QR Factorization in Parallel

Jacque Bush Paul Torres

December 19, 2012
What is a QR Decomposition?

Any matrix $A \in \mathbb{C}^{m \times n}$ has a QR factorization, $Q \in \mathbb{C}^{m \times m}$ a unitary orthogonal matrix and $R \in \mathbb{C}^{m \times n}$ an upper triangular matrix. Since Q is unitary

$$\det(Q) = \pm 1 \quad \text{and} \quad Q^* Q = I.$$

If $m \geq n$ then R has the following form,

$$R = \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix}.$$

The factorization

$$A = \hat{Q} \hat{R}$$

$\hat{Q} \in \mathbb{C}^{m \times n}$ and $\hat{R} \in \mathbb{C}^{n \times n}$ is called the reduced QR factorization.
Why QR?

QR decompositions can be used for many things:

- Fundamental Part of QR algorithm

Algorithm 1.1 The QR Algorithm (without shifts)

\[
\begin{align*}
A^{(0)} &= A \\
\text{for } k = 1, 2, \ldots &\text{ do} \\
Q^{(k)} R^{(k)} &= A^{(k-1)} \\
A^{(k)} &= R^{(k)} Q^{(k)} \\
\text{end for}
\end{align*}
\]

- Least Squares Problem
- Other Matrix Factorizations
- Finding Eigenvalues and Eigenvectors of \(A \)
Navie QR Factorization

Three Different Ways to perform QR Factorization:

1. Gram-Schmidt
 - Fun Fact: This method is used as a proof that QR factorizations exist.
 - Can be unstable for matrices with almost linearly dependent columns.
Navie QR Factorization

Three Different Ways to perform QR Factorization:

1. Gram-Schmidt
 - Fun Fact: This method is used as a proof that QR factorizations exist.
 - Can be unstable for matrices with almost linearly dependent columns.

2. Givens Rotations
 - Zeros out one element at a time.
 - Can be slow if Matrix is not sparse.
Navie QR Factorization

Three Different Ways to perform QR Factorization:

1. Gram-Schmidt
 - Fun Fact: This method is used as a proof that QR factorizations exists.
 - Can be unstable for matrices with almost linearly dependent columns.

2. Givens Rotations
 - Zeros out one element at a time.
 - Can be slow if Matrix is not sparse.

3. Householder Reflections
 - Zeros out a whole column a time.
 - We used this algorithm as a base for our code.
Householder Reflections

Householder Reflections are special unitary matrices P_i such that,

$$
\begin{pmatrix}
 x & x & x \\
 x & x & x \\
 x & x & x \\
 A
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 x & x & x \\
 0 & x & x \\
 0 & x & x \\
 P_1 A
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 x & x & x \\
 0 & x & x \\
 0 & 0 & x \\
 P_2 P_1 A
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 x & x & x \\
 0 & x & x \\
 0 & 0 & x \\
 P_3 P_2 P_1 A
\end{pmatrix}
$$

where

$$
P_i = I - 2 \frac{v_i v_i^t}{v_i^t v_i}.
$$

and

$$
v_i(k) = \text{sign}(a_{ii}) \|A_{k,i}\|_2 e_1 + A_{k,i} \quad \text{if} \quad i \geq k \quad \text{else} \quad v_i(k) = 0
$$
Algorithm 2.1 Householder QR Factorization

\begin{verbatim}
for k = 1 to n do
 x = A_{k:m,k}
 v_k = \text{sign}(x_1) ||x||_2 e_1 + x
 v_k = v_k / ||v_k||_2
 A_{k:m,k:n} = A_{k:m,k:n} - 2v_k (v_k^* A_{k:m,k:n})
end for
\end{verbatim}

Notice that this algorithm does NOT produce both the \(Q \) and the \(R \). To get the \(Q \) we would need to multiply all of the Householder Reflections together.
The WY representation of Q writes the product of householder reflection matrices

$$Q_k = P_1 \cdots P_k$$

in the form

$$Q_k = I + W_k Y_k^T$$

where W_k and Y_k are n by k matrices and

$$P_i = I - 2\frac{v_i v_i^T}{v_i^T v_i}.$$ is a rank one update.
Then

\[Q_k^T A = (I + Y_k W_k^T)A = A + Y_k W_k^T A \]

and

\[Q_k = Q_{k-1} P_k = (I + W_{k-1} Y_{k-1}^T)(I - \beta v_k v_k^T) = I + W_{k-1} Y_{k-1}^T - \beta Q_{k-1} v_k v_k^T \]

\[= I + (W_{k-1} - \beta Q_{k-1} v_k) \begin{pmatrix} Y_{k-1}^T \\ v_k \end{pmatrix} \]

\[= I + (W_{k-1} - \beta Q_{k-1} v_k) \begin{pmatrix} Y_{k-1}^T \\ v_k \end{pmatrix}^T \]

\[\Rightarrow W_k = \begin{pmatrix} W_{k-1} - \beta Q_{k-1} v_k \end{pmatrix} \]

and \[Y_k^T = \begin{pmatrix} Y_{k-1}^T \\ v_k \end{pmatrix} \].
Simple 3x3 WY example

Given a matrix A,

$$A = \begin{pmatrix} 3.83 & 9.15 & 3.86 \\ 8.88 & 7.93 & 4.92 \\ 7.77 & 3.35 & 6.49 \end{pmatrix}$$

Step 1: Compute v_1 where a_1 is the first column of A,

$$v_1 = a_1 + \text{sign}(a_{11})e_1||a_1||_2$$

$$v_1 = \begin{pmatrix} 3.83 \\ 8.88 \\ 7.77 \end{pmatrix} + \begin{pmatrix} 12.39118 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 16.22118 \\ 8.86 \\ 7.77 \end{pmatrix}$$
Simple 3x3 WY example continued...

Step 2: Update \(\nu_1 \) and compute \(w_1 = -2\nu_1 \),

\[
\nu_1 = \frac{\nu_1}{||\nu_1||_2} = \frac{1}{20.04991} \begin{pmatrix} 16.22118 \\ 8.86 \\ 7.77 \end{pmatrix} = \begin{pmatrix} 0.80903 \\ 0.44189 \\ 0.38753 \end{pmatrix}
\]

Insert into \(W \) and \(Y^t \) matrices,

\[
W = \begin{pmatrix} -1.61807 & 0.0 & 0.0 \\ -0.88379 & 0.0 & 0.0 \\ -0.77506 & 0.0 & 0.0 \end{pmatrix}, \quad Y^t = \begin{pmatrix} 0.80903 & 0.44189 & 0.38753 \\ 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \end{pmatrix}
\]
Simple 3x3 WY example continued...

Step 3: Compute Q_1 and Q_1^t:

$$Q_1^t = (I + WY^t)^t$$

$$= \begin{pmatrix}
-0.30909 & -0.71502 & -0.62705 \\
-0.71502 & 0.60945 & -0.34249 \\
-0.62705 & -0.34249 & 0.69963
\end{pmatrix}$$

Notice that

$$Q_1^t a_1 = \begin{pmatrix}
-12.39118 \\
0 \\
0
\end{pmatrix}$$
Simple 3x3 WY example continued...

Step 4: Update a_2,

$$a_2 = Q_1 a_2$$

$$= \begin{pmatrix} -10.59857 \\ -2.85687 \\ -6.10982 \end{pmatrix}$$

Step 5: Compute v_2 where x is the new a_2 with zeros above row 2,

$$v_2 = x + \text{sign}(x_2)e_2 \| x \|_2$$

$$= \begin{pmatrix} 0 \\ -2.85687 \\ -6.10982 \end{pmatrix} - \begin{pmatrix} 6.744745 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 9.60161 \\ -6.10982 \end{pmatrix}$$
Step 6: Update v_2, and compute $w_2 = -2 Q_1 v_2$,

$$v_2 = 1/\|v_2\|_2$$

$$= \frac{1}{11.38072} \begin{pmatrix} 0 \\ 9.60161 \\ -6.10982 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ -0.84367 \\ -0.53685 \end{pmatrix}$$

Insert into W and Y^t matrices,

$$W = \begin{pmatrix} -1.6180 & -1.8797 & 0.0 \\ -0.8837 & 0.6606 & 0.0 \\ -0.7750 & 0.1732 & 0.0 \end{pmatrix}, \quad Y^t = \begin{pmatrix} 0.8090 & 0.4418 & 0.3875 \\ 0.0 & -0.8436 & -0.5368 \\ 0.0 & 0.0 & 0.0 \end{pmatrix}$$
Simple 3x3 WY example continued...

Step 7: Compute Q_2 and Q_2^t,

$$Q_2^t = (I + WY^t)^t$$

$$= \begin{pmatrix}
-0.30909 & -0.715024 & -0.62705 \\
0.87088 & 0.052117 & -0.488690 \\
0.382119 & -0.697154 & 0.606604
\end{pmatrix}$$

Since A is square in this equation Q_2 is the final Q. In general the final Q_k would be when $k = m$, the height of A.

Step 8: Multiply A by Q^t to get final R,

$$R = Q^t A = \begin{pmatrix}
-12.391182 & -10.59872 & -8.78062 \\
0.0 & 6.74481 & 0.446449 \\
0 & 0 & 1.9818806
\end{pmatrix}$$

Notice that $Q^t Q = I$, R is upper triangular and $QR = A$.
WY Representation of Q

WY Performance:

WY vs. Householder

WY Implementation: + -
Householder Implementation: × ×

gflops vs. n
Problems with WY on its own:

1. Best Performance at size 8 by 8.
2. Can’t handle large matrices.
Problems with WY on its own:

1. Best Performance at size 8 by 8.
2. Can’t handle large matrices.
3. NO PARALLIZATION!!!!
Problems with WY on its own:

1. Best Performance at size 8 by 8.
2. Can’t handle large matrices.
3. NO PARALLIZATION!!!!

SOLUTION: Block matrix A - This lead to our Blocked QR version 1.
Given a matrix A:
Step 1: Preform QR factorization on green blocks.
Step 2 and 3: Multiply yellow blocks in parallel by Q^t obtained in previous step and update Q matrix.

<table>
<thead>
<tr>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
</tr>
</tbody>
</table>
Step 1: Preform QR factorization on green blocks.
Step 2 and 3: Multiply yellow blocks in parallel by Q^t obtained in previous step and update Q matrix.
Step 1: Preform QR factorization on green blocks.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11</td>
<td>A</td>
<td>12</td>
</tr>
<tr>
<td>A</td>
<td>21</td>
<td>A</td>
<td>22</td>
</tr>
<tr>
<td>A</td>
<td>31</td>
<td>A</td>
<td>32</td>
</tr>
<tr>
<td>A</td>
<td>41</td>
<td>A</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13</td>
<td>A</td>
<td>23</td>
</tr>
<tr>
<td>A</td>
<td>23</td>
<td>A</td>
<td>33</td>
</tr>
<tr>
<td>A</td>
<td>33</td>
<td>A</td>
<td>43</td>
</tr>
</tbody>
</table>
Step 2 and 3: Multiply yellow blocks in parallel by Q^t obtained in previous step and update Q matrix.
Step 1: Preform QR factorization on green blocks.
Problems with Version 1:

1. Not zeroing out blocks in parallel. If we have a thin and tall matrix this becomes problematic.
Problems with Version 1:

1. Not zeroing out blocks in parallel. If we have a thin and tall matrix this becomes problematic.
Problems with Version 1:

1. Not zeroing out blocks in parallel.
 If we have a thin and tall matrix this becomes problematic.

We created Tiled QR Factorization: version 2 to fix the first problem.
Step 1: Break up each column into sets of blocks below and including diagonal.

Note: This diagram denotes one column being broken up and zeroed out over multiple iterations.
Step 2: Merge each set of blocks (green sets from previous slide) using a binary tree.
Step 3: Update root block at the after set has been merged.
Study on block size:

Blocked QR2:

blocksize: 8 vs 16
Blocked QR:
Version 1 vs Version 2

Comparison Study: seconds on bowery
Blocked QR Performance:

Comparison Study: GFlops per second on bowery

Blocked QR:
Version 1 vs Version 2
Futher Work:

- Utilize L2 Cache sizes by adding another layer of blocking.
Futher Work:

- Utilize L2 Cache sizes by adding another layer of blocking.
- Figure out a way to avoid bottlenecks that appear in Version 2.