Basic Algorithms

Tree Algorithms, Additional Problems.

For all the problems, before writing pseudo-code, **determine what is the formula you need to compute at each node**; be precise. Also, once you have written the recursive procedure, remember that you also need an initial call to the recursive procedure.

1. Consider a tree in which each node \(v \) has a field \(v.clr \) which has the value \(R \) (red) or \(G \) (green). If \(v.clr = G \) we will say that \(v \) is green, and if \(v.clr = R \) we say that \(v \) is red. By completing the following procedure, compute, for each node \(v \) in a tree \(T \), in the field \(v.clr._cnt \), the number of green nodes in \(v \)'s subtree.

Recursive formulation:

\[
\text{ClrCnt}(v);
\]

\[
\text{for each child } w \text{ of } v \text{ do}
\]

\[
\text{ClrCnt}(w);
\]

\[
\text{end (* for *)}
\]

end

Initial call/Driver:
2. Use the same setting as in problem 1, but now count the number of green leaves in the subtree rooted at node \(v \), storing the result in the field \(v.grn_lvs \).

Recursive formulation:

\[
\text{GrnLfCnt}(v); \\
\text{for each child } w \text{ of } v \text{ do} \\
\quad \text{GrnLfCnt}(w); \\
\text{end (* for *)} \\
\text{end}
\]

Initial call/Driver:
3. Define the Greenness of a node v, $\text{grnss}(v)$ to be the number of green nodes in the subtree rooted at v divided by the number of nodes in the subtree rooted at v.

a. Compute the greenness of each node v, storing the result in the field $v.\text{grnss}$, and using whatever additional fields may be useful. Remember that the values in any additional field must be computed by your procedure.

Recursive formulation:

```plaintext
GrnNss(v);

for each child $w$ of $v$ do

    GrnNss(w);

end (* for *)
```

end

Initial call/Driver:
b. For non-leaf nodes v, in the field $v.grnnst_chld$ compute a pointer to the child w with the maximum $w.grnnss$ value among all of v’s children. Try to do this with a 1-pass algorithm. The solution will require adding some additional lines of code to the solution for part a.

Recursive formulation:

```plaintext
GrnNstChld(v);

for each child $w$ of $v$ do

    GrnNstChld(w);

end (* for *)

end

Initial call/Driver:
4.a. A green path is defined to be a path in which all the nodes are green. For each node \( v \), in the field \( v.lngst_grn_pth \), compute the length in nodes of the longest green path descending from \( v \) (so if \( v \) is red, the length is zero).

**Recursive formulation:**

\[
\text{GrnPthLngth}(v); \\
\text{for each child } w \text{ of } v \text{ do} \\
\quad \text{GrnPthLngth}(w); \\
\text{end} (* \text{ for } *) \\
\text{end}
\]

**Initial call/Driver:**
b. For each node \( v \), in the file \( v.lngst\_alt\_pth \), compute the length in nodes of the longest path descending from \( v \) such that the colors of the nodes along the path alternate.

**Recursive formulation:**

\[
\text{LngstAltPath}(v); \\
\text{for each child } w \text{ of } v \text{ do } \\
\quad \text{LngstAltPath}(w); \\
\text{end (* for *) } \\
\text{end}
\]

**Initial call/Driver:**
5.a. For each node $v$ compute the length in nodes of the longest and second longest alternating paths descending from $v$, putting the values in the fields $v.\text{lngst}$ and $v.\text{2lngst}$ respectively. Note that for a leaf node $x$, $x.\text{2lngst} = 0$, as there is only one path descending from $x$, namely the “path” consisting of the single node $x$. To simplify your code you may assume you have a function $\text{2ndLargest}\{\cdots\}$ which takes any number of arguments and returns the second largest value; e.g. $\text{2ndLargest}\{3, 5, 7, 2\} = 3$.

**Recursive formulation:**

\begin{verbatim}
2LgstAltPth(v);

for each child $w$ of $v$ do

2LgstAltPth(w);

end (* for *)

end

Initial call/Driver:
\end{verbatim}
b. For each node \( v \), in the field \( v.lngst_grn_pth2lf \), compute the length in nodes of the longest green path descending from \( v \) to a leaf; if there is no such path, define its length to be zero. Be careful in figuring out the correct test here. Try different cases: what needs to happen when \( v \) is a leaf, and if \( v \) is not a leaf, what needs to happen if \( v \) is red, and what needs to happen if there is no suitable path in the subtree rooted at \( v \)'s child \( w \).

**Recursive formulation:**

\[
\text{LngstGrnPth2Lf}(v); \\
\text{for each child } w \text{ of } v \text{ do} \\
\quad \text{LngstGrnPth2Lf}(w); \\
\text{end (* for *)} \\
\text{end} \\
\text{Initial call/Driver:}
\]