Introduction

- Note: This is just a collection of some of the topics covered in class. For complete coverage refer to class notes.
- Basic trends
- Instruction Set Architecture
- RISC Processors

Review of MIPS Operand Addressing Modes

- Register addressing – operand is in a register
- Base (displacement) addressing – operand is at the memory location whose address is the sum of a register and a 16-bit constant contained within the instruction
- Immediate addressing – operand is a 16-bit constant contained within the instruction

Review of MIPS Instruction Addressing Modes

- PC-relative addressing – instruction address is the sum of the PC and a 16-bit constant contained within the instruction
- Pseudo-direct addressing – instruction address is the 26-bit constant contained within the instruction concatenated with the upper 4 bits of the PC

Course Administration

- Midterm exam:
 - March 21th at 5:00pm in the same classroom
 - Open Book
 - No notes allowed
- Lab 1 – Part 1 Due: today at 5pm
 - Extended deadline tonight at midnight with no penalty
 - Sunday March 11 with 10-point penalty
 - Wednesday March 14 with 20-point penalty
 - No submission after that
- Lab 1 part 2 Due: March 28th at 5pm. No extensions.
MIPS (RISC) Design Principles

- Simplicity favors regularity
 - fixed size instructions – 32-bits
 - small number of instruction formats
 - opcode always the first 6 bits
- Good design demands good compromises
 - three instruction formats
- Smaller is faster
 - limited instruction set
 - limited number of registers in register file
 - limited number of addressing modes
- Make the common case fast
 - arithmetic operands from the register file (load-store machine)
 - allow instructions to contain immediate operands

Numbers

- Binary representation
- MIPS arithmetic
- Add/subtract/Multiply/Divide
- Floating point numbers
- Floating point operations

IEEE 754 FP Standard Encoding

- Most (all?) computers these days conform to the IEEE 754 floating point standard
 \((-1)^{\text{sign}} \times (1+F) \times 2^{\text{E-bias}}\)
- Formats for both single and double precision
- F is stored in normalized form where the msb in the fraction is 1 (so there is no need to store it!) – called the hidden bit
- To simplify sorting FP numbers using integer comparisons
 - E comes before F in the word and
 - E is represented in excess (biased) notation

<table>
<thead>
<tr>
<th>Single Precision</th>
<th>Double Precision</th>
<th>Object Represented</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (8)</td>
<td>F (23)</td>
<td>E (11)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>0</td>
</tr>
<tr>
<td>1-254</td>
<td>anything</td>
<td>1-2046</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>2047</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>2047</td>
</tr>
</tbody>
</table>

Summary: Evaluating ISAs

- Design-time metrics:
 - Can it be implemented, in how long, at what cost?
 - Can it be programmed? Ease of compilation?
- Static Metrics:
 - How many bytes does the program occupy in memory?
- Dynamic Metrics:
 - How many instructions are executed? How many bytes does the processor fetch to execute the program?
 - How many clocks are required per instruction?
 - How "lean" a clock is practical?

Best Metric: Time to execute the program!

MIPS Architecture

- Basic MIPS Architecture
- Components of MIPS Datapath
- Pipelining
 - Pipeline Hazards
 - structural hazards: attempt to use the same resource by two different instructions at the same time
 - data hazards: attempt to use data before it is ready
 - An instruction’s source operand(s) are produced by a prior instruction still in the pipeline
 - control hazards: attempt to make a decision about program control flow before the condition has been evaluated and the new PC target address calculated
 - branch instructions

Pipelining Issues

- Forwarding
- Hazard Detection
- Stalling
 - Possible approaches for control hazards
 - Stall (impacts CPI)
 - Move decision point as early in the pipeline as possible, thereby reducing the number of stall cycles
 - Delay decision (requires compiler support)
 - Predict and hope for the best
- Two types of stalls
- Dealing with Exception
Multiple Issue Introduction

- Superpipelining
- Multiple-issue:
 - Super scalar
 - VLIW
- Instruction vs Machine Parallelism
- Multiple-issue types:
 - In-order issue with in-order completion
 - In-order issue with out-of-order completion
 - Out-of-order issue with out-of-order completion
 - Out-of-order issue with out-of-order completion and in-order commit
- True data dependency, Output dependency, Antidependency

Next Lecture and Reminders

- Next lecture
 - March 28th
- Reminders
 - Midterm exam: March 21th @ 5:00pm
 - Lab 1 due today