I collaborated with ********** INSERT COLLABORATORS HERE (INDICATING SPECIFIC PROBLEMS) **********.

Problem 5-1 (Block-by-block MAC Composition) 14 Points

Our method of choice so far for MAC-ing long messages was to use a universal hash function. In this problem you will examine several more straightforward (but less efficient and not necessarily “secure”) ways to MAC long messages. Assume we have a secure MAC \((G, T, V)\) that operates on \(k\)-bit messages. We want to design a MAC for much longer messages. For concreteness, assume we want to MAC messages of length up to \(k^3\) (in particular, the length could be variable). Given a corresponding block length \(l\), we write \(m = m_1 \ldots m_n\) (so that \(nl\) is the total length; for simplicity, we assume that all message lengths are multiples of \(l\)). For each of the following suggestions \(M_s\), determine if \(M_s\) is a secure MAC. In case the scheme is insecure, determine the smallest number of calls to the MAC-ing oracle that suffice for the forgery. Indicate also which insecure schemes for variable-length messages become secure with fixed-length (i.e., \(n\) is fixed) messages.

(a) (2 points) Let \(l = k\). Define \(M_s(m) = (T_s(m_1), \ldots, T_s(m_n))\).

Verification checks that all blocks are correctly MAC-ed.

Solution: **************** INSERT PROBLEM 1a SOLUTION HERE ***********

(b) (2 points) Let \(l \approx k - 3 \log k\). Define \(M_s(m) = (T_s(m_1, 1), \ldots, T_s(m_n, n))\).

Namely, the block number \(i\) (which takes at most \(3 \log k\) bits) is explicitly MAC-ed together with the message block. Verification checks that all blocks are correctly MAC-ed and block numbers match.

Solution: **************** INSERT PROBLEM 1b SOLUTION HERE ***********

(c) (3 points) Let \(l \approx k - 6 \log k\). Define \(M_s(m) = (T_s(m_1, 1, n), \ldots, T_s(m_n, n, n))\).

Namely, both the number of blocks and the current block number are explicitly MAC-ed together with the message block. Verification checks that all blocks are correctly MAC-ed, and that the overall number of blocks is \(n\).

Solution: **************** INSERT PROBLEM 1c SOLUTION HERE ***********
(d) (3 points) Let \(l \approx k/2 \). Define \(M_s(m) = (r, T_s(m_1, r + 1), \ldots, T_s(m_n, r + n)) \), where \(r \in \{0, 1\}^{k/2} \) is random and addition is modulo \(2^{k/2} \).

Namely, \(r \) is a nonce serving as the “message id”. Verification checks that all blocks are correctly MAC-ed, and that nonces \((r + i) \) go in increasing order with no “gaps”.

Solution: ********** INSERT PROBLEM 1d SOLUTION HERE **********

\[\square \]

(e) (4 points) Let \(l \approx k/2 \). Define \(M_s(m) = (r, T_s(m_1, r + 1, n), \ldots, T_s(m_n, r + n, n)) \), where \(r \in \{0, 1\}^{k/2} \) is random and addition is modulo \(2^{k/2} \).

Namely, \(r \) is a nonce serving as the “message id”, and both \(r + i \) and \(n \) are MAC-ed with the corresponding message block. Verification checks that all blocks are correctly MAC-ed, that nonces \((r + i) \) go in increasing order with no “gaps”, and that the number of blocks is \(n \).

Solution: ********** INSERT PROBLEM 1e SOLUTION HERE **********

\[\square \]

Problem 5-2 (CBC-MAC) 6 (+6) Points

Recall that the CBC-MAC was defined by \(\text{Tag}_s(m) = f_s(m_n \oplus f_s(m_{n-1} \oplus \ldots f_s(m_1) \ldots)) \), and was proven to be a secure MAC (in fact, even a PRF) under the following 3 assumptions:

- The number of message blocks \(n \) was fixed.
- The initialization vector \(IV \) was fixed (in particular, we fixed it to \(0^k \) in the equation above).
- The function family \(\{f_s : \{0, 1\}^k \rightarrow \{0, 1\}^k\} \) was a PRF family.

You will show that all three of these assumption are necessary, and dropping any one of them makes CBC-MAC an insecure MAC (and, thus, not a PRF as well).

(a) (3 points) Argue that CBC-MAC is insecure for authenticating variable length messages. Concretely, argue that after knowing \(\text{Tag}_s(m_1) \) there exists a block \(m_2 \) for which one can forge \(\text{Tag}_s(m_1 || m_2) \). What is \(m_2 \)?

Solution: ********** INSERT PROBLEM 2a SOLUTION HERE **********

\[\square \]

(b) (3 points) Another option is to consider a probabilistic variant of CBC-MAC where one chooses a random \(IV \) and outputs probabilistic MAC

\[\text{Tag}_s(m; IV) = (IV, f_s(m_n \oplus f_s(m_{n-1} \oplus \ldots f_s(m_1 \oplus IV) \ldots)) \]

Argue that this construction is insecure (even for fixed number of blocks \(n \); e.g., \(n = 1 \)). Specifically, for \(n = 1 \) show that after seeing any valid tag \((IV, f_s(m_1 \oplus IV)) \) of any message \(m_1 \) one can right away compute a valid tag for any other \(m'_1 \neq m_1 \). What is this valid tag?

Solution: ********** INSERT PROBLEM 2b SOLUTION HERE **********

\[\square \]
(c*) **Extra Credit** (6 points) Finally, we can keep the number of blocks n and the IV fixed (say, to 0^n, as earlier), but assume that $\{f_s\}$ is only *unpredictable* rather than pseudorandom. Namely, for any PPT A,

$$\Pr(f_s(m) = t \text{ and } m \text{ is new } | \ s \leftarrow \{0,1\}^k, (m,t) \leftarrow A^{f_s()} = \negl(k)$$

Argue the resulting CBC-MAC is not *necessarily* secure\(^1\) already for $n = 2$ (clearly, it is secure for $n = 1$). Concretely, assume $\{f_s' : \{0,1\}^k \rightarrow \{0,1\}^{k/2}\}$ is some PRF family, and define $f_s(x,y) = f_s'(x,y) \circ x$, where $x,y \in \{0,1\}^{k/2}$ and \circ denotes concatenation. First argue (this is the simple part) that $\{f_s\}$ is an unpredictable family if $\{f_s'\}$ is a PRF. Second, assume the attacker asks an arbitrary 2-block CBC-MAC query, where $x,y,z,w \in \{0,1\}^{k/2}$. Show that after learning the answer $a \circ b$ (where $a,b \in \{0,1\}^{k/2}$), the attacker can forge a valid MAC $(a' \circ b')$ of some other 2-block message $(x' \circ y', z' \circ w')$. What is this message? I.e., write x', y', z', w', a', b' as functions of x, y, z, w, a, b and argue why they work.

Solution: **************** INSERT PROBLEM 2b SOLUTION HERE ****************

Problem 5-3 (Authenticated Encryption using Nonce) 14 Points

Recall the notion of authenticated encryption, which we briefly remind for convenience. It is a triple of algorithms (G, E, D). G is the key generation algorithm, i.e. $G(1^k)$ produces the shared secret key (usually, a truly random string of some length). As usual, $c \leftarrow E_s(m)$ produces the ciphertext, while $D_s(c) \rightarrow \hat{m} \in M \cup \{ot\}$, where M is the message space (say, $M = \{0,1\}^k$), and \bot denotes “invalid”. For privacy, we want (G, E, D) to be an IND-secure encryption scheme against CPA (chosen plaintext attack). However, now we also want (G, E, D) to be a secure message authentication scheme (strongly) existentially unforgeable against chosen message attack. Notice, here a successful forgery constitutes producing c s.t. $D_s(c) \neq \bot$, and c was never returned by the “tagging” (i.e., “encryption”)\(^2\) oracles.

You are to examine the “R-Nonce” scheme as a candidate for authenticated encryption. Namely, let $\{f_s : \{0,1\}^{2k} \rightarrow \{0,1\}^{2k}\}$ be a family of efficient strong PRP's.\(^3\) To encrypt $m \in \{0,1\}^k$, choose a random “nonce” $r \in \{0,1\}^k$, and return $C = \langle f_s(m \circ r), r \rangle$, where s is the shared key (and \circ denotes concatenation). To decrypt $C = \langle c, t \rangle$, compute $(m \circ r) = f_s^{-1}(c)$ and output m provided $r = t$. Otherwise, output \bot.

(a) (5 points) Show that R-Nonce scheme is a secure encryption. Why is it important to have a random r for each invocation?

\(^1\)Of course, it *could* be secure for some unpredictable f_s, like if f_s is actually a PRF, but not secure in general, under the sole assumption that f_s is unpredictable.

\(^2\)Notice, in this scenario the “tagging” and “encryption” oracles are the same.

\(^3\)As you will see, the strongness is needed in part (b).

PS5-3
(b) (5 points) Show that R-Nonce scheme is a secure message authentication scheme, implying that it is a secure authenticated encryption.

Solution: ****************** INSERT PROBLEM 3b SOLUTION HERE ******************

(c) (4 points) Assume we want to “optimize” the R-Nonce scheme and do not send the value \(r \) with the ciphertext. Namely, we simply let \(E_s(m) = f_s(m \circ r) \). Argue that the resulting scheme is no longer a secure authenticated encryption. Also, say which part fails: privacy, authenticity or both?

Solution: ****************** INSERT PROBLEM 3c SOLUTION HERE ******************

Problem 5-4 (Security of Universal-Hash-then-MAC) 15 Points

Recall that a PRF family \(\{f_s\} \) with \(k \)-bit inputs is also a MAC for \(k \)-bit messages. In order to MAC messages of length \(n > k \) we have shown that one can first hash the message using a universal hash function \(h_t : \{0,1\}^n \rightarrow \{0,1\}^k \) before applying \(f_s \): i.e., \(\text{Tag}_{s,t}(m) = f_s(h_t(m)) \). In this exercise we will show that this composition does not necessarily work if we use a general MAC \(\text{Tag}_s \) in place of the PRF \(f_s \).

(a) (4 points) Recall, one can view universal hash function \(h_t \) as a function where collisions are “hard to guess” without seeing the key \(t \) of \(h_t \). In this part, you will show that this property may no longer hold when the adversary is given oracle access to the function \(h_t \). Namely, if the adversary can see the function \(h_t(\cdot) \) evaluated on points of its choice, then he might be able to find “fresh collisions” \((x, x') \), so that \(h_t(x) = h_t(x') \), \(x \neq x' \), and at least one of \(x \) or \(x' \) was not queried to the oracle.

To demonstrate this unfortunate attack, recall the Inner Product construction of universal hash function given in Lecture 11: let \(t = (a_1, \ldots, a_n) \in \mathbb{Z}_p^n \) be the key and \(m = (m_1, \ldots, m_n) \in \mathbb{Z}_p^n \) be a message. The function is

\[
h_t(m) = \sum_{i=1}^n a_i \cdot m_i \mod p
\]

Show that an adversary \(A \) who is given oracle access to \(h_t(\cdot) \) can find a “fresh collision” (see above) with probability 1.

(Hint: There is a simple attack using \(n \) queries to \(h_t(\cdot) \). You can get an extra-credit if you show an attack using only 2 queries.)
Solution: ***************** INSERT PROBLEM 4a SOLUTION HERE ************

(b) (5 points) In this part you are to show that composing a MAC with a universal hash function is not always secure. In particular, let \((\text{Gen}', \text{Tag}', \text{Ver}')\) be a secure MAC on \(k\)-bit messages, and let \(\mathcal{H} = \{h_t(\cdot) : t \in \mathcal{K}\}\) be a family of universal hash functions that have the “bad property” you demonstrated in part (a) (i.e., an adversary can efficiently find a “fresh collision” if it is given oracle access to the function).

Construct a counterexample MAC \((\text{Gen}, \text{Tag}, \text{Ver})\) such that (1) it is secure on \(k\)-bit messages, but (2) it is no longer secure on \(n\)-bit messages when composed with a random hash function from the “bad” universal hash family \(\mathcal{H}\). Be sure to specify \((\text{Gen}, \text{Tag}, \text{Ver})\) from \((\text{Gen}', \text{Tag}', \text{Ver}')\) and describe an explicit attack for part (2).

(Hint: What happens if the algorithm \(\text{Tag}_a(m)\) outputs \(m\) in the clear?)

Solution: ***************** INSERT PROBLEM 4b SOLUTION HERE ************

(c) (6 points) Let us define a stronger notion of security for universal hash functions that we call “Oracle Universality”. Intuitively, this property says that an adversary who is given oracle access to the function \(h_t(\cdot)\) can find a collision \((x, x')\) only with negligible probability. More formally, a family of functions \(\mathcal{H} = \{h_t(\cdot) : t \in \mathcal{K}\}\) is “oracle universal” if:

\[
\Pr[\text{h}_t(x) = h_t(x') \land x \neq x' \mid t \leftarrow \mathcal{K}, (x, x') \leftarrow A^{h_t(\cdot)}(1^k)] \leq \text{negl}(k)
\]

Prove that composing a MAC with an oracle universal hash function \(h_t\) is secure.

Solution: ***************** INSERT PROBLEM 4c SOLUTION HERE ************

Problem 5-5 (“Trust but Verify” –Ronald Reagan) 14 Points

Recall the standard notion of security for MAC \(\text{MAC} = (\text{Gen}, \text{Tag}, \text{Ver})\), which is unforgeability against chosen message attacks (UF-CMA): for any PPT adversary \(A\),

\[
\Pr[\text{Ver}_s(m, t) = \text{accept} \mid s \leftarrow \text{Gen}(1^k), (m, t) \leftarrow A^{\text{Tag}_s(\cdot), \text{Ver}_s(\cdot)}(1^k)] \leq \text{negl}(k)
\]

where \(m\) has never been queried by \(A\) to the oracle \(\text{Tag}_s(\cdot)\).

We introduce the notion of strong UF-CMA (or sUF-CMA), which is the same as the above, except that we require the pair \((m, t)\) to be fresh; i.e., either \(m\) is “new”, or \(m\) is “old” but \(t\) must not have been obtained by querying the oracle \(\text{Tag}_a(m)\).

In this exercise we consider a variant of the unforgeability security notion, in which the adversary is not given access to the verification oracle \(\text{Ver}_s(\cdot, \cdot)\): for any PPT \(B\),

\[
\Pr[\text{Ver}_s(m, t) = \text{accept} \mid s \leftarrow \text{Gen}(1^k), (m, t) \leftarrow B^{\text{Tag}_s(\cdot)}(1^k)] \leq \text{negl}(k)
\]

Depending on whether we want regular or strong unforgeability, we call the resulting weaker notions UF-CMA-noV and sUF-CMA-noV, respectively (where “noV” stands for “no Verification”).

PS5-5
(a) (6 points) In this part, you are to show that for any MAC that is strongly unforgeable the verification oracle is not needed. Formally, sUF-CMA-noV security implies sUF-CMA (and, thus, UF-CMA) security. More precisely, you have to prove that if some PPT attacker \(A \) breaks sUF-CMA security (possibly using up to \(q \) verification queries), then some PPT attacker \(B \) breaks sUF-CMA-noV security (with no verification queries) with probability \(\epsilon' \geq \epsilon/q \). Be sure to precisely define \(B \) in terms of \(A \).

Solution: ***************** INSERT PROBLEM 5a SOLUTION HERE *****************

(b) (2 points) Show that any deterministic UF-CMA-noV MAC can be easily turned into a strongly unforgeable sUF-CMA-noV MAC (which, using part (a), must already be sUF-CMA secure). Hence, for deterministic MACs there is almost no difference between having verification queries or not.

(Hint: You only need to define a good verification algorithm.)

Solution: ***************** INSERT PROBLEM 5b SOLUTION HERE *****************

(c) (6 points) In this part we will show that, in general, the notion of UF-CMA-noV security does not imply UF-CMA security, even for deterministic MACs (where, of course, one does not first apply the simple transformation from part (b)).

You will show this by constructing a counterexample of a MAC, where it is hard to forge tags of new messages without the verification oracle,\(^4\) but where forging tags of any message becomes very easy with (cleverly chosen) verification queries.

Starting with any UF-CMA-secure MAC' = (Gen', Tag', Ver') whose secret key \(s = s_1 \ldots s_k \) has length \(k \), we construct the counter-example MAC = (Gen, Tag, Ver) as follows. The key generation is the same Gen = Gen', and the tagging is defined as Tag\(_s\)(\(m \)) = (Tag\(_{s'}\)(\(m \)), 0) (i.e., append a number zero to the old tag).

Complete the description of the “special” verification algorithm Ver below (by filling the dots) in such a way that the resulting MAC is:

- UF-CMA-noV-secure (hard to forge tags of new messages without the verification oracle).
- NOT UF-CMA-secure in a very strong sense: an adversary, who gets access to the verification oracle, can easily forge the tag of any message after a fixed number of verification queries.

In the description below, we use 0 for “reject” and 1 for “accept”. Also remember that you can only return 0/”reject” or 1/”accept” for each tag \(t \) (e.g., cannot return a \(k \)-bit string, for example).

\(^4\)Of course, by part (a) we know that your counter-example cannot be strongly unforgeable, so new valid tags of old messages are easy to forge.
\textbf{Ver}_s(m, t) :

 Parse \(t \) as \((t', i) \), where \(i \geq 0 \).

 If \(\text{Ver}_s'(m, t') = 0 \) ("reject") \textbf{Then Return} . . .

 Else \textbf{If} \(i \notin \{1, \ldots, k\} \) \textbf{Then Return} . . .

 Else \textbf{Return} . . .

(Hint: What sensitive 1-bit information can you return in the last line that would eventually help to completely break the scheme?)

\textbf{Solution:} ****************** INSERT PROBLEM 5c SOLUTION HERE ***************

PS5-7