Input / Output Devices

Different ways to communicate
User - Application Dialog

The communication between user and system
How?

• How can a user communicate actions/information she requests that the application do?
• How can the application communicate the results, information or confirmation of the actions?
• How can the application communicate requests of the user to the user?
Input Devices
What stimulus dimensions can we humans detect? (input to a human)

- Consciously Controlled - State and Changes of State
- Types of receptors
 - Chemoreceptors
 - used for smell and taste
 - sensitive to chemical substances
 - also monitor blood pH.
 - Mechanoreceptors
 - stimulated by mechanical forces
 - Baroreceptors in the aortic wall sense changes in blood pressure
 - Proprioceptors
 - sense the degree of muscle contraction
 - Tendon stretch
 - Movement of ligaments
 - Thermoreceptors
 - sense temperature changes
 - located in the skin and the hypothalamus
 - Pain receptors (nociceptors)
 - naked dendrites (nerve endings) that respond to chemicals released by damaged tissues.
 - Photoreceptors
 - sensitive to light.
What stimulus dimensions can we humans detect? (input to a human)

- **Visual (Sight)**
 - Light Intensity (Visible Light)
 - Color (Visible Light)
 - Change over time (up to 60-100 changes per second in visual field)
 - 2D images
 - 3D images
 - 2D patterns and shapes (characters)
 - Movement
 - “on a clear, moonless night, the unaided human eye can detect the light from a single match up to 10 miles (16 kilometres) away.”

- **Heat**
 - Radiant Electromagnetic Radiation (infrared light) on the skin

- **Tactile (Touch – Skin, Tongue, Mucous Membranes, …)**
 - Pressure
 - Movement Across Skin
 - Temperature Differences
 - Heat & Cold
 - Vibration
 - Pain
 - Electric Shock

- **Hearing (Ears and Cochlear Organs)**
 - Approximately frequencies 20-20,000 hz
 - Simultaneous frequencies
 - Time varying frequencies
 - Position in a 3D sound field via time differences and acoustic effects like echo and reverb
 - Timbre – the qualities of the sound – trumpet vs. violin vs. xylophone
 - Sounds, Speech, Music & Noise

- **Proprioception**
 - Unconsciously monitor the position of our body.
 - Depends on receptors in the muscles, tendons, and joints.
 - Acceleration Detection

- **Taste (Tongue and Nasal Passages)**
 - Sweet, Sour, Bitter, Salty and Umami
 - Electric Shock

- **Smell**
 - Humans can recognize over 10,000 scents
• Institute for Sensory Research – Syracuse
 http://www.isr.syr.edu/somato.html
• http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/M/Mechanoreceptors.html
• Taste
 http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/T/Taste.html
• Smell
 http://www.hhmi.org/research/investigators/axel.html
What stimuli can we output (generate) – how can we communicate outwardly?

- Physical Pressure & Movement
 - Hands, Feet, Trunk, Head, Lips, Eyes
- Sound
 - Noise, Clapping, Sound, Speech and Music/Singing, …
- Position and Change in Position
 - Hands, Feet, Trunk, Head, Lips, Eyes
- Breath Pressure & Length of Time
- Heat (Body Heat)
- Conscious output is musically mediated communications
 - Unless you use MRI or something more exotic
Input (to a computer) Devices and some Output Devices
Binary state - off to on, off to on

• Devices
 – Standard PC Keyboard
 – Joystick (Switch based NOT positional)
 – Mouse Buttons
 – Touch Screen
 – TabletPC Screen (not pressure sensitive version)
 – Electrical Switch
 – Telephone Keypad

• GUI representation
 – Command Buttons
 – Radio Buttons, Check Boxes
 – Buttcons, Exapand/Collapse Menus
 – Menu items
Pressure - Degree of “on-ness”

• Devices
 – Touchsensitive MIDI Keyboard (with aftertouch)
 – Touch Screen
 – TabletPC Screen
 – Joystick (Positional with Auto Return)
 – EWI – Breath Controller
 – Guitar (Harder you strum / Louder it gets!)

• GUI representation
 – Line Thickness
 – Volume
 – Slider
 – Spin Control
 – Color Selector
Position – 2D

• Devices
 – Mouse
 – Joystick (positional [x,y] NOT switch based)
 – Graphics Tablet
 – Touch Screen
 – Tablet PC Stylus on Screen

• GUI representation
 – Slider
 – 2D Picker
 – Scroll Bar
 – Caret and Cursor
Light (Electromagnetic Radiation)

• Devices
 – Barcode Wand
 – Scanner
 – PC Display
 – Projector
 – Laser Printer
 – Printed Output
 – Web Cam
 – LCD/LED on a Telephone
 – RFID Reader
 – Iris Scanner

• GUI representation
 – Any GUI component
 – Foreground & Background
 Color/Intensity
 – Color / Luminance Picker
 – Images, Videos
Sound

- Devices
 - Microphone
 - Speakers
 - Oscilloscope
 - Ultrasound
- GUI representation
 - Volume Slider
 - Visualization in MP3
Important facts

• It takes the equivalent time of three to eight keystrokes to switch between devices i.e. keyboard to mouse.

• A good touch typist can type 100+ characters per minute. A bad 30 cpm. Ever try typing with a mouse?
Keyboard

- **G (Good):**
 - Text Data Entry
 - Fast typists
 - Accelerator Keys and Mnemonics

- **B (Bad):**
 - Drawing
 - Selecting from many choices
 - Limiting choices entered as text (vs. say a set of checkboxes)
Alternative Keyboards / Input Dev
Other types of keyboards
Mouse

• **G:**
 – “Gesturing” – pointing, clicking, double clicking, drag and drop
 – Selecting a region or item
 – Arranging icons visually
 – Fastest device to orient on a target on screen according to research
 – Uses gross muscle movements of arm and wrist

• **B:**
 – Drawing (fine motor skills)
 – Data entry of text
 – Purely Horizontal or vertical movements (like cascading menus!)
 – How many button is best? (1,2,3,4, …)
 – Source of repetitive strain injuries
Types of mice/trackballs

- Traditional desktop mice
 www.logitech.com
- Motion sensing mice
 www.gyration.com
- Logitech has more exotic stuff – Magellan 3D, Cyber Puck and 3D track ball
 http://www.3dconnexion.com/products/
Trackball

• G:
 – Orienting
 – Avoiding inadvertent movement while button pressing
 – Small desktop space needed

• B:
 – Of mouse, joystick and trackball - Worst for targeting
 – Drawing (fine motor)
 – Click and select motions (vs. a mouse)
Joystick

• G:
 – X,Y positioning
 – Fast, hand-eye coordinated movements
 – Small spaces
 – Absolute Position vs. Relative Modes

• B:
 – Text Input
 – Fine Positioning

• http://www.quadjoy.com/products.htm
LogiCad 3D ScreenMan

- Touch screen with dual 3D controllers on the sides
- Each controller has 6 degrees of freedom – X,Y,Z and rotation

Eraser Point – a joystick in the keyboard!
Persons with limited arm/hand mobility - headmouse
Graphic Tablet

- **G:**
 - Drawing
 - Signatures
 - Selecting

- **B:**
 - No direct feedback (requires great hand eye coordination because you are not drawing on the screen directly – no direct manipulation)
 - Hard to be accurate
 - Region selection
 - Data entry
Touchscreen

• G:
 – Kiosk / ATM selection screens

• B:
 – Data entry (keyboard is better)
 – Large area (finger tip) that is the target – fine movements are hard
Lightpen / Penscreen / Tablet PC

• **G:**
 – Direct feedback between position and the screen – direct manipulation
 – Fine motor oriented operations – drawing, signature
 – Handwriting
 – Selection of items – check, radio, list, …

• **B:**
 – Pen can obscure the visual area
 – Can fatigue the users arm
 – Handwriting as data entry can be much slower than typing.
Light Pens & Graphics Tablets
Write on displays (light pen)

- 1024 x 768 and 1280 x 1024
- 16 Million colors
- 512 pressure levels
- Accuracy down to +/- 0.02 inches!
- Cost $1800-$3600 currently
- See www.wacom.com
- (images copyright Wacom)
Handwriting Recognition

• Write on a graphics tablet/touch screen and the software will convert the bitmap image of what you have written into text file.

• G:
 – When a traditional keyboard is hard to use – Dr. doing rounds
 – No ability to type
 – PDAs

• B:
 – Slower than typing for most
 – High error rates 1 - 5% wrong characters/words!
 – Need to train software to your handwriting
 – May require use of alternative set of symbols you need to learn – Ex: Graffiti on the Palm OS
 – Slow – not good in real time
The Surfball

- Yale Center for Robotic Vision and Control http://cvc.yale.edu/frames.html
The Surfball

• G:
 – 3D manipulation – Up/Down, Left/right, In/Out
 – Gaming?
 – Real time flight control

• B:
 – Text
 – Absolute positioning
 – Fatiguing
Mice, Trackballs, Joysticks, Graphics Tablets, ...

- Generally require a visual display for feedback to the user!
Voice Recognition

• G:
 – Supports users with limited mobility
 – Supports a natural way that people communicate
 – Compatible with telephone infrastructure
 – Simple choices (Yes/No, A/B/C, Up/Down)
 – No ability to use a keyboard
 – Illiterate users

• B:
 – Low rates of accuracy (90-99%)
 – Requires training
 – Slow method of communicating (versus keyboard)
 – Complex interactions are difficult
• Interactive demo of speech
 http://www.chass.utoronto.ca/~danhall/phonetics/sammy.html

• Praat tool http://www.fon.hum.uva.nl/praat/
Handwriting Recognition

• Write on a graphics tablet/touch screen and the software will convert the bitmap image of what you have written into text file.

• **G:**
 – When a traditional keyboard is hard to use – Dr. doing rounds
 – No ability to type

• **B:**
 – High error rates 1 - 5% wrong words!
 – Need to train software to your handwriting
 – Slow – not good in real time
Telephone Keypad & Handset (Voice Response Unit - VRU)

- **G:**
 - Simple interactions
 - Short menus (4 choices or less)
 - Remote access to applications
 - Query oriented apps
 - Numeric input

- **B:**
 - Requires hearing and dexterity
 - Complex menus / cascading menus
 - Transaction oriented apps
 - Alphabetic input
Barcode

- http://www.howstuffworks.com/upc.htm
Barcode

- Coding methods:
 - Code 11
 - Code 39
 - Code 93
 - Code 128
 - Codabar
 - Interleaved 2 of 5
 - EAN 13
 - EAN 8
 - PDF417
 - Telepen
 - UPC A
 - UPC E
 - 2 and 5 digit supplementals associated with EAN and UPC barcodes.
 - Patch Codes: types 1, 2, 3, 4, 6 and T.

- Linear (1 D) and 2D symbologies
OCR

- Optical Character Recognition software
- Scan a page of text and convert the bitmap to a text file.
RFID
(Radio Frequency Id)

- Reads an item via Radio Frequency communications. Can get the unique id of an item i.e. a specific can of soda out of all the cans of soda in the whole store!

- http://www.rfid.org/
- Images © Zebra http://www.zebra.com/PA/Printers/R_140.pdf
Digital Pen?

- Logitech & Anoto
 (http://www.anotofunctionality.com/navigate.asp?PageID=73)
- Records the strokes you make
- Stores 40 “pages” in the pen
- Write email away from the computer!
- A tiny camera reads a grid off the paper to track your motions.
- Requires special paper (a grid of dots invisible to the naked eye)
- $200.00
The Eye – a great computational subsystem

- http://retina.anatomy.upenn.edu/~lance/retina/retina.html
Eye Position & Gaze Tracking

- Images copyright SMI.
- http://www.smi.de/3d/index.htm
Other Input Devices

- WebCam / Video Camera
- Phone Keypad
- Accelerometers / movement detectors – mouse that can be used in space.
- Microphone
- Scanner – 2D and 3D
- Special scientific sensors
 - Physical – Light, Heat, Pressure, Temperature, Weight, Mass
 - Electrical – Voltage, Resistance, Capacitance
 - Geographic Location / Position - GPS – Global Positioning System
 - Gamma Radiation
Oil Industry

- Drilling “tool strings” – sets of sensors set down the hole behind the drill
- Steerable drilling!!!
- Transmits the information via sound waves through the “mud” pumped down to the drill head to power the drill
- Sensor types
 - Electrical resistance
 - Sound
 - Temp
 - Gamma Ray Adsorption
- http://www.oilfield.slb.com/content/services/drilling/index.asp?
MRI / PET?

- Images copyright Encarta

Output Devices
VDT – Video Display Terminal

- CRT & LCD Panel, Projectors
- All Pixels Addressable Display
 - The shapes, text, graphics displayed are not fixed but “drawn” to the screen.
 - May just support standard character set – character mode terminal
How many screens can you use?
3D Visual Displays
Printer

- Outputs to paper or similar material
- All pixels addressable or character mode
Electronic Paper

• Electrically erasable and setable. Requires no power while displaying image.
• http://www.gyriconmedia.com
• http://www.media.mit.edu/micromedia/elecpaper.html
Braille output devices

• History of braille
 http://www.brailler.com/braillehx.htm
Com board
Write on displays

- 1024 x 768 and 1280 x 1024
- 16 Million colors
- 512 pressure levels
- Accuracy down to +/- 0.02 inches!
- Cost $1800-$3600 currently
- See www.wacom.com
- (images copyright Wacom)
Specialized devices for a specific vertical (stock traders)

Circa 1870

Circa 2003
Voice Synthesis

• **Voice Browsers** http://www.w3.org/TR/NOTE-voice

• AT&T Labs has a nice demo page http://www.research.att.com/~ttsweb/cgi-bin/ttsdemo

• Nice page at Bell Labs has a speech synthesis demo applet http://www.bell-labs.com/project/tts/voices.html
Speech

• **G:**
 - Supports users with limited mobility
 - Supports a natural way that people communicate
 - Compatible with telephone infrastructure
 - Simple choices (Yes/No, A/B/C, Up/Down)
 - Illiterate users

• **B:**
 - What language to speak – what dialect
 - Slow method of communicating (versus screen)
 - Complex interactions are difficult
 - 1 Dimensional vs. 2D of visual screen
 - No persistence of choices / ability to “cursor” through menu items, requires memory of items before selection – not “scannable” like a screen
Screen Readers

- http://www.readplease.com
- Execute readplease demo here. Using the text from website.
Robotic Arms, etc.

- www.abb.com
The Hand – a wonderful example of design

- Images copyright Scavone 2002
 http://www.dartmouth.edu/~anatomy/wrist-hand/muscles/
Robotic hands

- On hand based http://www.osci.ttu.edu/AngelaWeb/thesis.html
- http://www.caip.rutgers.edu/~bouzit/lrp/hand.html
Other Output Devices

- Music, Sounds, Speech
- 3D GUI vs. 2D GUI
- Smell / odor generators
- Special scientific effectors
 - Physical – Light, Heat, Pressure, Temperature, Movement/Motion
 - Electrical – Voltage, Resistance, Capacitance
Wearable Computing

- http://www.media.mit.edu/wearables/
• http://kaz.med.wisc.edu/TDU.htm
Finger Array

• http://kaz.med.wisc.edu/49-point.html
Ultimate Interface Device
Computer Vision

- http://www.visualprosthesis.com/etumble.htm
- http://www-2.cs.cmu.edu/~cil/vision.html
Brain Controlled Computers

• Matt Nagle has a chip that was placed on his brain that translates his thoughts to a computer. He is connected to the computer via a cable that is screwed into his head.

• John Donoghue, a professor of neuroscience at Brown University, his company Cyberkinetics has developed an implant called BrainGate.

• [Link to Guardian article](http://www.guardian.co.uk/life/feature/story/0,13026,1448140,00.html)
• [Link to Cyberkinetics](http://donoghue.neuro.brown.edu/motor.php)
• See video [here](http://a1112.g.akamai.net/7/1112/492/03312000/www.wired.com/news/audio/wmp/high/CyberkineticsDemo.wmv)
• Q: What should the UI look like for a direct brain interface (no screen with a cursor)?
• Advanced Topics in Computer and Human Vision
http://www.wisdom.weizmann.ac.il/~armin/AdvVision02/course.html
– Interesting research presentations
Links

• http://www.microsoft.com/speech/
• Machine Emotional Intelligence http://www.etc.tuiasi.ro/cin/Courses/Epiom/Literature/Picardetal.pdf