Problems 1–4 and problems 11.57 from the text.
For problems 1–4 give a recursive formulation of the value being minimized or maximized
and explain what is the runtime of the resulting dynamic programming implementation.

Honors Section. Problem 5 below in addition.

1. Recall the Goodness\((v) \) function defined on Page 627, GN\((v) \) for short.

\[
GN(v) = v.dat + \sum_{w \text{ a child of } v} 2GN(w).
\]

You are given an array Data\([1 : n]\) of integer values, which may include negative values.

a. Suppose the integer values are allocated to the .dat fields of the nodes in an \(n \)-node
binary tree \(T \) in postorder. Your task is to determine the tree \(T \) maximizing GN\((T)\). Give
a recursive formulation of the function PostBinBest\((i, k)\), BPP\((i, k)\) for short, which equals
the largest Goodness value achievable by a \((k - i + 1)\)-node binary tree for the data values
Data\([i : k]\). Now explain why a dynamic programming implementation of this function runs
in \(O(n^3) \) time.

An example is shown below.
Suppose that Data\([1 : 4]\) = \([-2, 4, 1, 3]\). Below we show one possible choice of \(T \):

\[
\begin{array}{c|c}
\text{.dat values} & \text{GN values} \\
\hline
3 & 17 \\
/ \ \ \ \ / \ \\
/ \ \ \ / \ \\
-2 & 1 & -2 & 9 \\
\ \ \ \ \ \ \ \ \ \ \ \\
4 & 4 \\
\end{array}
\]

b. Repeat part a but for general trees, again in postorder. In other words, give a recursive
formulation of the function PostGenBest\((n)\) which equals the largest Goodness value achievable
by an \(n \)-node general tree. Again, explain why a dynamic programming implementation
of this function runs in \(O(n^3) \) time.

2. Consider the problem of finding the optimal weighted binary search tree for \(n \) items
\(e_1 < e_2 < \cdots < e_n \). Each item \(e_i \) has a non-negative integer weight \(w_i \). Suppose item \(e_i \)
is accessed \(r_i \) times. The cost of an access to item \(e_i \) is defined to be the path length \(l_i \),
measured in nodes, in the binary search tree going from the root to the node storing \(e_i \)
times \(w_i \). Your task is to find a binary search tree \(T \) minimizing the overall access cost,
\[
\sum_{i=1}^{n} l_i \cdot w_i \cdot r_i.
\]
Let Cost\((i, k)\) be the cost of the optimal binary search tree storing items
$e_i, e_{i+1}, \ldots, e_k$. Give a recursive formulation for $\text{Cost}(i, k)$. Then explain how to use it to obtain the desired optimal binary search tree. Explain what is the running time of a dynamic programming implementation of this recursive formulation. The following figure illustrates these definitions.

Suppose that there are 4 items with weights $[2, 1, 3, 5]$ and number of accesses equal to $[1, 3, 2, 1]$. Below we show one possible choice of T:

![Tree showing item sizes](image)

The cost of a binary search tree is the sum of the costs of all its nodes. So the cost of the above example tree is 5. The task is to build a minimum cost binary search tree to store these n items. Your algorithm should run in $O(n^3)$ time.

4. Optimal Merge Order. The input comprises a sequence of n sorted lists L_1, L_2, \ldots, L_n. Let l_i denote the length of list L_i. The task is to perform a series of $n - 1$ merges which will yield the merge of the n input lists. At any stage, two adjacent lists are merged and
replaced in the list sequence by their merge. The cost for merging lists of lengths \(r \) and \(s \) is \(r + s \). So given an input \(L_1, L_2, L_3, L_4 \), with lengths 5, 3, 4, 4, respectively, we might first merge \(L_2 \) and \(L_3 \) producing list \(L_{23} \), and the new list sequence \(L_1, L_{23}, L_4 \), then merge \(L_{23} \) and \(L_4 \) producing list \(L_{24} \) and the list sequence \(L_1, L_{24} \) and then finally merge \(L_1 \) and \(L_{24} \). The cost would be 7 + 11 + 16 = 34. This is not the optimal choice.

The task is to find a minimum cost merge order. Give a recursive formulation of the function \(\text{Cost}(i, k) \), the minimum cost for merging the sequence of list \(L_i, L_{i+1}, \ldots, L_k \). Show how leads to an \(O(n^3) \) algorithm for finding a least cost merge order.

5. Consider the longest common subsequence problem for two strings \(X[1 : m] \) and \(Y[1 : n] \) in the situation that there are \(k \) different characters and a total of \(p \) different matching pairs, i.e. indices \((i, j) \) such that \(X[i] = Y[j] \). You may assume that the characters are the integers \(0, \ldots, k - 1 \). The problem is to find the length of a longest common subsequence of \(X \) and \(Y \) in \(O(n + m + pk) \) time.

The basic recursion is as usual, except now rather than delete a single character at a time, if considering a new rightmost character in \(X \), \(X[i] = c \) say, one considers the subproblem with the same rightmost character in \(Y \). Thus the idea is to generate at most roughly \(p \) recursive subproblems, and to consider up to \(k \) subproblems when making recursive calls.

In order to handle this efficiently, it will be helpful to form sorted lists of the occurrences of each character in each string.