on top some of the time); i.e. none of σ is popped during this part of the computation.

Matching Pushes and Pops: The Trapezoidal Decomposition

Let $M_L = (Q, T, \Gamma, F, s, \delta)$ be a $\$$-shielded PDA recognizing L that has a single recognizing vertex f which is reachable only with an empty stack (see Lemma 3.2.2). Let us further suppose that on each move M_L does either a Pop or a Push but not both (if there is a move in which neither a Pop nor a Push occurs, it can be replaced by two moves, the first being an unnecessary Push and the second being a Pop; likewise, a move which has both a Pop and a Push can be replaced by two moves: a Pop followed by a Push). Finally, we suppose that the first step of the computation goes from vertex s to vertex s', and this move pushes the $\$$-shield onto the stack, but does no read (i.e. it reads λ); in addition, s cannot be visited again, which is ensured by having no in-edges to s. Also note that s has just the one out-edge. Likewise, we suppose that the last step of a recognizing computation will go from vertex f' to vertex f, while popping the $\$$-shield and again reading λ; further, this is the only visit to f, which is ensured by having no other in-edges to f and no out-edges at all. Finally, note that s and f are distinct vertices (since one has a single in-edge and the other a single out-edge).

We begin with an example that illustrates the general construction. Consider the following PDA M_L which recognizes the set L of strings with equal numbers of a’s and b’s. The diagram for M_L is shown in Figure 3.25. Now consider a possible computation of M_L on input $a(ab)(bbaa)(ba)b$ (the brackets indicate one way of matching the a’s and b’s). It is helpful to view M_L’s computation in terms of a Stack Contents Diagram, as shown in Figure 3.26. It shows the height of the stack evolving as the computation proceeds. The successive nodes in the diagram represent the successive vertices reached by M_L over the course of its computation. For clarity in our example, so as to distinguish the multiple instances of vertex p, we name them p^1, p^2, etc. In general, though, we will label a node in the diagram with the name of the corresponding vertex in M_L; thus multiple nodes could have the same label. When no confusion will result, we will often name a node by using its label (even when this is not a unique identifier). Also, each read is shown as a label on an edge; so for example in going from p^1 to p^2 an a is read (i.e. in going from the first visit to vertex p to the second visit to p). In addition, the stack contents at any point in the computation can be obtained by reading vertically up the series of trapezoids; e.g. at p^6, the stack contents are $\$$ABB$.
CHAPTER 3. PUSHDOWN AUTOMATA AND CONTEXT FREE LANGUAGES

Figure 3.25: PDA recognizing strings with equal numbers of a’s and b’s.

Notice that the string recognized by this computation can be obtained by concatenating the series of edge labels in left to right order. Our goal is to create a derivation tree that has one leaf for each edge, in the same left to right order, and with each leaf having the same label as the corresponding edge. One way to do this is to introduce one internal node for each trapezoid and one leaf for each edge in the Stack Contents Diagram. Clearly, this derivation tree derives the string recognized by the computation of M_L represented in the Stack Contents Diagram. Of course, we have yet to specify the variables and rules of the grammar that would actually let us generate this derivation tree. But the goal is clear: we want to generate the derivation tree shown in Figure 3.27.

Now we are ready to describe how to create the grammar G_L generating L.

Forming the trapezoids We associate each node in the Stack Contents Diagram with a matching successor or predecessor node (or possibly both), as follows.

Definition 3.6.6. Nodes p and q are matched if q is the first vertex following p for which the computation path in M_L from p to q is σ-preserving.

If we draw the edges connecting matched vertices in the Stack Contents Diagram, this naturally partitions the diagram into trapezoids. We call this the *Trapezoidal Decomposition*. In our example, the first and last vertices are s and f, and they are matched. All the other vertices are instances of vertex p. Note that p^2 is matched with p^4, and p^4 is also matched with p^8. (The vertices at a point in the computation where M_L switches from doing Pops to Pushes will be the ones that are double matched.)

We give each trapezoid T a name that exactly specifies the two computation steps it represents. Each such name has the form T_{pqr}^{Aab}, where the first computation step comprises “Read(a), Push(A)” operations and goes from vertex p to vertex q, and the second computation step comprises “Read(b), Pop” operations and goes from vertex r to vertex s. Notice
that either or both of a and b could equal λ; indeed, in our example the bottommost trapezoid is $T_{\lambda \lambda \lambda \lambda}$. We will only allow values for the parameters A, a, b, p, q, r, s that correspond to possible computation steps of M_L and to emphasize this point we refer to such trapezoids T_{ABab} as realizable trapezoids. In our example, T_{Aab} is realizable but T_{Aaa} is not, for opposite characters must be read by the two computation steps represented by a trapezoid.

We also note that the intermediate computation that takes M_L from q to r must be stack-preserving. The consequence is that the Pop performed in T’s second step pops the very A pushed in its first step. And so the full computation going from p to s is also stack-preserving. We call this computation a phase. Note that the phase starting at node p is simply the shortest stack-preserving computation beginning at node p.

Let \mathcal{P} be the phase associated with trapezoid T. We call T the base trapezoid for \mathcal{P}. If $T = T_{ABab}$, then \mathcal{P} consists of T plus a stack-preserving computation that goes from q to r. As this computation is stack-preserving, it consists of zero or more (sub)-phases, $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_k$, say, where $k \geq 0$ (the case $k = 0$ can occur only when $q = r$, though even when $q = r$ it could be that $k \geq 1$). In our example, the phase \mathcal{P} that begins at p^1 ends at p^{11}. $p^1p^2p^9p^{10}p^{11}$ is its base trapezoid. \mathcal{P} contains three subphases that begin and end at, respectively, p^2 and p^4, p^4 and p^8, and p^8 and p^{10}.

If a phase consists of just two steps, we call its base trapezoid a triangle. In our example, the subphase which goes from p^2 to p^4 is a triangle.

A key property of the trapezoids (and phases) is their nesting. Suppose that realizable trapezoid T has k realizable trapezoids T_1, T_2, \ldots, T_k immediately above it in the trapezoidal decomposition. We will say that T_{i+1} follows T_i, for $1 \leq i < k$, meaning that the bottom right-hand corner of T_i has the same label as the bottom left-hand corner of T_{i+1}. We will
also say that T_1, T_2, \cdots, T_k are nested in T, meaning that T’s top left-hand corner has the same label as the bottom left-hand corner of T_1, and T’s top right-hand corner has the same label as the bottom right-hand corner of T_k, and that T_{i+1} follows T_i, for $1 \leq i < k$. In terms of the trapezoid names, we have that $T_i = T_{q_i \circ \circ \circ q_{i+1}}$, for $1 \leq i \leq k$, and $T = T_{q_1 q_k \circ \circ \circ \circ}$, for some $q_1, q_2, \cdots, q_{k+1}$, where each \circ indicates an unspecified parameter value.

The Context Free Grammar For each realizable trapezoid $T = T_{Aab}^{pqs}$ in the trapezoidal decomposition we will create a node in the derivation tree labeled by a variable $U = U_{Aab}^{pqs}$.

Example, continued. In our example, this yields the following three variables:

$U_{\$\$ppf}^{sppf}, U_{pppp}^{Aab}$, and U_{pppp}^{Bba}.

The start variable in our example is $U_{\$\$ppf}^{sppf}$, it corresponds to the initial and final moves of a recognizing computation, which are respectively, a move from vertex s to p pushing $\$$, and a move from vertex p to f popping this same $\$$.

Let T be a realizable trapezoid and suppose that realizable trapezoids T_1, T_2, \cdots, T_k are nested inside T. Let the corresponding nodes in the derivation tree be named v and v_1, v_2, \cdots, v_k, respectively, and let them be labeled by U and U_1, U_2, \cdots, U_k, respectively. We will say that U_1, U_2, \cdots, U_k are nested inside U and that U_{i+1} follows U_i, for $1 \leq i < k$.

A Difficulty: High Degree Nodes However, there is one difficulty: we would like v_1, v_2, \cdots, v_k to be the children of v in left to right order. But nodes in a derivation tree can have only bounded degree, so for large k, v cannot have k children. Instead, we replace each high degree node with an equivalent subtree of low degree nodes, which we do using the standard construction for representing a tree with high degree nodes using a binary tree. We illustrate the solution for our example in Figure 3.28. In detail, if $k > 1$, we introduce $k - 1$ vertices x_1, \cdots, x_{k-1}. x_1 is made the middle child of v (v’s other two children being the leaves labeled by a and b, where $T = T_{\circ \circ \circ}$ is the trapezoid corresponding to node v).
For $1 \leq i \leq k - 2$, x_i is given left child v_i and right child x_{i+1}, while x_{k-1} is given left child v_{k-1} and right child v_k.

![Derivation Tree including Intermediate Nodes](image)

Figure 3.28: Derivation Tree including Intermediate Nodes

The Grammar All that remains is to specify the rules of our grammar.

Suppose that realizable trapezoids $\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_k$ are nested inside realizable trapezoid \mathcal{T}, where \mathcal{T} begins with a “Read a” operation and ends with a “Read b”. Then we need to be able to perform the corresponding derivation, namely:

$$ U \Rightarrow^* a U_1 U_2 \cdots U_k b. $$

If $k = 0$ we add the rule

$$ U \rightarrow ab. $$

If $k = 1$ we add the rule

$$ U \rightarrow a U_1 b. $$

For larger values of k, first recall that $U_i = U_{q_i q_i+1}^q$ for $1 \leq i \leq k$ and $U = U_{q_i q_k+1}^q$. We will introduce $k - 1$ intermediate variables $X_i = X_{q_i q_k+1}$ for $1 \leq i < k$, where X_i will be able to derive $U_i \cdots U_k$. This derivation will use the following rules:

$$ U \rightarrow a X_1 b $$

$$ X_i \rightarrow U_i X_{i+1}, \text{ for } 1 \leq i \leq k - 2 $$

$$ X_{k-1} \rightarrow U_{k-1} U_k. $$

To ensure these rules are available we create the following (possibly larger) collection of rules.

$$ U_{a b_{p q q s}} \rightarrow ab, \text{ for all variables } U_{a b_{p q q s}}, \text{i.e. for all realizable triangles } \mathcal{T}_{a b_{p q q s}}. $$

$$ U_{a b_{p q t x}} \rightarrow a U_{a b_{p q t x}}^t b, \text{ for all variables } U_{a b_{p q t x}}^t \text{ and } U_{a b_{q r s t}}^t, \text{i.e. for all realizable } \mathcal{T}_{a b_{p q t x}}^t \text{ and } \mathcal{T}_{a b_{q r s t}}^t. $$

$$ U_{a b_{p q r s}} \rightarrow a X_{q r} b, \text{ for all variables } U_{a b_{p q r s}}. $$

$$ X_{p t} \rightarrow U_{a b_{p q r s}}^t X_{s t}, \text{ for all variables } U_{a b_{p q r s}}^t \text{ and all } t \in Q. $$

$$ X_{p y} \rightarrow U_{a b_{p q r s}}^y U_{a b_{q r s t}}^t U_{a b_{s t z y}}^z, \text{ for all variables } U_{a b_{p q r s}}^t \text{ and } U_{a b_{q r s t}}^t. $$
Proof. Note that for 1 \leq i \leq k, U_i = U_{pqrs}^\circ \circ \circ \circ q_{i+1}, for some q_1, q_2, \cdots, q_{k+1}, with q_1 = q and q_{k+1} = r, where \circ denotes an unspecified value.

If k = 0, then q = r, and the derivation uses the rule $U_{pqrs}^{Aab} \rightarrow ab$ which is a rule because U_{pqrs}^{Aab} is a variable.

If k = 1, the derivation uses the rule $U_{pqrs}^{Aab} = U_{pqrs}^{Aab} \rightarrow a U_{pqrs}^{Aab} b = a U_1 b$ which is a rule because U_{pqrs}^{Aab} and U_1 are variables.

For $k > 1$, we use the following series of rules to derive $a U_1 U_2 \cdots U_k b$.

i. $U = U_{pqrs}^{Aab} \rightarrow a X_{q_1} b = a X_{q_1} q_{k+1} b$.

ii. In turn, for $1 \leq i \leq k - 2$, $X_{q_i} q_{k+1} \rightarrow U_{pqrs}^{Aab} X_{q_{i+1}} q_{k+1} = U_i X_{q_{i+1}} q_{k+1}$.

iii. Finally, $X_{q_{k-1}} q_{k+1} \rightarrow U_{pqrs}^{Aab} U_{pqrs}^{Aab} = U_{k-1} U_k$.

It is readily confirmed that these are all rules of the grammar, and the net effect of applying this series of rules is to make the derivation $U \Rightarrow a U_1 U_2 \cdots U_k b$. \hfill \Box

Lemma 3.6.8. Let σ be read by a phase of M_L’s computation that goes from vertex p to vertex s and has base trapezoid T_{pqrs}^{Aab}. Then, in grammar G_L, U_{pqrs}^{Aab} can derive σ.

Proof. We create the derivation tree, as described above.

We now prove by induction that if a computation corresponding to a Phase P with base trapezoid T_{pqrs}^{Aab} reads string σ, then the corresponding derivation tree derives string σ. If P corresponds to a triangle, T_{pqrs}^{Aab}, then P reads string $\sigma = ab$ ($r = q$ in this case); also $U_{pqrs}^{Aab} \rightarrow ab$ is a rule, so U_{pqrs}^{Aab} can derive ab.

Example, continued. For our example, this creates the following rules.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{pq}^{Aab}</td>
<td>$U_{pq}^{Bba}</td>
</tr>
<tr>
<td>U_{pq}^{Aab}</td>
<td>$a U_{pq}^{Aab} b</td>
</tr>
<tr>
<td>U_{pq}^{Bba}</td>
<td>$b U_{pq}^{Aab} a</td>
</tr>
<tr>
<td>X_{pq}</td>
<td>$U_{pq}^{Aab} U_{pq}^{Aab}</td>
</tr>
<tr>
<td>X_{pq}</td>
<td>$U_{pq}^{Aab} X_{pq}</td>
</tr>
</tbody>
</table>

We let G_L denote the grammar created by the above construction.

It should be clear that if M_L recognizes w then we can build a derivation tree for w in G_L as described above, though we will prove this formally in Lemma 3.6.8. We also need to confirm that the only strings having derivation trees are those recognized by M_L, which we do in Lemma 3.6.9. First, we give a preliminary lemma regarding the grammar.

Lemma 3.6.7. Suppose that U_1, U_2, \cdots, U_k are nested inside $U = U_{pqrs}^{Aab}$. Then there is a derivation $U \Rightarrow^* a U_1 U_2 \cdots U_k b$.
Otherwise, suppose that \(P \) has base trapezoid \(\mathcal{T}_{pqr}^{Aab} \) and subphases \(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_k \), with base trapezoids \(\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_k \). Let \(U_i \) be the variable corresponding to \(\mathcal{T}_i \), for \(1 \leq i \leq k \). \(\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_k \) are nested inside \(\mathcal{T}_{pqr}^{Aab} \). Correspondingly, \(U_1, U_2, \ldots, U_k \) are nested inside \(U_{pqr}^{Aab} \).

By Lemma 3.6.7, \(U \Rightarrow a U_1 U_2 \cdots U_k b \). If the computation corresponding to phase \(\mathcal{P}_i \) reads \(\sigma_i \) then phase \(\mathcal{P} \) reads \(a \sigma_1 \sigma_2 \cdots \sigma_k b = \sigma \). By induction, \(U_i \) can derive \(\sigma_i \). It follows that \(U_{pqr}^{Aab} \) can derive \(a \sigma_1 \sigma_2 \cdots \sigma_k b = \sigma \).

Lemma 3.6.9. Suppose that, in the grammar \(G_L \), \(U_{pqr}^{Aab} \) can derive \(\sigma \); then there is a phase of \(M \)'s computation that reads \(\sigma \) while going from vertex \(p \) to vertex \(s \), and which has base trapezoid \(\mathcal{T}_{pqr}^{Aab} \).

Proof. Consider a derivation tree for \(w \) starting at a root node labeled by variable \(U_{pqr}^{Aab} \). For each node labeled by variable \(U_{wxyz}^{Ccd} \) create a Phase \(\mathcal{P} \) with base trapezoid \(\mathcal{T}_{wxyz}^{Ccd} \). Suppose that variables \(U_1, U_2, \ldots, U_k \) are nested inside variable \(U \). Let \(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_k \) and \(\mathcal{P} \) be the corresponding phases and let \(\mathcal{P}_i \) have base trapezoid \(\mathcal{T}_i \), for \(1 \leq i \leq k \); then \(\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_k \) are nested inside \(\mathcal{T} \).

We argue by induction that the resulting computation is a phase which reads string \(\sigma \), and has base trapezoid \(\mathcal{T}_{pqr}^{Aab} \). If the derivation tree has two leaf nodes, then the derivation has the form \(U_{pqr}^{Aab} \Rightarrow ab \) (\(r = q \) in this case). The corresponding computation comprises a single trapezoid \(\mathcal{T}_{pqr}^{Aab} \), which forms a phase, and this computation reads \(ab \). Otherwise, suppose that \(U_1, U_2, \ldots, U_k \) are nested inside \(U_{pqr}^{Aab} \). Then, by Lemma 3.6.7, \(U_{pqr}^{Aab} \) can derive the sequence \(a U_1 U_2 \cdots U_k b \). For \(1 \leq i \leq k \), let \(\mathcal{P}_i \) be the subphase created corresponding to the node labeled by variable \(U_i \); \(\mathcal{P}_i \) has base trapezoid \(\mathcal{T}_i = \mathcal{T}_{q_1 q_2 \cdots q_{k+1}} \), for some \(q_1, q_2, \ldots, q_{k+1} \), with \(q = q_1 \) and \(r = q_{k+1} \). Suppose that \(U_i \) derives \(\sigma_i \) in the derivation tree; then by induction \(\mathcal{P}_i \) reads string \(\sigma_i \), goes from vertex \(q_i \) to \(q_{i+1} \) and is a phase. It follows that \(\mathcal{P} \) is a phase (for it comprises a base trapezoid along with a sequence of subphases), and it reads string \(a \sigma_1 \sigma_2 \cdots \sigma_k b = \sigma \), and finally it goes from vertex \(p \) to vertex \(s \).

The main result now follows readily.

Theorem 3.6.10. Let PDA \(M_L \) recognize language \(L \). Then there is a CFL generating \(L \).

Proof. WLOG, assume that \(M_L \) has the form assumed in the current section (a single start vertex, a single recognizing vertex, each move performs either a Pop or a Push but not both etc.). Let \(G_L \) be the grammar built by the construction of this section. Then, if \(M_L \) recognizes string \(\sigma \), in must be via a computation with base trapezoid \(\mathcal{T}_{ss'f}^{\lambda\lambda} \), and by Lemma 3.6.8, \(U_{ss'f}^{\lambda\lambda} \) generates \(\sigma \), i.e. \(\sigma \) is generated by \(G_L \). While if \(\sigma \in L(G_L) \), \(U_{ss'f}^{\lambda\lambda} \) generates \(\sigma \), and by Lemma 3.6.9 there is a computation of \(M_L \) that reads \(\sigma \) while going from \(s \) to \(f \), i.e. \(M_L \) recognizes \(\sigma \).

Exercises

1. For the PDA in Figure 3.29 answer the following questions.
i. What is its start vertex?
ii. What are its recognizing vertices?
iii. Give the sequence of vertices and associated data configurations the PDA goes through in a recognizing computation on input \textit{abba}. Are there any other computation paths that can be followed on this input, and if yes, give the sequence of vertices such a computation goes through.
iv. What is the language accepted by this PDA?

2. For the PDA in Figure 3.25 answer the following questions.
 i. What is its start vertex?
 ii. What are its recognizing vertices?
 iii. What are the possible stack contents after reading input \textit{ab}?

3. Give PDAs to recognize the following languages. You are to give both an explanation in English of what each PDA does plus a graph of the PDA; seek to label the graph vertices accurately (i.e. for each vertex, specify the possible data configurations reached at that vertex).
 i. \(A = \{w \mid w \text{ has odd length, } w \in \{a, b\}^* \text{ and the middle symbol of } w \text{ is an } a\}\)
 ii. \(B = \{w \mid w \text{ has even length, } w \in \{a, b\}^* \text{ and the two middle characters of } w \text{ are equal}\}\).
 iii. \(C = \{w \mid w \in \{a, b\}^* \text{ and } w \neq a^ib^i \text{ for any integer } i\}\).
 iv. \(D = \{wcw^R \mid w, x \in \{a, b\}^*\}\).
 v. \(E = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ contains equal numbers of } a's 	ext{ and } b's\}\).
 vi. \(F = \{w \mid w \in \{a, b\}^* \text{ and every initial string in } w \text{ contains at least as many } a's \text{ as } b's\}\).
vii. $H = E \cap F$.

viii. $I = \{w \mid w \in \{(, [\}]^* \text{, } w \text{ is a string of nested parentheses with each } “(” \text{ matching a } “)” \text{ to its right, and each } “[” \text{ matching a } “]” \text{ also to its right}\}$.

ix. $J = \{w \# x \mid w, x \in \{a, b\}^* \text{ and } w^R \text{ is an initial substring of } x\}.
\text{ Hint: } x \text{ can be written as } x = w^R y \text{ for some } x \in \{a, b\}^* \text{. Also note that } \# \text{ is just another character.}$

x. $K = \{x \mid x \in \{a, b\}^* \text{ and } x \neq ww^R \text{ for any } w \in \{a, b\}^\ast\}.$

4. Suppose that A is recognized by PDA M. Give a PDA to recognize A^\ast.

5. Let C be a language over the alphabet $\{a, b\}$.
 i. Let $\text{Suffix}(C) = \{w \mid \text{there is a } u \in \{a, b\}^* \text{ with } uw \in C\}$. Show that if C is recognized by a PDA then so is $\text{Suffix}(C)$.
 ii. Similarly, let $\text{Prefix}(C) = \{w \mid \text{there is an } x \in \{a, b\}^* \text{ with } wx \in C\}$. Show that if C is recognized by a PDA then so is $\text{Prefix}(C)$.

6. This problem aims to show that there is a PDA recognizing the following language: $\{s \# t \mid s, t \in \{a, b\}^* \text{ and } s \neq t\}$.
 i. Let $A = \{uav\#xby \mid u, v, x, y \in \{a, b\}^* \text{ and } (|u| - |v|) = (|x| - |y|)\}$. Give a PDA to recognize A.
 ii. Let $B = \{w\#z \mid w, z \in \{a, b\}^* \text{ and } |w| \neq |z|\}$. Give a PDA to recognize B.
 iii. Show that $A \cup B = \{s \# t \mid s, t \in \{a, b\}^* \text{ and } s \neq t\}$.

7. Consider the PDA in Figure 3.29. Add descriptors to the vertices. What language does this PDA recognize?

8. Give DPDPAs to recognize the following languages. You are to give both an explanation in English of what each DPDA does plus a graph of the DPDA; seek to label the graph vertices accurately (i.e. for each vertex, specify the possible data configurations reached at that vertex).
 i. $A = \{wcx \mid w, x \in \{a, b\}^* \text{ and } |w| = |x|\}$
 ii. $B = \{w \mid w \in \{a, b\}^* \text{ and } w \neq a^ib^i \text{ for any integer } i\}$.
 iii. $C = \{wcw^R \mid w \in \{a, b\}^*\}$.
 iv. $D = \{wcx \mid w, x \in \{a, b\}^* \text{ and } w \neq x^R\}$.
 v. $E = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ contains equal numbers of } a's \text{ and } b's\}$.
 vi. $F = \{w \mid w \in \{a, b\}^* \text{ and every initial string in } w \text{ contains at least as many } a's \text{ as } b's\}$.
 vii. $F = E \cap F$.

vii. $F = E \cap F$.

viii. \(H = \{ w \mid w \in \{(,),[,]\}^* \} \), \(w \) is a string of nested parentheses with each “(” matching a “)” to its right, and each “[” matching a “]” also to its right.

ix. \(I = \{ w\#x \mid w, x \in \{a,b\}^* \text{ and } w^R \text{ is an initial substring of } x \} \).

Hint: \(x \) can be written as \(x = w^R y \) for some \(x \in \{a,b\}^* \). Also note that \# is just another character.

9. Assuming that the complement of a language recognized by a DPDA is also recognized by a DPDA, show that DPDA\(\text{s are not closed under union; i.e. give two languages } L_1 \text{ and } L_2 \text{ which are recognized by DPDA\(\text{s, and show that } L_1 \cup L_2 \text{ is not recognized by any DPDA.} \)

10. This exercise will show that DPDA\(\text{s are closed under complementation. Let } M \text{ be a DPDA recognizing language } L. M \text{ will be modified as follows while leaving the language it recognizes unchanged.}

i. Duplicate each vertex, partitioning the incoming edges so that each new vertex has the same label on all its incoming edges.

ii. Perform the following changes. Suppose the two successive edges \((u, v)\) and \((v, w)\) have the following edge labels.

 - (Read \(\lambda \), Pop \(A \), Push \(B \)), (Read \(\lambda \), Pop \(B \)), where \(A, B \neq \lambda \), but perhaps \(A = B \). Then replace these two edges with edge \((u, w)\) labeled by (Read \(\lambda \), Pop \(A \)).
 - (Read \(\lambda \), Push \(B \)), (Read \(\lambda \), Pop \(B \)), where \(B \neq \lambda \). Then change all the inedges to \(u \) to be inedges to \(w \) instead, and remove edge \((u, v)\).
 - (Read \(\lambda \), Push \(B \)), (Read \(\lambda \), Pop \(C \)) where \(B, C \neq \lambda \), and \(B \neq C \). Then remove edge \((v, w)\).
 - (Read \(\lambda \), Pop \(A \), Push \(B \)), (Read \(\lambda \), Pop \(C \)) where \(A, B, C \neq \lambda \), and \(B \neq C \). Then remove edge \((v, w)\).

 Now conclude that each cycle of edges with labels that all include Read \(\lambda \) must all have labels with a Push but no Pop, or a Pop but no Push (where we mean these operations to be on actual characters, and not \(\lambda \)).

iii. Replace each such cycle with Push labels by a single vertex.

Conclude that there are no infinite computational loops in the resulting machine.

Show what further modifications are needed to make it recognize \(\overline{L} \).

11. Consider the following context free grammar: \(S \rightarrow (S) | [S] | SS | (|] | [] \)

i. What are its terminals?

ii. What are its variables?

iii. What are its rules?
iv. Show the derivation tree for string ([] ()).
v. Describe in English the set of strings generated by this grammar.

12. Consider the following context free grammar:

\[
S \rightarrow XY \\
X \rightarrow aXb | \lambda \\
Y \rightarrow cYd | \lambda
\]

i. What are its terminals?
ii. What are its variables?
iii. What are its rules?
iv. Show the derivation tree for string \textit{abcd}.
v. Describe in English the set of strings generated by this grammar.

13. Consider the following context free grammar:

\[
S \rightarrow XY \\
X \rightarrow aXb | aYb | \lambda \\
Y \rightarrow cYd | cYd | \lambda
\]

i. What are its terminals?
ii. What are its variables?
iii. What are its rules?
iv. Show the derivation tree for string \textit{acdb}.
v. Describe in English the set of strings generated by this grammar.

14. Consider the following context free grammar:

\[
S \rightarrow XY | YX \\
X \rightarrow aXb | \lambda \\
Y \rightarrow cXd | cYd | \lambda
\]

i. What are its terminals?
ii. What are its variables?
iii. What are its rules?
iv. Describe in English the set of strings generated by this grammar.
v. Give a simpler grammar for this language.
15. Give CFG’s to generate the following languages. Remember to specify for each variable the set of strings it generates. Of course, S, the start variable, should generate the language in question.

i. $A = \{w \mid w \text{ has odd length, } w \in \{a, b\}^* \text{ and the middle character of } w \text{ is an } a\}$.

ii. $B = \{w \mid w \text{ has even length, } w \in \{a, b\}^* \text{ and the two middle characters of } w \text{ are equal}\}$.

iii. $C = \{w \mid w \in \{a, b\}^* \text{ and } w \neq a^i b^j \text{ for any integer } i\}$.

iv. $D = \{w \mid w \in \{a, b\}^* \text{ and } w = w^R\}$. D is the language of palindromes, strings that read the same forward and backward. Hint: Be sure to handle strings of all possible lengths.

v. $E = \{wcw^Rx \mid w, x \in \{a, b\}^*\}$.

vi. $F = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ contains an equal number of } a\text{'s and } b\text{'s}\}$.

Hint: suppose that the first character in w is an a. Let x be the shortest initial substring of w having an equal number of $a\text{'s and } b\text{'s}. If |x| < |w|$, then w can be written as $w = xy$; what can you say about y? Otherwise, $x = w$ and w can be written as $w = azb$; what can you say about z?

vii. $H = \{w \mid w \in \{a, b\}^* \text{ and every initial string in } w \text{ contains at least as many } a\text{'s as } b\text{'s}\}$.

viii. $I = E \cap F$.

ix. $J = \{w \mid w \in \{(,)[,]\}^* \text{, } w \text{ is a string of nested parentheses with each (matching a) to its right, and each [matching a] also to its right}\}$.

x. $K = \{w\#x \mid w, x \in \{a, b\}^* \text{ and } w^R \text{ is an initial substring of } x\}$.

Hint: x can be written as $x = w^R y$ for some $x \in \{a, b\}^*$.

16. i. Let $E = \{a^i b^j \mid i < j\}$. Give a CFL to generate E.

ii. Let $F = \{a^i b^j \mid 2i > j\}$. Give a CFL to generate F.

iii. Let $J = \{a^i b^j \mid i < j < 2i\}$. Give a CFL to generate J.

Hint: Let $i = h + l$ and $j = h + 2l$. What can you say about h and l?

17. Give a context free grammars to generate the following languages. Remember to specify for each variable the set of strings it generates.

i. : $L_1 = \{a^i \# b^{i+j} \$ a^j \mid i, j \geq 0\}$. (Recall that $\#$ is just another character.)

ii. $L_2 = \{w\#x\$ y \mid w, x, y \in \{a, b\}^* \text{ and } |x| = |w| + |y|\}$.

iii. $L_3 = \{uv \mid |u| = |v| \text{ but } u \neq v\}$.

Hint: think of the $\#$ and the $\$ from part (2) as a pair of aligned yet unequal characters in u and v; what is the relation among the lengths of the remaining pieces of u and v? Further hint: Use the ideas from the first two parts.

18. Let A be a CFL generated by a CFG G_A. Give a CFG grammar G_{A^*}, based on G_A, to generate A^*. Show that $L(G_{A^*}) = A^*$.

19. Convert the following CFGs to CNF form.

i. G_1 has start variable S, terminal set $\{a, b\}$ and rule $S \to ab$.

ii. G_2 has start variable S, terminal set $\{a, b, c, d\}$ and rules $S \to ABCD$, $A \to a$, $B \to b$, $C \to c$, $D \to d$.

iii. G_3 has start variable S, terminal set $\{a, b\}$ and rules $S \to A$, $A \to B \mid SA \mid a$, $B \to C \mid b$, $C \to a$.

iv. G_4 has start variable S, terminal set $\{a, b\}$ and rules $S \to AB$, $A \to a \mid \lambda$, $B \to b \mid \lambda$.

v. G_5 has start variable S, terminal set $\{a, b\}$ and rules $S \to AB$, $A \to X \mid BB \mid a$, $X \to Y \mid AA$, $Y \to A \mid AB$, $B \to b$.

20. Show that the following languages are not context free.

i. $A = \{a^i b^j c^k d^l \mid i, j, k \geq 0\}$.

ii. $B = \{a^m b^n c^m d^n \mid m, n \geq 0\}$.

iii. $C = \{z \mid z \in \{a, b, c\}^* \text{ and the number of } a's, b's \text{ and } c's \text{ in } z \text{ are all equal}\}$.

iv. $D = \{z_1 \# z_2 \# z_3 \mid z_1, z_2, z_3 \in \{a, b\}^*, \text{ the number of } a's \text{ in } z_1 \text{ equals } |z_2|, \text{ and the number of } b's \text{ in } z_2 \text{ equals } |z_3|\}$.

v. $E = \{z \mid z \in \{a, b, c, d\}^* \text{ and } z \text{ contains equal numbers of } a's \text{ and } b's, \text{ and equal numbers of } c's \text{ and } d's\}$.

vi. $F = \{a^{i^2} \mid i \geq 1\}$.
Comment. Any CFL over a 1-character alphabet is a regular language. Give a proof without using this fact.

vii. $H = \{a^{i^2} \mid i \geq 0\}$.
Comment. Any CFL over a 1-character alphabet is a regular language. Give a proof without using this fact.

viii. $J = \{z_1 \# z_2 \# \cdots \# z_l \mid z_h \in \{a, b\}^*, 1 \leq h \leq l, \text{ and for some } i, j, k, 1 \leq i < j < k \leq l, |z_i| = |z_j| = |z_k|\}$.

ix. $K = \{z_1 \# z_2 \# \cdots \# z_k \mid z_h \in \{a, b\}^*, 1 \leq h \leq k, \text{ and for some } i, j, 1 \leq i < j \leq k, z_i = z_j\}$.

x. $L = \{a^i b^i \mid i \text{ is an integer multiple of } j\}$.

xi. N is the language consisting of all palindromes over the alphabet $\Sigma = \{a, b, c\}$ having equal numbers of $a's$ and $b's$.

xii. $P = \{a^i b^i c^j \mid j > i\}$.

xiii. $Q = \{a^i b^j c^k \mid k = \max\{i, j\}\}$.

xiv. $R = \{a^i b^j c^i \mid j > i\}$.

21. This exercise concerns a variant of the Pumping Lemma, called Ogden’s Lemma. Ogden’s Lemma is useful for it can be used to show certain languages are not CFLs, languages for which the standard pumping lemma does not suffice.

i. Let L be a CFL and let $s \in L$ be a string in which some characters have been marked. Ogden’s Lemma states that there is a constant $p = p_L$ such that if $s \in L$ is a string with at least p marked characters then s can be written as $s = uvwx$, where

a. vwx contains at least one marked character.

b. vwx contains at most p marked characters.

c. For all $i \geq 0$, $uv^ixw^xy \in L$.

Prove Ogden’s Lemma.

Hint. Proceed in the same way as for the proof of the standard pumping lemma. In order to obtain analogs of Observations 1 and 2 you will need to count just the marked characters; you will also need to redefine the notion of “height” to count just those internal nodes both of whose subtrees have marked characters.

ii. Prove a variant of Ogden’s Lemma in which both v and x contain at least one marked character.

iii. Using Ogden’s Lemma prove that the following languages are not context free.

a. $L = \{a^ib^jc^kd^l \mid i = 0 \text{ or } j = k = l\}$. Why will the ordinary Pumping Lemma fail to prove that L is not a CFL, i.e. show that any string $s \in L$ can be pumped so that all the resulting strings are in L.

b. $K = \{a^ib^jc^i \mid j \neq i\}$. Hint. Consider the string $s = a^pb^ps^p$.

Again, why will the ordinary Pumping Lemma fail to prove that L is not a CFL, i.e. show that any string $s \in L$ can be pumped so that all the resulting strings are in L.

22. Show the PDAs generated by applying the construction of Lemma 3.6.2 to the following CNF context free grammars.

i. $S \rightarrow AB, A \rightarrow AA, A \rightarrow a, B \rightarrow b$.

ii. $S \rightarrow XX | \lambda; X \rightarrow a$.

23. Consider the PDA shown in Figure 3.2.

i. Modify this PDA so that it meets the requirements given in Section 3.6.1. (Do this carefully.)

ii. Draw the trapezoidal diagram for the computation of the modified PDA recognizing input $aabb$.

iii. Give the CFL generated by applying the construction of Section 3.6.1 to the modified PDA.
24. Repeat Question 1 for PDA M_2 shown in Figure 3.4 but use input $aacbb$ for part (iii).

25. Repeat Question 1 for PDA M_3 shown in Figure 3.5 but use input $abcba$ for part (iii).

26. For each of the language transformations T defined in the parts below, answer the following two questions.

a. Suppose that L is a CFL. Show that $T(L)$ is also a CFL by giving a CFG to generate $T(L)$. Remember to explain why your solution is correct.

b. Now suppose that L is recognized by a PDA. Show that $T(L)$ is also recognized by a PDA. Again, remember to explain why your solution is correct.

Comment: The two parts are equivalent; nonetheless, you are being asked for a separate construction for each part.

i. Let $w \in \{a,b,c\}^*$. Define $\text{Sbst}(w,a,b)$ to be the string obtained by replacing all instances of the character a in w with b. e.g. $\text{Sbst}(ac,a,b) = bc$, $\text{Sbst}(cc,a,b) = cc$, $\text{Sbst}(abc,a,b) = bbc$, $\text{Sbst}(acacac,a,b) = bcacbc$.

Let L be a language over the alphabet $\{a,b,c\}$. Define $T(L) = \text{Sbst}(L,a,b) = \{x \mid x = \text{Sbst}(w,a,b) \text{ for some } w \in L\}$.

ii. Let $w \in \{a,b,c\}^*$. Define $\text{OneSubst}(w,a,b)$, or $\text{OS}(w,a,b)$ for short, to be the set of strings obtained by replacing one instance of the character a from w with b. e.g. $\text{OS}(acacac,a,b) = \{bcacac,acbcac,acacbc\}$.

Let L be a language over the alphabet $\{a,b,c\}$. Define $T(L) = \text{OS}(L,a,b) = \{x \mid x = \text{OS}(w,a,b) \text{ for some } w \in L\}$.

iii. Let $w \in \{a,b,c\}^*$. Define $\text{Remove-c}(w)$ to be the string obtained by deleting all instances of the character c from w. e.g. $\text{Remove-c}(ab) = ab$, $\text{Remove-c}(cc) = \lambda$, $\text{Remove-c}(abc) = ab$, $\text{Remove-c}(acacac) = aac$. Let L be a language over the alphabet $\{a,b,c\}$. Define $T(L) = \text{Remove-c}(L) = \{x \mid x = \text{Remove-c}(w) \text{ for some } w \in L\}$.

iv. Let $w \in \{a,b,c\}^*$. Define $\text{Remove-One-c}(w)$ to be the set of strings obtained by deleting one instance of the character c from w. e.g. $\text{Remove-One-c}(acacac) = \{aacac,acaac,acaca\}$.

Let L be a language over the alphabet $\{a,b,c\}$. Define $T(L) = \text{Remove-One-c}(L) = \{x \mid x \in \text{Remove-One-c}(w) \text{ for some } w \in L\}$.

v. Let h be a mapping from Σ to Σ^*, that is h maps each character in Σ to a string of zero or more characters. Define $h(s)$ for a string $s = s_1s_2\cdots s_k$ to be the string $h(s_1)h(s_2)\cdots h(s_k)$.

Define $T(L) = \{h(w) \mid w \in L\}$.

vi. Let h be a mapping from Σ to R where R is the set of regular expressions over alphabet Σ; i.e. $h(a)$ is a regular expression for each $a \in \Sigma$. Define $h(s)$ for a string $s = s_1s_2\cdots s_k$ to be the set of strings specified by the regular expression $h(s_1)h(s_2)\cdots h(s_k)$.

Define $T(L) = \bigcup_{w \in L} h(w)$.
vii. Let Σ be an alphabet, and for each $a \in \Sigma$ let L_a be a CFL. Let $w = w_1w_2 \cdots w_k$ be a string in Σ^*. Define $h(w) = L_{w_1} \circ L_{w_2} \circ \cdots \circ L_{w_k}$.

Define $T(L) = \bigcup_{w \in L} h(w)$.

27. i. Show that $\{b^i c^i d^i \mid j \geq 0\}$ is not a CFL.

ii. Conclude that $\{a^i b^j c^k d^l \mid i \geq 0 \text{ and } j = k = l\}$ is not a CFL.

iii. Let $L = \{a^i b^j c^k d^l \mid i = 0 \text{ or } j = k = l\}$. See Problem 26v. By using a suitable mapping h from Σ to Σ^*, show that L is not a CFL.

Comment. See Problem 21.iii.a. Note that Ogden's Lemma is not needed to show L is not a CFL.

28. A 2wayPDA is a variant of a PDA in which it is possible to go back and forth over the input, with no limit on how often the reading direction is reversed.

This can be formalized as follows. The input $x \in \Sigma^*$ to the PDA is sandwicched between symbols $\$ and $\$, so the PDA can be viewed as reading string $x_0x_1x_2 \cdots x_nx_{n+1}$, where $x = x_1x_2 \cdots x_n$, $x_0 = \$, and $x_{n+1} = \$. The PDA is equipped with a read head which will always be over the next symbol to be read. At the start of the computation, the read head is over the symbol x_1, and the PDA is at its start vertex.

In general, the PDA will be at some vertex v, with its read head over character x_i for some i, $0 \leq i \leq n + 1$. On its next move the PDA will follow an edge leaving v whose label includes Read x_i. This edge will also carry a label L or R indicating whether the read head moves left (so that it will be over symbol x_{i-1}), or right (so that it will be over x_{i+1}). Note that as we can do two moves in succession say to the left and then to the right, there is no need for a Read λ operation, which would leave the read head in the same place. There are two constraints: when reading $\$ only moves to the right are allowed and when reading $\$ only moves to the left are allowed. If there is no move, the computation ends.

A 2wayPDA M recognizes an input x if it is at a recognizing vertex when the computation ends.

Give descriptions in English of 2way-PDAs for the following languages.

i. $L = \{a^i b^i c^i \mid i \geq 0\}$.

Note that by contrast with 2wayDFAs, this shows 2wayPDAs can recognize languages not recognized by PDAs.

ii. Show that if L_1 and L_2 are recognized by a 2wayPDA then so are $L_1 \cup L_2$ and $L_1 \cap L_2$.

29. Define 2wayDPDAs analogous to the 2wayPDAs in Question 28. Again, there is a read head, but the 2wayDPDA always has at most one move.

Show that 2wayDPDAs are closed under intersection, union and complement.

30. Show that the following languages can be recognized by 2wayDPDAs.
*i. $H = \{a^ib^{2i} \mid i \geq 1\}$.
 Hint. An intermediate data configuration will have $a^{i-h}b^{2h}$ for $h \leq i$ on the stack.

*ii. $J = \{a^ib^i \mid i \geq 0\}$.
 Hint. Find another helpful intermediate data configuration.

*iii. $J_c = \{a^ib^i c^i \mid i \geq 0\}$, where $c \geq 2$ is a fixed integer.

*iv. $K = \{a^ib^j c^i \mid i, j \geq 0\}$.
 Hint. You will need to count in two ways. At times the stack contents will be used as a counter. At other times the position of the read head in the string of c's will serve as a counter.