Lecture 5: Lexical Analysis II

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
The Magic Behind It All: Finite Automata

• Recognizers: “yes” or “no” about each input string

• Two Flavors:
 – Non-deterministic Finite Automata (NFA)
 – Deterministic Finite Automata (DFA)

• Main parts
 – States
 • Start
 • Accepting or final
 – transitions
Which is Which?

![Diagram of two automata]
NFA

- Finite set of states S
- Input alphabet Σ
- Transition function that gives for each state and for each $\Sigma \cup \{\varepsilon\}$ a set of next states
- A starting state S_0
- A set of accepting or final states
Another Presentation of NFA: Transition Tables

+ We can easily find the transition
- Lot of space
Acceptance of Input String

Input string x is accepted if and only if:
There is some path in the transition graph from start to one of the accepting states.

Which of the following are accepted: $a b b$, $a a a$, $a a b b$, $a a a b b$, $b b b$?
Example

- For the following NFA indicates all paths labeled $aabb$
DFA

- Special case of NFA
- No moves on ε
- For each state S, and input symbol a, there is exactly one edge out of s labeled a
\[s = s_0; \\
c = \text{nextChar}(); \\
\text{while} \ (c \neq \text{eof}) \ { \\
\hspace{1em} s = \text{move}(s, c); \\
\hspace{1em} c = \text{nextChar}(); \\
\} \\
\text{if} \ (s \text{ is in } F) \ \text{return} \ "yes"; \\
\text{else return} \ "no"; \]

"Yes" or "No"?
\textit{abba}
\textit{babb}
\textit{aababb}
\textit{abbb}
NFA -> DFA

• Subset construction: each state of DFA corresponds to a set of NFA states
• For real languages NFA and DFA have approximately the same number of states (although theory has another opinion!)
Let's Start With Some Definitions

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ-$\text{closure}(s)$</td>
<td>Set of NFA states reachable from NFA state s on ϵ-transitions alone.</td>
</tr>
<tr>
<td>ϵ-$\text{closure}(T)$</td>
<td>Set of NFA states reachable from some NFA state s in set T on ϵ-transitions alone; $= \cup_{s \in T} \epsilon$-$\text{closure}(s)$.</td>
</tr>
<tr>
<td>$\text{move}(T, a)$</td>
<td>Set of NFA states to which there is a transition on input symbol a from some state s in T.</td>
</tr>
</tbody>
</table>

![Diagram of NFA states and transitions]
Simulating NFA

1) \(S = \varepsilon\text{-closure}(s_0); \)
2) \(c = \text{nextChar}(); \)
3) \(\text{while} \ (c \neq \text{eof}) \{ \)
4) \(\quad S = \varepsilon\text{-closure}(\text{move}(S, c)); \)
5) \(\quad c = \text{nextChar}(); \)
6) \(\} \)
7) \(\text{if} \ (S \cap F \neq \emptyset) \) return "yes";
8) \(\text{else return } "\text{no}"; \)
Example

Simulate the following NFA on $aabb$

What is the transition table of the above NFA?

1) $S = \varepsilon$-closure(s_0);
2) $c = \text{nextChar}()$;
3) while ($c \neq \text{eof}$) {
4) $S = \varepsilon$-closure(move(S, c));
5) $c = \text{nextChar}()$;
6) }
7) if ($S \cap F \neq \emptyset$) return "yes";
8) else return "no";
Subset Constructions

Initially, ϵ-closure(s_0) is the only state in $D\text{states}$, and it is unmarked; while (there is an unmarked state T in $D\text{states}$) {
 mark T;
 for (each input symbol a) {
 U = ϵ-closure($\text{move}(T, a)$);
 if (U is not in $D\text{states}$)
 add U as an unmarked state to $D\text{states}$;
 $D\text{tran}[T, a] = U$;
 }
}

States of the DFA we are constructing
$$(a | b)^{*}abb$$
Regular Expression \rightarrow NFA

(McNaughton-Yamada-Thompson algorithm)

1. $r = a$

2. $r = s | t$

3. $r = st$

4. $r = s^*$
Example: \((a|b)^*abb\)
Example: \((a|b)^*abb\)

\(a|b\)

\((a|b)^*\)

\((a|b)^*a\)
Example: \((a|b)^*abb\)

\((a|b)^*abb\)
State Minimization of DFA

- There can be many DFAs that recognize the same language.
- Smaller DFAs are more efficient (storage, speed)
- There is always a unique minimum state DFA
- This minimum-state DFA can be constructed from any DFA that recognizes the language.
How to Do It?

1. Given DFA: start with at least two subgroups: S and S-F
2. Repeat the following algorithm until no more progress can be made

```plaintext
initially, let \( \Pi_{\text{new}} = \Pi \);
for ( each group \( G \) of \( \Pi \) ) {
    partition \( G \) into subgroups such that two states \( s \) and \( t \)
    are in the same subgroup if and only if for all input symbols \( a \), states \( s \) and \( t \) have transitions on \( a \)
    to states in the same group of \( \Pi \);
    /* at worst, a state will be in a subgroup by itself */
    replace \( G \) in \( \Pi_{\text{new}} \) by the set of all subgroups formed;
}
```
Example

\{A,B,C,D\} \{E\}

\{A,B,C\} \{D\} \{E\}

\{A,C\} \{B\} \{D\} \{E\}

<table>
<thead>
<tr>
<th>STATE</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>(B)</td>
<td>(B)</td>
<td>(D)</td>
</tr>
<tr>
<td>(D)</td>
<td>(B)</td>
<td>(E)</td>
</tr>
<tr>
<td>(E)</td>
<td>(B)</td>
<td>(A)</td>
</tr>
</tbody>
</table>
Lexical Analyzer Generators

• Each regular expression \rightarrow NFA
• Combine all NFAs as
• In case of several matches
 – Pick longest
 – Pick earliest in file
\[
\begin{align*}
\text{a} & \quad \{ \text{action } A_1 \text{ for pattern } p_1 \} \\
\text{abb} & \quad \{ \text{action } A_2 \text{ for pattern } p_2 \} \\
\text{a}^*\text{b}^+ & \quad \{ \text{action } A_3 \text{ for pattern } p_3 \}
\end{align*}
\]
Lex

• Based on DFA not NFA
• Handling lookahead
• For state minimization, initial partition:
 – groups all states that recognizes a particular token
 – places in one group those states that do not indicate any token
Initial partitioning: \{0137, 7\}\{247\}\{8, 58\}\{7\}\{68\}\{\emptyset\}
So

• We have covered Sections 3.6 -> 3.9
• Skim: 3.7.3, 3.7.5, 3.9.1-3.9.5 and 3.9.8
• Read carefully the rest of: 3.6, 3.7, 3.8, 3.9.6, and 3.9.7