7. Let $G-UHP$ be the following problem.

Input: $G = (V, E)$, an undirected graph.

Question: Does G have vertices u and v such that there is a Hamiltonian Path from u to v?

Suppose that you were given a polynomial time algorithm for Undirected Hamiltonian Path (UHP), the variant of the problem in which the start and end vertices are specified. Using it as a subroutine, give a polynomial time algorithm for $G-UHP$.

Sample solution, Problem 1, Chapter 5. Let Half-SAT be the following language:

$$\text{Half-SAT} = \{ F \mid F \text{ is a CNF formula with } 2n \text{ variables and there is a satisfying assignment in which } n \text{ variables are set to True and } n \text{ variables are set to False} \}.$$

Show that Half-SAT is NP-Complete, that is (i) show that Half-SAT has a polynomial time verifier, and (ii) Supposing that you were given a polynomial time algorithm for Half-SAT, use it to give a polynomial algorithm for SAT.

Sample Solution.

i. The certificate comprises an assignment σ of truth values to the variables in F. Since $|\sigma| = O(|F|)$, the certificate has length linear in $|F|$.

To check that a candidate certificate is correct, the verifier checks (a) that F is a CNF formula with an even number of variables; (b) that the certificate has exactly n variables set to True and n set to False; (c) that the assignment of truth values in the certificate causes F to evaluate to True. It is straightforward to implement the verifier to run in polynomial time, and clearly it accepts exactly when $F \in \text{Half-SAT}$.

ii. Let F' be the input to SAT. The algorithm A_{sat} to test if $F' \in \text{SAT}$ builds a CNF formula F with the property that

$$F' \in \text{SAT} \iff F \in \text{Half-SAT}.$$

It then runs the algorithm for Half-SAT, $A_{\text{h-sat}}$, on input F and reports the answer as its own result.

F is built as follows. Suppose that F' has variables x_1, x_2, \ldots, x_n. F will have variables x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n. The idea is that $x_i = \overline{y_i}$ for all i, $1 \leq i \leq n$. This is enforced by including clauses $(x_i \lor y_i) \land (\overline{x_i} \lor \overline{y_i})$ for $1 \leq i \leq n$. For $(x_i \lor y_i) \land (\overline{x_i} \lor \overline{y_i})$ evaluates to True only if $x_i = \overline{y_i}$ and $\overline{y_i} = \overline{x_i}$ or if $x_i = \overline{y_i}$ and $\overline{y_i} = \overline{x_i}$, i.e. only if $x_i = \overline{y_i}$.

In addition, for each clause $(l_a \lor l_b \lor l_c)$ in F, where l_i is one of x_i or $\overline{x_i}$, there will be clauses $(l_a \lor l_b \lor l_c) = (l_{xa} \lor l_{xb} \lor l_{xc})$ and $(\overline{l_ya} \lor \overline{l_yb} \lor \overline{l_yc})$, where l_{ya} denotes y_i if l_{xi} denotes x_i and l_{yi} denotes $\overline{y_i}$ if l_{xi} denotes $\overline{x_i}$.

Clearly F can be built in polynomial time. Also, clearly, if $A_{\text{h-sat}}$ runs in polynomial time, then so does A_{sat}.

Now we argue that $F' \in \text{SAT} \iff F \in \text{Half-SAT}$.

1
It is readily seen that if F' has a satisfying assignment σ, setting truth values for the x_i in F according to σ, and then for the y_i according to the rule $y_i = \overline{x_i}$ produces a satisfying assignment for F with exactly n variables set to True. Thus $F' \in \text{SAT}$ implies $F \in \text{Half-SAT}$.

Likewise, a satisfying assignment for F restricted to the x variables is a satisfying assignment for F'. Thus $F \in \text{Half-SAT}$ implies $F' \in \text{SAT}$.

This shows that $F' \in \text{SAT} \iff F \in \text{Half-SAT}$.