1. Let G be any abelian group, and for integer n, let $G[n]$ denote the subgroup of G of elements killed by the multiplication-by-n map. Suppose that G satisfies the following properties:

(i) For all n, $G[n]$ is either equal to G or is of finite order.

(ii) For some n, $\{0\} \subsetneq G[n] \subsetneq G$.

Show that $G[n]$ is finite for all n.

2. Fill in the details of the proof of Proposition 7.6 in Charlap and Robbins.

3. Show that if $r \in K(E)$ is regular at a point P, then so is its derivative $\delta(r)$. We discussed this briefly in class — consider the cases $P \neq \infty$ and $P = \infty$ separately.

4. Fill in the details of the proof of Proposition 8.4 in Charlap and Robbins.