Outline

• Announcements
 – Homework assignment 5 and Lab Assignment 5 on the web: Optional
 – **Final exam scheduled for next week**
 • Same room (WWH 101)
 • Same time (5pm-7pm)

• Course summary
 – Topics covered
 – Practice questions
 • Exam problems NOT limited to these questions
Grading

- Assignments: 70%
 - Total points: 520
 - Homeworks
 - Four assignments of equal weight
 - Total points: 120
 - Labs
 - Four assignments of equal weight
 - Total points: 400
- Final Exam: 30%
 - Total points: 222
 - Two hours
 - 5 or 6 questions
 - Open books, open notes
 - No computers

See me after the class if your grades are not recorded correctly
Course Summary

Preliminaries:

• Lecture 1
 – Fundamentals
 – Technology trends
 – CPU performance
 – Amdahl’s Law

• Lecture 2
 – Instruction set architectures
 – MIPS

Processor Core

• Lectures 3-7
 – 5-stage RISC pipeline
 – Hazards: Structural, Data, Control
 – Branch prediction
 • Static
 • Dynamic
 • Hybrid
 – Dynamic scheduling
 • Scoreboarding
 • Tomasulo’s
 – Speculative execution
 • Commit
 • Reorder buffer
 – Superscalars: Multiple instruction issue
 – Limits of ILP
 – VLIW/EPIC processors
 • Software
 – Loop unrolling
 • Hardware
 – Conditional/predicated instructions
Course Summary

Memory Hierarchy
• Lectures 7-9
 – Caches
 • Structure and Performance
 – Memory
 • Organization
 • Organization-level performance

Multiprocessors
• Lectures 10-11
 – Current trends
 – Centralized/decentralized Memory
 – Communication models for DM
 • Shared address space
 • Private address space (message passing)
 – Coherence protocol
 • Snoopy cache coherence protocols
 • Directory-based cache coherence
 – Memory consistency models (briefly)

Interconnection Networks
(Multiprocessors Cont’d)
• Lectures 12
 – Topologies
 – Routing

Case studies
• Lecture 13
 – IBM and Intel Processors

Review
• Lecture 14

Plus
• Four lab assignments
• Four homework assignments
Practice Questions

These questions are meant to provide you with a feeling for the kinds of questions you should expect on the final exam. You can discuss any doubts you may have about your solution on the class mailing list.

- Fundamentals: 1.3, 1.7
- Instruction Set Architectures: 2.1, 2.6, 2.12
- Pipelines: A.5, A.7, A.10
- ILP, Dynamic Scheduling, and Multiple-Issue Processors: A.12, 3.1
- Tomasulo’s Algorithm: 3.3, 3.6, 3.10
- Branch Prediction: 3.11
- Hardware-based Speculation: 3.18
- Limitations on ILP: 3.24 (a)
- Loop Unrolling and predication: 4.9, 4.18
- Speculative Memory Access: 4.23 (a, b)
- Memory Hierarchy: 5.4, 5.5
- Multiprocessors: 6.4, 6.10
- Interconnection Networks: 8.18, 8.19