Synthesizetreefromfragments,reconstruct rightmostderivation fromlefttoright. Automatonperformstwoactions:
- **shift**: pushnextinputsymboltostack.
- **reduce**: reducesstackfromtoptosinglestring ontheright.

Abottom-uprecognitionbyashift-reduce PDA is given by:

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$((())$</td>
<td>$(())$</td>
<td>reduce</td>
</tr>
<tr>
<td>(SS)</td>
<td>S</td>
<td>reduce</td>
</tr>
<tr>
<td>$(())$</td>
<td>$(())$</td>
<td>shift</td>
</tr>
<tr>
<td>(S)</td>
<td>(S)</td>
<td>shift</td>
</tr>
<tr>
<td>S</td>
<td>(S)</td>
<td>accept</td>
</tr>
</tbody>
</table>

Theoperationsherearestill (copyfrominputtostack) and reduce

Thebottom-uprecognizesententialforms withtwohandles, e.g.
\[
pn * p + p \quad \iff \quad pn * p \quad \iff \quad p + p \quad \iff \quad p
\]

On theotherhand, foranambiguousgrammarsuchas:

A production $A \rightarrow \epsilon$ is a handle in a sentential form if there is a rightmost derivation.

Stringsthatapearinarightmost derivation.A (right)

A (right) sentential form is a mixed (terminals and non-terminals)

Handles

Technically more general than LL(k).

- **contains S:**
 - if accepts when all input has been consumed and the stack
 - acceptstheemptystring
- **reduce $A \rightarrow \alpha$:**
 - reduces stack from top to bottom: if there exists a rightmost derivation of the form $\alpha \rho A \alpha' \beta \rho \epsilon$
- **shift β:** push next input symbol to stack.

Automatonpatternstwo actions:

- **from left to right:**
 - Synthesizefree from fragments, reconstruct rightmost derivation
- **from right to left:**
 - Recognizewith shift reduce PDA
Properties of LR(k) Grammars

There exist unambiguous grammars which are not LR(k).

Example:
The grammar

\[S \rightarrow Ce \mid Dd \mid aCb \]
\[C \rightarrow aCh \mid ab \]
\[D \rightarrow aDb \mid abb \]

which generates the language

\[\{ab^i \mid i \geq 0\} \cup \{a^ib^j \mid i \geq 1, j \geq 0\} \]

is not LR(k) for any \(k \geq 0 \). This is because the prefix

\[a^ib^j \mid i \geq 1, j \geq 0 \]

does not uniquely determine whether the handle is \(C \rightarrow a \) or \(D \rightarrow abb \).

On the other hand, the language

\[\{a^ib^j \mid i \geq 0\} \cup \{a^ib^j \mid i \geq 1, j \geq 0\} \]

has an LR(0) grammar.

Recognizing Reducible Strings

For each rightmost derivation as a reducible string.

We use a stack to hold the prefix of the analyzed sentential form up to (and including) the handle. Initially, the stack is empty.

We then follow the rules:

- If the stack contains a handle at its top, reduce the handle to the corresponding non-terminal. For an LR(k) grammar, this may require looking at the first \(k \) input characters.
- If the stack does not contain a handle at its top, but is still a prefix of a sentential form – shift the next input token to the stack top.
- If the stack contains \(S \) and the input is empty, then accept.
- Otherwise, reject.

Implementation of Shift-Reduce Parsing

It follows from the properties of rightmost derivations that we never have to look for handles deeper in the stack.

Claim 7. [Regularity of Reducible Strings] The set of reducible strings \(\alpha \beta \) is a regular language. We refer to a prefix of a reducible string as a viable prefix. In an LR parsing, we expect all stack contents to be viable prefixes.
We will show how to construct an finite-state classifier for the set of reducible strings of an LR(0) grammar.

The classifier is a DFA with several accepting states. Each accepting state identifies the production A which has been applied last when generating the reducible string. Constructing an NFAs and then determinizing it into a DFA.

The General Construction

For each production X → Y₁ ... Yₙ, construct a right-linear rule:

h Xᵢ! Y₁ Yₙ

Eliminate any productions of the form h Xᵢ! h Xᵢ.

For each non-terminal Yᵢ ∈ [1...n], construct a right-linear rule:

h Xᵢ! Y₁ Yₙ

For each production X → Y₁ ... Yₙ, construct a classifier via right-linear grammar.

A classifier for LR(0) parsing

The classifier also the rule

⟨X⟩ ← ⟨X⟩

A Reducible Strings Classifier

Corresponding to the grammar:

p₁ | (A) ← A
p₁ | A * L ← L
p₁ | L + E ← E
p₁ | E ← E
Initially, stack is empty.

At any step, if stack contains E_0 (start symbol) and input is empty, accept.

Otherwise, let a be the next incoming input character.

Run the classifier on the stack contents:
- If the classifier reaches an accepting state annotated with $A!$, such that $A \notin \text{Follow}(A)$, then reduce with $A \rightarrow A'$ such that $A \notin \text{Follow}(A)$.
- Otherwise, if I_j is the state exposed by this removal, then push $(I_j; A)$ to the stack.

If any step, if stack contains E (start symbol) and input is empty, accept.

Replace Symbol Stack by State Stack

Instead of running the LR(0) classifier on the stack at each step, we can keep a stack of the classifier states. This leads to the following parsing algorithm:

Initially, stack contains state I_0.

At any step, if stack contains I_0 and input is empty, accept.

Otherwise, let a be the next incoming input character.

If $(I_j; a) = I_k$, then push I_k to the stack (shift).

Otherwise, if I_j is an accepting state annotated with the production $A \rightarrow \gamma$, then remove the top of the stack (reduce).

NotethatthisparsecannotbecompletedbyapureLR(0) parsing.

Example of a Parse

 чувствует, что он не может быть восстановлен из исходного стека.

LR(0) Parsing Using Classifier

Notethatthesymbolsoftheoriginalstackcanbereconstructedfromthestatestack.
For every non-terminal A such that $\delta(I, I) = I$, set $\textsc{goto}[I, I] = \textsc{error}$.

1. All entries not set by the above rules are set to \textsc{error}.
2. If I is an accepting state annotated by S, then set $S \leftarrow S$.
3. If I is in an accepting state annotated by S, then set $S \neq V$.

For every terminal a, $\delta(I, a)$ is set to I.

If I is in an accepting state annotated by a, then set $S \leftarrow S$.

If I is in an accepting state annotated by a, then set \textsc{error}.

State S corresponds to I.

Construct the $\textsc{lr}(0)$ classifier for the grammar.

LR Parsing Tables

Converting SLR(0) Parsing Tables

<table>
<thead>
<tr>
<th>ACTION</th>
<th>SYMBOLS</th>
<th>STATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textsc{accept}</td>
<td>A</td>
<td>$A + A$</td>
</tr>
<tr>
<td>\textsc{reduce} by A</td>
<td>$A + A$</td>
<td>$A + A$</td>
</tr>
<tr>
<td>\textsc{reduce} by a</td>
<td>$A + A$</td>
<td>$A + A$</td>
</tr>
<tr>
<td>\textsc{reduce} by B</td>
<td>$A + A$</td>
<td>$A + A$</td>
</tr>
</tbody>
</table>

The value of $\delta(I, a)$ can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

For each state S, the \textsc{reduce} function takes an argument of state S. The value of $\delta(I, a)$ is a terminal a or a terminal a.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

The value of $\delta(I, a)$ is a terminal a or a terminal a.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.

\textsc{reduce} can have one of four values: \textsc{error}, a terminal a, \textsc{reduce}^*, or \textsc{reduce}^+.
A grammar is SLR(0) if its LR(0) classifier satisfies the following requirements:

1. For every accepting state \(I \) annotated by production \(A \rightarrow \gamma \) and terminal \(a \) such that \((I, a)\) is defined,
 \[\text{Follow}(A) \cap \text{Follow}(\gamma) \neq \emptyset \]

2. For every accepting state \(I \) annotated by production \(A \rightarrow \gamma \) and terminal \(a' \), there exists a production \(A \rightarrow \alpha \) such that
 \[\text{Follow}(A) \cap \text{Follow}(\alpha) = \emptyset \]

3. The classifier has no shift-reduce conflicts, and

 \[\text{Follow}(A) \cap \text{Follow}(\gamma) = \emptyset \]

Examples of YACC: A Calculator

```yacc
%{
#include "ctype.h"
}

%token DIGIT

%%
line: | expr'
     { printf("%d\n", $1); } |
     { printf("%g\n", $2); } |
l
expr:  | expr' + expr    { $1 + $3; } |
     | expr' - expr    { $1 - $3; } |
     | expr' * expr    { $1 * $3; } |
     | expr' / expr    { $1 / $3; } |
     | '(' expr ')'    { $2; } |
     | $1; |

UMINUS | term
       { $2 - $3; } |
       { $2 + $3; } |

factor: | factor'*' factor
         { $1 * $3; } |
       | factor'*' factor
         { $1 * $3; } |
       | factor'*' factor
         { $1 * $3; } |
       | factor'*' factor
         { $1 * $3; } |
```

Sample yylex

```c
#include "stdio.h"

%token NUMBER
%left '+', '-'
%left '*', '/'
%right UMINUS
%%
lines: | lines expr
      { printf("%g\n", $2); } |
      { printf("%g\n", $2); } |
      ...

expr:  | expr' + expr
      { $1 + $3; } |
     | expr' - expr
      { $1 - $3; } |
     | expr' * expr
      { $1 * $3; } |
     | expr' / expr
      { $1 / $3; } |
     | '(' expr ')' | $2; |
     | $1; |

UMINUS | term
       { $2 - $3; } |
       { $2 + $3; } |

factor: | factor'*' factor
         { $1 * $3; } |
       | factor'*' factor
         { $1 * $3; } |
       | factor'*' factor
         { $1 * $3; } |
       | factor'*' factor
         { $1 * $3; } |
```

Charaterization of SLR(0) Grammars
A terminal a of G and terminal a' of $\text{LR}(1)$ have the form $\langle a \rangle$ for a non-terminal G.

In order to construct an $\text{LR}(1)$ classifier we generate

$$[a', a] \leftarrow [a, a'] \leftarrow \langle G \rangle$$

accepts the string $a'b'$ under the mode a'. Other classes are handled similarly following the analysis of sentential forms to full resolve conflicts such as the one detected above.

To resolve conflicts such as the one detected above,

Moving to an $\text{LR}(1)$ Classifier

This right-linear grammar produces the classifier presented in the next slide.

$$[a \rightarrow b] \leftarrow [b \rightarrow a]$$

Precedes

We now construct a right-linear grammar for all rightmost sentential forms.

Let us construct an $\text{LR}(0)$ classifier for this grammar. As a first step,

$$\langle a \rangle \leftarrow \langle b \rangle$$

Consider the following grammar:

$$\langle a \rangle \leftarrow \langle b \rangle$$

These are LR grammars which are not $\text{SLR}(0)$. Consider the

An $\text{LR}(0)$ classifier for the problem grammar

$\langle a \rangle \leftarrow \langle b \rangle$

$\langle a \rangle \leftarrow \langle b \rangle$
Reconsider the previously considered problem grammar:

```
S → aAd
A → c
B → c
```

Constructing the induced grammar $G_{LR(1)}$, we obtain:

```
S → aAd
A → c
B → c
```

The Resulting $LR(1)$ Classifier

The $LR(1)$ classifier for the grammar:

```
S → aAd
A → c
B → c
```

From $LR(1)$ to $LALR$

Consider the following grammar:

```
S → S
C → cC
```

Constructing the induced grammar $G_{LR(1)}$, we obtain:

```
S → S
C → cC
```

For every terminal a, if $(I^a, I^a) = I^j$, then set $ACTION[i; a] = \text{reduce } A$. Here $A = S, C$.

For every non-terminal A such that $(I^a, I^a) = I^j$, set $ACTION[i; a] = \text{shift } j$.

If any conflicting actions result from the above rules, then the grammar is not $LR(1)$.

All entries not set by the above rules are set to error.
Note that we can merge together states I_4 with I_7 and state I_8 with I_9 without creating conflicts (but giving up some error-detection options). This leads to an LALR classifier.