Hashing

Dictionary ADT. Supports

Membership

Insertion

Deletion

in expected $O(1)$ time.
But not predecessor.

Suppose string size n set of values in $[0..m-1]$.

$$h: U \rightarrow [0..m-1]$$

where h is an easy-to-compute function.

A is an array of buckets.

Insert (x): store x in $A[h(x)]$

Delete (x): remove x from $A[h(x)]$

Member (x): look for x in $A[h(x)]$.

Want h to scatter the items in S so that the average non-empty list has length $O(1)$. (Not useful to have all items in one list.)
Example function.

\[n = 4, \quad m = 16, \quad \text{hash table of size} \quad 4. \]

\[h(x) = \frac{(ax + b) \mod 16 \div \lfloor \frac{(ax + b) \mod 16 + 1} {4} \rfloor} {4} \]

\[a = 3, \quad b = 5 \]

\[S = \{ 1, 2, 3, 12 \} \]

\[h(S) = \{ \frac{8}{14}, \frac{11}{14}, \frac{10}{14}, \frac{9}{14} \} = \{ 2, 2, 2, 2 \} \]

All map to same location.

\[a = 7, \quad b = 1 \]

\[h(S) = \{ \frac{8}{14}, \frac{15}{14}, \frac{12}{14}, \frac{5}{14} \} \]

\[= \{ 2, 3, 0, 1 \} \].
Let the array size be n.

Useful property: $\Pr \{ \exists x \mid h(x) = c \} \ll n^{-1}$

Of course, given a particular function h, we can always choose a set S so that $h(x) = h(y)$ for all $x, y \in S$, where $|S| \ll n$.

So what we want is a chain of hash functions h_1, h_2, \ldots, h_k, s.t. a random h_i is likely to distribute the elements of S fairly evenly.

A sufficient condition for this (as we shall see) is that

$$
\Pr \{ h(x) = i \text{ and } h(y) = i \} \ll \frac{1}{n} \quad \forall x \neq y
$$

$$
\Pr \{ h(x) = h(y) \} \ll \frac{1}{n}
$$

For item x, how many items, on the average, are in the same bucket as x?

$E[\text{number of items in } h_i(x)]$

$$
\mathcal{E} = E\left[\sum_{y \in S} 1_{h(y) = h(x)} \right]
= \sum_{y \neq x} E\left[1_{h(y) = h(x)} \right]
= \sum_{y \neq x} E\left[1_{h(y) = h(x)} \right]
= (|S| - 1) \tau \left(\frac{1}{|S|} \right) = \Theta \left(\frac{n - 1}{n} \right) = \Theta \left(\frac{n}{n} \right).
$$

If $\tau = \Theta(n)$ (for some $c > 1$), this is $\Theta \left(\frac{n}{c} \right)$ items.
Choosing \(c = 1 \) implies each operation takes \(O(1) \) time on average.

Some families of hash functions:

1. \(h(x) = (ax + b) \mod p \mod r \) where \(p, r \) is prime and \(1 \leq a < p \)
 \(0 \leq b < p \)

2. \(h(x) = \left\lfloor \frac{(ax + b) \mod 2^{i+j}}{2^j} \right\rfloor = \left\lfloor (ax + b) \mod 2^{i+j} \right\rfloor \div 2^j \)

where \(2^i \geq m, 2^i \geq n \)
\(1 \leq a < 2^{i+j} - 1 \)
\(0 \leq b < 2^{i+j} - 1 \)

We analyze the second family.
Analyze

\[\text{Prob} \left[h(x) = c = h(y) \right] = \frac{1}{2^i} \quad \text{for } x \neq y \]

allowing \(a = 0 \) (only increases prob. of collision).

Want \(ax + b \mod 2^{ix_j} = c 2^j + r \) when \(0 \leq r < 2^j \)

\(ay + b \mod 2^{iy_j} = c 2^j + s \) when \(0 \leq s < 2^j \).

WLOG suppose that \(x \neq y \).

Then want \(a(x-y) \mod 2^{ix_j} = r-s \) \((*)\)

\[\text{Case 1: } x-y \text{ is odd} \]

Then \(0, (x-y), 1, (x-y), \ldots, (2^{iy_j}-1)(x-y) \mod 2^{ix_j} \) all distinct.

For \(j \) odd,

\[a(x-y) = B(x-y) \mod 2^{ix_j} \]

i.e. \((B-a)(x-y) = 1 \cdot 2^{ix_j} \) for some integer \(\lambda \)

\[\Rightarrow 2^{ix_j} \uparrow B - a \Rightarrow B = a. \]

Thus there is exactly only value of \(a \) satisfying \((*)\).

\[\therefore \# \text{ of choices of } (a, i, r, s) = 2^j. \]

In addition, need

\[ax + b \mod 2^{ix_j} = c 2^j + r. \]

Just one choice of \(b \) given \(a, c, r. \)

Hence \(\text{Prob} \left[h(x) = c = h(y) \right] = \frac{2^j}{2^{2(i-ix_j)}} = \frac{1}{2^i} \)

\(\therefore \text{chorus of } c : \)

Hence \(\text{Prob} \left[h(x) = h(y) \right] = \frac{1}{2^i} \).
Case 2. \[2^h 1(x-y), \ 2^h \lambda_1(x-y), \ \alpha \leq h < j. \]

Then \[0(x-y), \ 1(x-y), \ldots, (2^h \cdot 2^{i-j-h}) (x-y) \] all distinct.

Thus if \[2^h + i < j \] there are 0 values satisfying (v).

If \[2^h | i < j \] there are \[2^h \] values satisfying (w) of the form:

\[a, a + 2^h \cdot 2^{i-j-h}, a + 2^h \cdot 2^{i-j-h}, a + 2^h \cdot 2^{i-j-h}, \ldots, a + 2^h (\lambda_i) \cdot 2^{i-j-h}. \]

\[\therefore \text{# of choices} \ (a, r, s) \ \text{is} \ 2^h \cdot 2^j \cdot 2^{i-j-h} = 2^{2j}. \]

Rest of argument as before.
Cloud Hashing

Store lists in the same table and avoid explicit pointers.

Instead, have

linear probing:

\[h(x) \]

if full, search for first empty location after \(h(x) \) & store \(x \) there.

double hashing:

Use a second hash function \(d(x) \) to give

sequence of locations to try: \(h(x), h(x) + d(x), h(x) + 2d(x), \ldots \)

Harder to analyze.

Deleting are a nuisance:

\[h(x) \]

\[\Rightarrow \]

\[h(b) \]

\[\text{used} \]

\[x \]

Need to match \(h(x) \) locations as used so knows to keep going if

- search \((y) \) occurs.
Bloom Filters

A compact storage scheme, but now there is some probability of an
incorrect answer.

Supports insertions & searches.

Initially all entries in table are \(\emptyset \).

When \(x \) is inserted set \(A[\text{hash}(x)] = 1 \).

Later, if searching, report \(x \) is in the table, set \(A[\text{hash}(x)] = 1 \).

So a "not in set" is always correct.

Chance of incorrect answer is \(1 \leq 1 \),

is at most \(\frac{1}{e} \).

How can we improve the probability?

Use 2 tables \(2 \) hash functions \(h_1, h_2 \).

Answer \(x \) is in set only if \(h_1(x) = 1 = h_2(x) \).

Prob of incorrect answer is at most \(\left(\frac{1}{e} \right)^2 \).

Note if before we store 64-bit items, now we using the same
space we could have 2 tables of size 32n, for an error
prob \(\frac{1}{1000} \), 4 tables of size 16 for an error prob
\(\frac{1}{32,000} \).

There is a tradeoff in the number of hash function evaluations
and the error probability.
Passwords

Same Idea

\[p \Rightarrow h(p) \]

pep: compute & store \(h(p) \).

Additional requirement: given \(h(p) \) & \(h \), it should be hard to figure out \(p \).

Not true for the universal hash function, just shown.

We do not know how to prove such results at present.

It amounts to showing that inspired guessing is computationally hard.

In the end, this is what the question "\(P = NP? \)" amounts to.