1. Let T be a tree. Suppose that each leaf x has a positive integer value stored in the field $x.val$. For each non-leaf node v, let v.max_leaf denote the descendant leaf of maximum value (if there is a tie, v.max_leaf is some leaf of maximum value). Let v.best_child be the child of v which is on the path from v to v.max_leaf. First, for each node v, compute v.best_child, and store it in the field v.best_child. Next, give a recursive procedure which outputs the sequence of vertices forming the path from the root of T to T.max_leaf; it will use the best_child values. This second phase needs to run in time proportional to the number of nodes on this path.

2. Let T be a tree. Suppose there is a record for each edge in the tree. If (v, w) is an edge, where w is a child of v, then the record is reached via the field $w.prnt_edge$ in the record for node w. Suppose there is a value associated with each edge (v, w), stored in the field $w.prnt_edge.val$. In addition, suppose that each leaf x has an integer field $x.index$. Consider the path from the root of T to leaf x, and imagine numbering the edges along this path starting at the root, namely the first edge, the second edge, and so on. The task, for each leaf x, is to store in the field $x.anc_val$ the value for the $x.index$-th edge on the path from the root to the leaf, if $x.index$ is no larger than the length of this path, and to store the value nil otherwise. It will be helpful to have a global array PathVal[1 : k] which stores the values on the current path, where h is the height of tree T (you may assume that k is provided as part of the input). You will want to use a recursive procedure LeafVal($v, i, PathVal$), and i is the depth of node v (the number of edges on the path from the root to v).

3. Write a recursive procedure to print all m-digit binary numbers in decreasing order.