Theory of Computation
Homework 6.

Due Date: Wednesday, October 15.
Note unusual date. No class Monday, October 13.

Chapter 2:
No. 21. Hint. If you had access to two DFAs, \(M_A \) recognizing \(A \) and \(M_B \) recognizing \(B \), how would you use them to recognize \(\text{Shuffle}(A,B) \)? What are you using these machines to remember? What else are you remembering?

Nos. 26,27,30. See the sample problem and solution overleaf.

Challenge problem: Chapter 2, no. 28.
Sample Problem Let L be a regular language. Define Remove-One-Char(L), or ROC(L) for short, to be the language containing those strings that can be obtained by removing a single character from a string in L; more formally:

$$\text{ROC}(L) = \{uv | uav \in L, \text{ where } u, v \in \Sigma^*, a \in \Sigma\}.$$

Show that ROC(L) is also regular. It may be helpful to illustrate your construction with a diagram, but you should provide a reasonably precise explanation so that it is completely clear how your construction works. Remember to give a brief justification of why it works, also.

Sample solution. Let M be a DFA recognizing L. We will construct NFA N to accept ROC(L). The intuitive idea is that N will be obliged to follow an edge in M without reading a character exactly once. This is implemented as follows. The graph for N consists of two copies of the graph for M, with the first copy joined to the second by λ-labeled edges. Hence a path in N transits once from the first copy to the second. Having the start vertex for N in the first copy and the recognizing vertices in the second copy ensures that a string is recognized exactly if it omits one character that would be read on the corresponding path in M.

The details follow. N comprises two copies of M, named M_1 and M_2. For each vertex p in M there will be a vertex p_1 in M_1 and a vertex p_2 in M_2. And for each a-edge (p, q) in M (an a-edge is an edge labeled by a), in N there will be a-edges (p_1, q_1) and (p_2, q_2) plus a λ-edge (p_1, q_2). For each recognizing vertex r in M there will be a recognizing vertex r_2 in N, and if s is the start vertex for M, s_1 is the start vertex for N.

Suppose w is recognized by M. Let $w = uav$ for some character $a \in \Sigma$ and strings $u, v \in \Sigma^*$ (so $w \neq \lambda$). Then there is a recognizing path P for w which can be partitioned into path P_u labeled by u, followed by an a-edge (p, q), followed by a path P_v labeled by v. Consider the following path P' in N: It comprises path P_u in M_1, followed by edge (p_1, q_2), followed by path P_v in M_2. Clearly P' is a recognizing path in M' and P' has label $uav = uv$. This construction works for any of the characters in w, and thus the resulting strings $w' = uv$ form the set ROC(w), which is therefore recognized by N. As this applies to any w recognized by M, it follows that ROC(L) \subseteq L(N).

On the other hand, if w' is recognized by N, then there is a recognizing path P' for w' which comprises a path P_u in M_1, followed by an edge (p_1, q_2), followed by a path P_v in M_2. Let u be the label on P_u, v the label on P_v, and a the pseudo-label on (p_1, q_2). Consider the path P in M comprising P_u, then edge (p, q), then path P_v. It has label $w = uav$ and is recognizing. Clearly $w' \in$ ROC(w). Thus for each $w' \in L(N)$ there is a $w \in L(M)$ with $w' \in$ ROC(w). In other words $L(N) \subseteq$ ROC(L).

This shows that N recognizes ROC(L), and hence ROC(L) is regular if L is regular.