1. Design and analyze an identification scheme that satisfies the following properties:
 - it should be secure against (unrestricted) cheating verifier attacks, assuming the computation of cube roots modulo a composite \(n \) is hard (here, we presume that \(n \) is chosen from a distribution such that \(3 \nmid \phi(n) \));
 - it should consist of 3 flows, each of which is a message whose bit-length \(O(\text{len}(n)) \).

2. In class, we have only defined security for identification schemes with respect to a single prover (and corresponding public key/private key pair). Develop a reasonable formal definition of security against (unrestricted) cheating verifier attacks for an \(n \)-prover system, and prove that security for a single prover implies security for \(n \) provers.

3. In class, we discussed an interactive proof system for proving that two discrete logarithms are equal. This problem examines a proof system for proving that two discrete logarithms are unequal. The common input to the prover \(P \) and verifier \(V \) consists of \(p, q, \gamma, \gamma', \alpha, \alpha' \), where \(p \) and \(q \) are primes with \(q \mid (p-1) \), \(\gamma, \gamma' \) are generators for the subgroup \(G \) of order \(q \) in \(\mathbb{Z}_p^* \), and \(\alpha, \alpha' \in G \) with \(\log_\gamma \alpha \neq \log_\gamma \alpha' \). The prover has an additional input, namely \(x \in \mathbb{Z}_q \) with \(\alpha = \gamma^x \). The protocol runs as follows:

 (a) \(P \) chooses \(r \in \mathbb{Z}_q^*, \hat{r} \in \mathbb{Z}_q, \hat{s} \in \mathbb{Z}_q \) at random, and computes

 \[
 s \leftarrow xr, \quad \kappa \leftarrow (\gamma')^s/(\alpha')^r, \quad \mu' \leftarrow (\gamma')^{\hat{s}}/(\alpha')^{\hat{r}}, \quad \mu \leftarrow \gamma^x/\alpha^\hat{r},
 \]

 and then sends \((\kappa, \mu', \mu)\) to \(V \).

 (b) Upon receiving \((\kappa, \mu', \mu)\) \(\in G(3) \), \(V \) chooses \(c \in \mathbb{Z}_q \) at random, and sends \(c \) to \(P \).

 (c) Upon receiving \(c \in \mathbb{Z}_q \), \(P \) computes

 \[
 \hat{s} \leftarrow \hat{s} + cs \in \mathbb{Z}_q, \quad \hat{r} \leftarrow \hat{r} + cr \in \mathbb{Z}_q,
 \]

 and sends \((\hat{s}, \hat{r})\) to \(V \).

 (d) Upon receiving \((\hat{s}, \hat{r}) \in \mathbb{Z}_q^2 \), \(V \) checks that

 \[
 \kappa \neq 1, \quad (\gamma')^{\hat{s}}/(\alpha')^{\hat{r}} = \mu'\kappa^c \quad \text{and} \quad \gamma^x/\alpha^{\hat{r}} = \mu.
 \]

 If these checks pass, then \(V \) accepts, otherwise \(V \) rejects.

Show that the above protocol is an honest-verifier zero-knowledge proof of inequality of discrete logarithms. That is, show that (1) if \(\log_\gamma \alpha \neq \log_\gamma \alpha' \), then an honest prover always makes an honest verifier accept, (2) if \(\log_\gamma \alpha = \log_\gamma \alpha' \), then any prover makes an honest verifier accept with only negligible probability, and (3) a conversation between a honest prover and an honest verifier can be simulated by an algorithm that is given only the common input of the prover and verifier (and assuming that \(\log_\gamma \alpha \neq \log_\gamma \alpha' \)).

4. Suppose we have a semantically secure public-key encryption scheme. The encryption algorithm is \(E \). For simplicity, assume the message space is \(\{0,1\} \). Also, assume the space of public keys is a finite abelian group \(G \) (written multiplicatively), where the key generation algorithm generates public keys that are uniformly distributed over \(G \) (ElGamal encryption is an example of such a scheme).

In addition, suppose we have a collision resistant hash function \(H : G \rightarrow \{0,1\}^\ell \)

Now consider the following game, played between a challenger and an adversary \(A \):
(a) The challenger generates system parameters for the encryption scheme and the hash function, and sends these to \(\mathcal{A} \).

(b) \(\mathcal{A} \) sends \(h \in \{0,1\}^\ell \) to the challenger.

(c) The challenger chooses \(k_2 \in G \) at random, and sends \(k_2 \) to \(\mathcal{A} \).

(d) \(\mathcal{A} \) sends \(k_1 \) to \(\mathcal{A} \).

(e) The challenger checks that \(H(k_1) = h \). If not, the challenger halts the game. Otherwise, the challenger chooses \(b \in \{0,1\} \) at random, computes

\[
k \leftarrow k_1 \cdot k_2 \in G, \quad c \leftarrow E(k, b),
\]

and sends the ciphertext \(c \) to \(\mathcal{A} \).

(f) \(\mathcal{A} \) outputs \(\hat{b} \in \{0,1\} \).

For completeness, if the protocol halts for any reason before step (f), let us define \(\hat{b} := 0 \).

We define \(\mathcal{A} \)'s advantage to be \(|\Pr[\hat{b} = b] - 1/2| \).

The above game is much like the usual game defining semantic security, except that now, instead of having the challenger generate a public key \(k \) at random, the public key is generated using an interactive protocol.

Prove the following: under the assumptions that the encryption scheme is semantically secure, and the hash function is collision resistant, every efficient adversary has only a negligible advantage in the above game.