Problem 4-1 (PRF Candidates) \hspace{1cm} 22+6 Points

Suppose that \(\{ F_S : \{0,1\}^k \to \{0,1\}^k \mid s \in \{0,1\}^k \} \) is a pseudo-random family of functions from \(k \)-bit input to \(k \)-bit output, indexed by a \(k \)-bit key ("seed"). We would like to construct a new PRF family. Consider the following constructions, and for each of them show whether it is good or bad (namely whether the specified family is pseudo-random or not). Make the proof formal for one positive example (and convincing for the others). For negative examples, also try to differentiate whether the resulting function family is never pseudorandom (i.e., give a generic attack), or could be non-pseudorandom (i.e., given any PRF family \(F'_S \), construct specific PRF family \(F_S \) which is "bad" for the construction at hand).

(a) (3 points) \(F_1^S(x) = F_S(0^k) \circ F_S(x) \).

(b) (3 points) \(F_2^S(x) = F_S(x) \circ F_S(\overline{x}) \).

(c) (3 points) \(F_3^S(x) = F_{0^k}(x) \circ F_S(x) \).

(d) (5 points) \(F_4^S(x) = F_{S_1}(x) \circ F_{S_2}(x) \), where \(S_1 = F_S(0^k) \) and \(S_2 = F_S(1^k) \).

(e) (4 points) \(F_5^S(x) = F_x(S) \).

(f) (4 points) \(F_6^S(x) = F_S(x) \oplus x \).

(g**) Extra Credit. (6 points) \(F_7^S(x) = F_S(x) \oplus S \).

Problem 4-2 (Chosen Ciphertext Attacks) \hspace{1cm} 12+8 Points

Recall the following stateless secret-key encryption scheme, which we called XOR. The secret key is the seed \(s \) to a PRF \(f_s : \{0,1\}^k \to \{0,1\}^k \). To encrypt \(m \in \{0,1\}^k \), we had \(E_s(m) = (r, f_s(r) \oplus m) \), where \(r \) is chosen at random. To decrypt \((r, c) \), we had \(D_s(r, c) = f_s(r) \oplus c \). We showed that this scheme is IND-secure against CPA-attack. For your reference, here is the formal definition of IND-security (of a general encryption scheme not just XOR) against CPA-attack.

Definition 1 SKE is IND-secure against CPA iff \(\forall \text{PPT } B = (B_1, B_2) \),

\[
\Pr[b = \tilde{b} \mid s \leftarrow \text{Gen}(1^k); \\
(m_0, m_1, \beta) \leftarrow B_1^{E_s}(1^k); \\
b \leftarrow \{0,1\}; \\
\tilde{c} \leftarrow E_s(m_b); \\
\tilde{b} \leftarrow B_2^{E_s}(\tilde{c}, \beta); | \leq \frac{1}{2} + \text{negl}(k)
\]

PS4-1
In this problem we consider the security of this scheme against stronger *chosen ciphertext attacks*. In these attacks the adversary also has access to the decryption oracle $D_s(\cdot)$ in addition to $E_s(\cdot)$. Two kinds of chosen ciphertext attack are possible. In the first one, called *lunch-time attack*, the adversary can call $D_s(\cdot)$ only in the “find” stage (when he tries to output m_0 and m_1; i.e., when running B_1 but not B_2). In the second, called CCA attack, he can call it in the “guess” stage as well (i.e for both B_1 and B_2). Of course, to make sense of the CCA attack we must prohibit to submit the challenge ciphertext \tilde{c} to the decryption oracle in the “guess” stage (but any other ciphertext $c \neq \tilde{c}$ is OK).

(a) (8 points) Give a proof that the XOR scheme is secure against the lunch-time attack when f_s is a PRF, by turning the following (informal) argument into a formal proof. Intuitively, as long as the value r selected to encrypt the challenge message m_b is “fresh”, then the security of the PRF should make the scheme secure. Let q_1 be the total number of encryption queries, and q_2 be the number of decryption queries B_1 makes in the “find” stage. Tell in English what “fresh” above means, and then write an upper bound on the probability that the value r is not fresh as a function of q_1, q_2 and k (assuming here that f_s is a truly random function). Conclude that this probability is negligible and use it to show that the XOR scheme is lunch-time secure.

(b) (4 points) Next, argue that XOR is completely insecure against the IND-CCA attacker. Namely, given a challenge ciphertext $\tilde{c} = (\tilde{r}, \tilde{z})$, make a *single* decryption query $(r, z) \neq (\tilde{r}, \tilde{z})$ (i.e., either $r \neq \tilde{r}$ or $z \neq \tilde{z}$), the answer to which allows you to completely decrypt the challenge ciphertext \tilde{c}.

(c*) **Extra Credit.** (8 points) Let us modify the XOR scheme as follows. We assume the domain of f is twice as large (2k rather than k bits), f is a strong PRP rather than a PRF, we use concatenation \circ in place of \oplus, and also drop the no longer required value r from the ciphertext. Formally, $E_s(m) = f_s(m \circ r)$, where $m \in \{0,1\}^k$ is the message, $r \in \{0,1\}^k$ is chosen at random and $f_s : \{0,1\}^{2k} \rightarrow \{0,1\}^{2k}$ is a strong PRP. To decrypt c, compute $m \circ r = f_s^{-1}(c)$, and simply drop the value r. Argue that the resulting scheme is CCA-secure.

Problem 4-3 (Necessity of Luby-Rackoff)
15 Points

Recall the Luby-Rackoff construction of PRP’s from PRF’s. Namely, let \mathcal{F} be a PRF family of functions from k to k bits. Given a function $f \in \mathcal{F}$, define the Feistel function $H_f(L, R) = (R, L \oplus f(R))$. Finally, define $H^i_{\mathcal{F}}(L, R) = H_{f_1}(\ldots H_{f_i}(L, R) \ldots)$, be the Feistel function evaluated i times with $f_1 \ldots f_i$, each of which is drawn from \mathcal{F} at random and independently from others. We mentioned that functions $H^i_{\mathcal{F}} : \{0,1\}^{2k} \rightarrow \{0,1\}^{2k}$ form a PRP family, while $H^i_{\mathcal{F}} : \{0,1\}^{2k} \rightarrow \{0,1\}^{2k}$ form a strong PRP family. You are to show that these results cannot be improved.

(a) (3 points) Show that $H^i_{\mathcal{F}}$ do not form a PRP family. In fact, one query to $H^i_{\mathcal{F}}$ allows to distinguish it from a random permutation.

Hint: What happens to the right part?
Problem 4-4 (Security against Related Key Attacks) 8+8 Points

In this problem you are going to consider a stronger security notion for pseudo random functions, called security against related key attacks. Intuitively, this notion says that a PRF should remain secure even if the adversary can see the evaluation of the PRF under a key “perturbed” by the adversary in some (almost) arbitrary way. However, for the sake of this exercise, we simply define this notion only for the case of the Naor-Reingold’s PRF that we have studied in class.

Let $R : (\mathbb{Z}_q)^{\ell+1} \times \{0,1\}^\ell \rightarrow \mathbb{Z}_q$ be a truly random function, i.e., imagine that on every input $(\delta_0, \ldots, \delta_\ell, x)$, R samples a fresh value $r \in \mathbb{Z}_q$ uniformly at random and outputs r (but, when queried on the same input twice, R returns the same output).

Define the Naor-Reingold (NR) PRF as follows:

$$NR_{p,g,a_0,a_1,\ldots,a_\ell}(x) = g^{a_0 \prod_{i=1}^\ell x_i}$$.

where $(a_0, \ldots, a_\ell) \in \mathbb{Z}_q^{\ell+1}$ is the seed, and $x \in \{0,1\}^\ell$ is the input.

For any $a = (a_0, \ldots, a_\ell)$, we define the function $F_a : (\mathbb{Z}_q)^{\ell+1} \times \{0,1\}^\ell \rightarrow \mathbb{Z}_q$ as follows: on input $\delta = (\delta_0, \ldots, \delta_\ell) \in (\mathbb{Z}_q^*)^{\ell+1}$ and $x \in \{0,1\}^\ell$:

$$F_a(\delta, x) = NR_{p,g,a_0\cdot \delta_0, a_1\cdot \delta_1, \ldots, a_\ell \cdot \delta_\ell}(x) = g^{a_0 \cdot \delta_0 \cdot \prod_{i=1}^\ell x_i \cdot \delta_i}$$.

i.e., F evaluates NR on input x using a key which is obtained by multiplying a by δ component-wise.

Then, the NR PRF is said secure against related key attacks if for any PPT adversary A:

$$\text{Adv}_A^{\text{rka}}(k) = | \Pr[A^{F_a(\cdot)}(1^k) = 1 | a \leftarrow \mathbb{Z}_q^{\ell+1}] - \Pr[A^{R(\cdot)}(1^k) = 1] | \leq \text{negl}(k)$$

where the probabilities are taken over the random choices of $a = (a_0, \ldots, a_\ell)$ and R respectively.

(a) (3 points) In this part you are to show that given access to the standard PRF oracle $NR_{p,g,a_0,a_1,\ldots,a_\ell}(\cdot)$, it is possible to efficiently simulate the oracle $F_a(\cdot, \cdot)$ without knowing the secret key a. More precisely, show that for any $x \in \{0,1\}^\ell$ and any $\delta = (\delta_0, \ldots, \delta_\ell) \in (\mathbb{Z}_q^*)^{\ell+1}$, given the output $y = NR_{p,g,a_0,a_1,\ldots,a_\ell}(x)$, it is possible to efficiently compute $F_a(\delta, x)$ (without knowing a).

(b) (5 points) Show that the NR PRF is not secure according to our new definition, i.e., show an efficient adversary A that uses its oracle (either $F_a(\cdot, \cdot)$ or $R(\cdot, \cdot)$) to obtain advantage close to 1 in the related key attack experiment described above.

(Hint: Use part (a) and the information given in part (c) below as a hint for your attack.)

(c) (Extra credit) (8 points) Show that the NR PRF is secure according to our new definition if we restrict the adversary to query A the oracle only on distinct inputs x. (Hint: Use part (a) to reduce the “RKA security” of NR PRF to its regular security. Where do you use the fact that all the inputs are distinct?)